Abstract
Layered double hydroxides (LDH’s), also known as anionic clays, are lamellar inorganic solids. The structure of most of them corresponds to that of mineral hydrotalcite, consisting of brucite-like hydroxide sheets, where partial substitution of trivalent or divalent cations results in a positive sheet charge compensated by reversibly exchangeable anions within interlayer galleries. These layered materials have good intercalation properties capturing inorganic and organic ions and they are promising materials for a large number of practical applications, both for direct preparation and for after thermal treatment.
Over the past decade, significant interest has been devoted to the synthesis of LDHs with new compositions allowing improved applications in many areas. This contribution reviews the recent advances in water treatment, nuclear waste treatment/storage, catalytic, industrial, and advanced applications and biomedical applications of LDH-based nanomaterials.
[1] Ahmed, N., Shibata, Y., Taniguchi, T., & Izumi, Y. (2011). Photocatalytic conversion of carbon dioxide into methanol using zinc-copper-M(III) (M = aluminum, gallium) layered double hydroxides. Journal of Catalysis, 279, 123–135. DOI: 10.1016/j.jcat.2011.01.004. http://dx.doi.org/10.1016/j.jcat.2011.01.00410.1016/j.jcat.2011.01.004Suche in Google Scholar
[2] Aisawa, S., Sasaki, S., Takahashi, S., Hirahara, H., Nakayama, H., & Narita, E. (2006). Intercalation of amino acids and oligopeptides into Zn-Al layered double hydroxide by coprecipitation reaction. Journal of the Physics and Chemistry of Solids, 67, 920–925. DOI: 10.1016/j.jpcs.2006.01.004. http://dx.doi.org/10.1016/j.jpcs.2006.01.00410.1016/j.jpcs.2006.01.004Suche in Google Scholar
[3] Almansa, J. J., Coronado, E., Martí-Gastaldo, C., & Ribera, A. (2008). Magnetic properties of NiII CrIII layered double hydroxide materials. European Journal of Inorganic Chemistry, 2008, 5642–5648. DOI: 10.1002/ejic.200800658. http://dx.doi.org/10.1002/ejic.20080065810.1002/ejic.200800658Suche in Google Scholar
[4] Ambrogi, V., Fardella, G., Grandolini, G., & Perioli, L. (2001). Intercalation compounds of hydrotalcite-like anionic clays with antiinflammatory agents — I. Intercalation and in vitro release of ibuprofen. International Journal of Pharmaceutics, 220, 23–32. DOI: 10.1016/S0378-5173(01)00629-9. http://dx.doi.org/10.1016/S0378-5173(01)00629-910.1016/S0378-5173(01)00629-9Suche in Google Scholar
[5] Ambrogi, V., Fardella, G., Grandolini, G., Perioli, L., & Tiralti, M. C. (2002). Intercalation compounds of hydrotalcitelike anionic clays with antiinflammatory agents, II. Uptake of diclofenac for a controlled release formulation. Journal of Pharmaceutical Science and Technology, 3, 1–6. DOI: 10.1208/pt030326. 10.1208/pt030326Suche in Google Scholar PubMed PubMed Central
[6] Antonyraj, C. A., & Kannan, S. (2011). Influence of co-bivalent ions in Cu-containing LDHs and solvent on hydroxylation of benzene to phenol. Applied Clay Science, 53, 297–304. DOI: 10.1016/j.clay.2011.01.024. http://dx.doi.org/10.1016/j.clay.2011.01.02410.1016/j.clay.2011.01.024Suche in Google Scholar
[7] Ay, A. N., Konuk, D., & Zümreoğlu-Karan, B. (2011a). Magnetic nanocomposites with drug-intercalated layered double hydroxide shell supported on commercial magnetite and laboratory-made magnesium ferrite core materials. Materials Science and Engineering: C, 31, 851–857. DOI: 10.1016/j.msec.2011.01.007. http://dx.doi.org/10.1016/j.msec.2011.01.00710.1016/j.msec.2011.01.007Suche in Google Scholar
[8] Ay, A. N., Konuk, D., & Zümreoglu-Karan, B. (2011b). Prolate spheroidal hematite particles equatorially belt with drugcarrying layered double hydroxide disks: Ring nebula-like nanocomposites. Nanoscale Research Letters, 6, 116–120. DOI: 10.1186/1556-276X-6-116. http://dx.doi.org/10.1186/1556-276X-6-11610.1186/1556-276X-6-116Suche in Google Scholar PubMed PubMed Central
[9] Ay, A. N., Zümreoglu-Karan, B., & Temel, A. (2007). Boron removal by hydrotalcite-like, carbonate-free Mg-Al-NO3-LDH and a rationale on the mechanism. Microporous and Mesoporous Materials, 98, 1–5. DOI: 10.1016/j.micromeso.2006.08.004. http://dx.doi.org/10.1016/j.micromeso.2006.08.00410.1016/j.micromeso.2006.08.004Suche in Google Scholar
[10] Ay, A. N., Zümreoglu-Karan, B., Temel, A., & Mafra, L. (2011c). Layered double hydroxides with interlayer borate anions: A critical evaluation of synthesis methodology and pH-independent orientations in nano-galleries. Applied Clay Science, 51, 308–316. DOI: 10.1016/j.clay.2010.12.015. http://dx.doi.org/10.1016/j.clay.2010.12.01510.1016/j.clay.2010.12.015Suche in Google Scholar
[11] Ay, A. N., Zümreoglu-Karan, B., Temel, A., & Rives, V. (2009). Bioinorganic magnetic core- shell nanocomposites carrying antiarthritic agents: Intercalation of ibuprofen and glucuronic acid into Mg-Al-layered double hydroxides supported on magnesium ferrite. Inorganic Chemistry, 48, 8871–8877. DOI: 10.1021/ic901097a. http://dx.doi.org/10.1021/ic901097a10.1021/ic901097aSuche in Google Scholar
[12] Basile, F., Benito, P., Fornasari, G., & Vaccari, A. (2010). Hydrotalcite-type precursors of active catalysts for hydrogen production. Applied Clay Science, 48, 250–259. DOI: 10.1016/j.clay.2009.11.027. http://dx.doi.org/10.1016/j.clay.2009.11.02710.1016/j.clay.2009.11.027Suche in Google Scholar
[13] Basile, F., & Vaccari, A. (2001). Applications of hydrotalcitetype anionic clays (layered double hydroxides) in catalysis. In V. Rives (Ed.), Layered double hydroxides: Present and future (pp. 323–365). New York, NY, USA: Nova Science Publishers. Suche in Google Scholar
[14] Benaissi, K., Hélaine, V., Prévot, V., Forano, C., & Hecquet, L. (2011). Efficient immobilization of yeast transketolase on layered double hydroxides and application for ketose synthesis. Advanced Synthesis & Catalysis, 353, 1497–1509. DOI: 10.1002/adsc.201000925 http://dx.doi.org/10.1002/adsc.20100092510.1002/adsc.201000925Suche in Google Scholar
[15] Bouraada, M., Belhalfaoui, F., Ouali, M. S., & de Ménorval, L. C. (2009). Sorption study of an acid dye from an aqueous solution on modified Mg-Al layered double hydroxides. Journal of Hazardous Materials, 163, 463–467. DOI: 10.1016/j.jhazmat.2008.06.108. http://dx.doi.org/10.1016/j.jhazmat.2008.06.10810.1016/j.jhazmat.2008.06.108Suche in Google Scholar
[16] Bouraada, M., Lafjah, M., Ouali, M. S., & de Menorval, L. C. (2008). Basic dye removal from aqueous solutions by dodecylsulfate- and dodecyl benzene sulfonate-intercalated hydrotalcite. Journal of Hazardous Materials, 153, 911–918. DOI: 10.1016/j.jhazmat.2007.09.076. http://dx.doi.org/10.1016/j.jhazmat.2007.09.07610.1016/j.jhazmat.2007.09.076Suche in Google Scholar
[17] Brito, A., Borges, M. E., Garın, M., & Hernández, A. (2009). Biodiesel production from waste oil using Mg-Al layered double hydroxide catalysts. Energy & Fuels, 23, 2952–2958. DOI: 10.1021/ef801086p. http://dx.doi.org/10.1021/ef801086p10.1021/ef801086pSuche in Google Scholar
[18] Bugatti, V., Gorrasi, G., Montanari, F., Nochetti, M., Tammaro, L., & Vittoria, V. (2011). Modified layered double hydroxides in polycaprolactone as tunable delivery system: in vitro release of antimicrobial benzoate derivatives. Applied Clay Science, 52, 34–40. DOI: 10.1016/j.clay.2011.01.025. http://dx.doi.org/10.1016/j.clay.2011.01.02510.1016/j.clay.2011.01.025Suche in Google Scholar
[19] Bujdák, J., & Iyi, N. (2008). Spectral properties of tetraanionic porphyrin in formamide colloids of layered double hydroxides. Central European Journal of Chemistry, 6, 569–574. DOI: 10.2478/s11532-008-0074-8. http://dx.doi.org/10.2478/s11532-008-0074-810.2478/s11532-008-0074-8Suche in Google Scholar
[20] Carja, G., Chiriac, H., & Lupu, N. (2007). New magnetic organic-inorganic composites based on hydrotalcite-like anionic clays for drug delivery. Journal of Magnetism and Magnetic Materials, 311, 26–30. DOI: 10.1016/j.jmmm.2006.11.161. http://dx.doi.org/10.1016/j.jmmm.2006.11.16110.1016/j.jmmm.2006.11.161Suche in Google Scholar
[21] Cavani, F., Trifirò, F., & Vaccari, A. (1991). Hydrotalcitetype anionic clays: Preparation, properties and applications. Catalysis Today, 11, 173–301. DOI: 10.1016/0920-5861(91)80068-K. http://dx.doi.org/10.1016/0920-5861(91)80068-K10.1016/0920-5861(91)80068-KSuche in Google Scholar
[22] Chao, Y. F., Chen, P. C., & Wang, S. L. (2008). Adsorption of 2,4-D on Mg/Al-NO3 layered double hydroxides with varying layer charge density. Applied Clay Science, 40, 193–200. DOI: 10.1016/j.clay.2007.09.003. http://dx.doi.org/10.1016/j.clay.2007.09.00310.1016/j.clay.2007.09.003Suche in Google Scholar
[23] Chen, D., Huang, S., Zhang, C., Wang, W., & Liu, T. (2010a). Layer-by-layer self-assembly of polyimide precursor/layered double hydroxide ultrathin films. Thin Solid Films, 518, 7081–7085. DOI: 10.1016/j.tsf.2010.05.121. http://dx.doi.org/10.1016/j.tsf.2010.05.12110.1016/j.tsf.2010.05.121Suche in Google Scholar
[24] Chen, D., Wang, X., Liu, T., Wang, X., & Li, J. (2010b). Electrically conductive poly(vinyl alcohol) hybrid films containing graphene and layered double hydroxide fabricated via layer-by-layer self-assembly. Applied Materials & Interfaces, 2, 2005–2011. DOI: 10.1021/am100307v. http://dx.doi.org/10.1021/am100307v10.1021/am100307vSuche in Google Scholar
[25] Chitrakar, R., Makita, Y., Sonoda, A., & Hirotsu, T. (2011). Fe-Al layered double hydroxides in bromate reduction: Synthesis and reactivity. Journal of Colloid and Interface Science, 354, 798–803. DOI: 10.1016/j.jcis.2010.11.010. http://dx.doi.org/10.1016/j.jcis.2010.11.01010.1016/j.jcis.2010.11.010Suche in Google Scholar
[26] Chitrakar, R., Tezuka, S., Hosokawa, J., Makita, Y., Sonoda, A., Ooi, K., & Hirotsu, T. (2010). Uptake properties of phosphate on a novel Zr-modified MgFe-LDH(CO3). Journal of Colloid and Interface Science, 349, 314–320. DOI: 10.1016/j.jcis.2010.05.068. http://dx.doi.org/10.1016/j.jcis.2010.05.06810.1016/j.jcis.2010.05.068Suche in Google Scholar
[27] Choy, H., & Park, M. (2004). Cationic and anionic clays for biological applications. In F. Wypych, & K. G. Satyanarayana (Eds.), Clay surfaces: Fundamentals and applications (pp. 403–424). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/S1573-4285(04)80049-8. http://dx.doi.org/10.1016/S1573-4285(04)80049-810.1016/S1573-4285(04)80049-8Suche in Google Scholar
[28] Choy, J. H., Choi, S. J., Oh, J. M., & Park, T. (2007). Clay minerals and layered double hydroxides for novel biological applications. Applied Clay Science, 36, 122–132. DOI: 10.1016/j.clay.2006.07.007. http://dx.doi.org/10.1016/j.clay.2006.07.00710.1016/j.clay.2006.07.007Suche in Google Scholar
[29] Choy, J. H., Kwak, S. Y., Park, J. S., & Jeong, Y. J. (2001). Cellular uptake behavior of [γ-32P] labeled ATP-LDH nanohybrids. Journal of Materials Chemistry, 11, 1671–1674. DOI: 10.1039/B008680K. http://dx.doi.org/10.1039/b008680k10.1039/b008680kSuche in Google Scholar
[30] Choy, J. H., Park, M., & Oh, J. M. (2006). Bio-nanohybrids based on layered double hydroxide. Current Nanoscience, 2, 275–281. 10.2174/1573413710602030275Suche in Google Scholar
[31] Choy, J. H., & Son, Y. H. (2004). Intercalation of vitamer into LDH and their controlled release properties. Bulletin of the Korean Chemical Society, 25, 122–126. DOI: 10.5012/bkcs.2004.25.1.122. http://dx.doi.org/10.5012/bkcs.2004.25.1.12210.5012/bkcs.2004.25.1.122Suche in Google Scholar
[32] Chuang, Y. H., Tzou, Y. M., Wang, M. K., Liu, C. H., & Chiang, P. N. (2008). Removal of 2-chlorophenol from aqueous solution byMg/Al layered double hydroxide (LDH) and modified LDH. Industrial & Engineering Chemistry Research, 47, 3813–3819. DOI: 10.1021/ie071508e. http://dx.doi.org/10.1021/ie071508e10.1021/ie071508eSuche in Google Scholar
[33] Clemente-León, M., Coronado, E., Primo, V., Ribera, A., & Soriano-Portillo, A. (2008). HHybrid magnetic materials formed by ferritin intercalated into a layered double hydroxide. Solid State Sciences, 10, 1807–1813. DOI: 10.1016/j.solidstatesciences.2008.02.009. http://dx.doi.org/10.1016/j.solidstatesciences.2008.02.00910.1016/j.solidstatesciences.2008.02.009Suche in Google Scholar
[34] Cornejo, J., Celis, R., Pavlovic, I., & Ulibarri, M. A. (2008) Interactions of pesticides with clays and layered double hydroxides: a review. Clay Minerals, 43, 155–175. DOI: 10.1180/claymin.2008.043.2.01. http://dx.doi.org/10.1180/claymin.2008.043.2.0110.1180/claymin.2008.043.2.01Suche in Google Scholar
[35] Coronado, E., Galán-Mascarós, J. R., Martí-Gastaldo, C., Ribera, A., Palacios, E., Castro, M., & Burriel, R. (2008). Spontaneous magnetization in Ni-Al and Ni-Fe layered double hydroxides. Inorganic Chemistry, 47, 9103–9110. DOI: 10.1021/ic801123v. http://dx.doi.org/10.1021/ic801123v10.1021/ic801123vSuche in Google Scholar
[36] Costa, F. R., Saphiannikova, M., Wagenknecht, U., & Heinrich, G. (2008). Layered double hydroxide based polymer nanocomposites. Advances in Polymer Science, 210, 101–168. DOI: 10.1007/12 2007 123. http://dx.doi.org/10.1007/12_2007_123Suche in Google Scholar
[37] Dagnon, K. L., Ambadapadi, S., Shaito, A., Ogbomo, S. M., DeLeon, V., Golden, T. D., Rahimi, M., Nguyen, K., Braterman, P. S., & D’souza, N. A. (2009). Poly(L-lactic acid) nanocomposites with layered double hydroxides functionalized with ibuprofen. Journal of Applied Polymer Science, 113, 1905–1915. DOI: 10.1002/app.30159. http://dx.doi.org/10.1002/app.3015910.1002/app.30159Suche in Google Scholar
[38] del Arco, M., Fernández, A., Martín, C., & Rives, V. (2009). Release studies of different NSAIDs encapsulated in Mg,Al,Fe-hydrotalcites. Applied Clay Science, 42, 538–544. DOI: 10.1016/j.clay.2008.06.014. http://dx.doi.org/10.1016/j.clay.2008.06.01410.1016/j.clay.2008.06.014Suche in Google Scholar
[39] Del Hoyo, C. (2007). Layered double hydroxides and human health: An overview. Applied Clay Science, 36, 103–121. DOI: 10.1016/j.clay.2006.06.010. http://dx.doi.org/10.1016/j.clay.2006.06.01010.1016/j.clay.2006.06.010Suche in Google Scholar
[40] Duan, X., & Evans, D. G. (2006). Layered double hydroxides. In D. M. P. Mingos (Ed.), Structure and bonding (Vol. 119). Berlin, Germany: Springer. 10.1007/b100426Suche in Google Scholar
[41] Evans, D. G., & Duan, X. (2006). Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine. Chemical Communications, 2006, 485–496. DOI: 10.1039/B510313B. http://dx.doi.org/10.1039/b510313b10.1039/B510313BSuche in Google Scholar
[42] Forano, C., Hibino, T., Leroux, F., & Taviot-Guého, C. (2006a). Layered double hydroxides. In F. Bergaya, B. K. G. Theng, & G. Lagaly (Eds.), Handbook of clay science (pp 1021–1095). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/S1572-4352(05)01039-1. http://dx.doi.org/10.1016/S1572-4352(05)01039-110.1016/S1572-4352(05)01039-1Suche in Google Scholar
[43] Forano, C., Vial, S., & Mousty, C. (2006b). Nanohybrid enzymes — layered double hydroxides: Potential applications. Current Nanoscience, 2, 283–294. 10.2174/1573413710602030283Suche in Google Scholar
[44] French, D., Schifano, P., Cortés-Concepción, J., & Hargrove-Leak, S. (2010). Li-Al layered double hydroxides as catalysts for the synthesis of flavanone. Catalysis Communications, 12, 92–94. DOI: 10.1016/j.catcom.2010.08.021 http://dx.doi.org/10.1016/j.catcom.2010.08.02110.1016/j.catcom.2010.08.021Suche in Google Scholar
[45] Gago, S., Costa, T., Seixas de Melo, J., Gonçalves, I. S., & Pillinger, M. (2008) Preparation and photophysical characterisation of Zn-Al layered double hydroxides intercalated by anionic pyrene derivatives. Journal of Materials Chemistry, 18, 894–904. DOI: 10.1039/B715319H. http://dx.doi.org/10.1039/b715319h10.1039/b715319hSuche in Google Scholar
[46] Galejová, K., Obalová, L., Jirátová, K., Pacultová, K., & Kovanda, F. (2009). N2O catalytic decomposition — effect of pelleting pressure on activity of Co-Mn-Al mixed oxide catalysts. Chemical Papers, 63, 172–179. DOI: 10.2478/s11696-008-0105-0. http://dx.doi.org/10.2478/s11696-008-0105-010.2478/s11696-008-0105-0Suche in Google Scholar
[47] Goh, K. H., Lim, T. T., & Dong, Z. (2008). Application of layered double hydroxides for removal of oxyanions: A review. Water Research, 42, 1343–1368. DOI: 10.1016/j.watres.2007.10.043. http://dx.doi.org/10.1016/j.watres.2007.10.04310.1016/j.watres.2007.10.043Suche in Google Scholar PubMed
[48] Guo, X., Li, Y, Song, W., & Shen, W. (2011). Glycerol hydrogenolysis over Co catalysts derived from a layered double hydroxide precursor. Catalysis Letters, 141, 1458–1463. DOI: 10.1007/s10562-011-0642-y. http://dx.doi.org/10.1007/s10562-011-0642-y10.1007/s10562-011-0642-ySuche in Google Scholar
[49] Halma, M., de Freistas Castro, K. A., Taviot-Gueho, C., Prévot, V., Forano, C., Wypych, F., & Nakagaki, S. (2008). Synthesis, characterization, and catalytic activity of anionic iron(III) porphyrins intercalated into layered double hydroxides. Journal of Catalysis, 257, 233–243. DOI: 10.1016/j.jcat.2008.04.026. http://dx.doi.org/10.1016/j.jcat.2008.04.02610.1016/j.jcat.2008.04.026Suche in Google Scholar
[50] Han, J. B., Lu, J., Wei, M., Wang, Z. L., & Duan, X. (2008). Heterogeneous ultrathin films fabricated by alternate assembly of exfoliated layered double hydroxides and polyanion. Chemical Communications, 41, 5188–5190. DOI: 10139/B807479H. http://dx.doi.org/10.1039/b807479h10.1039/b807479hSuche in Google Scholar PubMed
[51] Hansen, B., Curtius, H., & Odoj, R. (2009). Synthesis of a Mg-Cd-Al layered double hydroxide and sorption of selenium. Clays and Clay Minerals, 57, 330–337. DOI: 10.1346/Ccmn.2009.0570305. http://dx.doi.org/10.1346/CCMN.2009.057030510.1346/CCMN.2009.0570305Suche in Google Scholar
[52] Hutson, N. D., & Attwood, B. C. (2008). High temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption, 14, 781–789. DOI: 10.1007/s10450-007-9085-6. http://dx.doi.org/10.1007/s10450-007-9085-610.1007/s10450-007-9085-6Suche in Google Scholar
[53] Iorio, M., De Martino, A., Violente, A., Pigna, M., & Capasso, R. (2010). Synthesis, characterization, and sorption capacity of layered double hydroxides and their complexes with polymerin. Journal of Agricultural and Food Chemistry, 58, 5523–5530. DOI: 10.1021/jf904092n. http://dx.doi.org/10.1021/jf904092n10.1021/jf904092nSuche in Google Scholar PubMed
[54] Islam, M., & Patel, R. (2010). Synthesis and physicochemical characterization of Zn/Al chloride layered double hydroxide and evaluation of its nitrate removal efficiency. Desalination, 256, 120–128. DOI: 10.1016/j.desal.2010.02.003. http://dx.doi.org/10.1016/j.desal.2010.02.00310.1016/j.desal.2010.02.003Suche in Google Scholar
[55] Jin, L., Liu, Q., Sun, Z., Ni, X., & Wei, M. (2010). Preparation of 5-fluorouracil/β-cyclodextrin complex intercalated in layered double hydroxide and the controlled drug release properties. Industrial & Engineering Chemistry Research, 49, 11176–11181. DOI: 10.1021/ie100990z. http://dx.doi.org/10.1021/ie100990z10.1021/ie100990zSuche in Google Scholar
[56] Khan, A. I., Lei, L., Norquist, A. J., & O’Hare, D. (2001). Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide. Chemical Communications, 2001, 2342–2343. DOI: 10.1039/B106465G. http://dx.doi.org/10.1039/b106465g10.1039/b106465gSuche in Google Scholar PubMed
[57] Khan, A. I., Ragavan, A., Fong, B., Markland, C., O’Brien, M., Dunbar, T. G., Williams, G. R., & O’Hare, D. (2009). Recent developments in the use of layered double hydroxides as host materials for the storage and triggered release of functional anions. Industrial & Engineering Chemistry Research, 48, 10196–10205. DOI: 10.1021/ie9012612 http://dx.doi.org/10.1021/ie901261210.1021/ie9012612Suche in Google Scholar
[58] Kovanda, F., & Jirátová, K. (2011). Supported layered double hydroxide-related mixed oxides and their application in the total oxidation of volatile organic compounds. Applied Clay Science, 53, 305–316. DOI: 10.1016/j.clay.2010.12.030. http://dx.doi.org/10.1016/j.clay.2010.12.03010.1016/j.clay.2010.12.030Suche in Google Scholar
[59] Kuang, Y., Zhao, L., Zhang, S., Zhang, F., Dong, M., & Xu, S. (2010). Morphologies, preparations and applications of layered double hydroxide micro-/nanostructures. Materials, 3, 5220–5235. DOI: 10.3390/ma3125220. http://dx.doi.org/10.3390/ma312522010.3390/ma3125220Suche in Google Scholar PubMed PubMed Central
[60] Ladewig, K., Niebert, M., Xu, Z. P., Gray, P. P., & Lu, G. Q. M. (2010). Efficient siRNA delivery to mammalian cells using layered double hydroxide nanoparticles. Biomaterials, 31, 1821–1829. DOI: 10.1016/j.biomaterials.2009.10.058. http://dx.doi.org/10.1016/j.biomaterials.2009.10.05810.1016/j.biomaterials.2009.10.058Suche in Google Scholar PubMed
[61] Ladewig, K., Xu, Z. P., & Lu, G. Q. (2009). Layered double hydroxide nanoparticles in gene and drug delivery. Expert Opinion on Drug Delivery, 6, 907–922. DOI: 10.1517/17425240903130585. http://dx.doi.org/10.1517/1742524090313058510.1517/17425240903130585Suche in Google Scholar PubMed
[62] Latterini, L., Nocchetti, M., Aloisi, G. G., Costantino, U., & Elisei, F. (2007). Organized chromophores in layered inorganic matrices. Inorganica Chimica Acta, 360, 728–740. DOI: 10.1016/j.ica.2006.07.048. http://dx.doi.org/10.1016/j.ica.2006.07.04810.1016/j.ica.2006.07.048Suche in Google Scholar
[63] Legrouri, A., Lakraimi, M., Barroug, A., De Roy, A., & Besse, J. P. (2005). Removal of the herbicide 2,4-dichlorophenoxyacetate from water to zinc-aluminium-chloride layered double hydroxides. Water Research, 39, 3441–3448. DOI: 10.1016/j.watres.2005.03.036. http://dx.doi.org/10.1016/j.watres.2005.03.03610.1016/j.watres.2005.03.036Suche in Google Scholar PubMed
[64] Leroux, F., & Besse, J. P. (2001). Polymer interleaved layered double hydoxide: A new emerging class of nanocomposites. Chemistry of Materials, 13, 3507–3515. DOI: 10.1021/cm0110268. http://dx.doi.org/10.1021/cm011026810.1021/cm0110268Suche in Google Scholar
[65] Li, F., & Duan, X. (2006). Applications of layered double hydroxides. In X. Duan, & D. G. Evans (Eds.), Structure and bonding, (Vol. 119, pp. 193–223). New York, NY, USA: Springer. DOI: 10.1007/430-007. Suche in Google Scholar
[66] Li, F., Jin, L., Han, J., Wei, M., & Li, C. (2009a). Synthesis and controlled release properties of prednisone intercalated Mg-Al layered double hydroxide composite. Industrial & Engineering Chemistry Research, 48, 5590–5597. DOI: 10.1021/ie900043r. http://dx.doi.org/10.1021/ie900043r10.1021/ie900043rSuche in Google Scholar
[67] Li, F., Wang, Y., Yang, Q., Evans, D. G., Forano, C., & Duan, X. (2005a). Study on adsorption of glyphosate (Nphosphonomethyl glycine) pesticide on MgAl-layered double hydroxides in aqueous solution. Journal of Hazardous Materials, 125, 89–95. DOI: 10.1016/j.jhazmat.2005.04.037. http://dx.doi.org/10.1016/j.jhazmat.2005.04.03710.1016/j.jhazmat.2005.04.037Suche in Google Scholar PubMed
[68] Li, H., Gang, Z., Liu, Z. H., Yang, Z., & Wang, Z. (2010). Fabrication of a hybrid graphene/layered double hydroxide material. Carbon, 48, 4391–4396. DOI: 10.1016/j.carbon.2010.07.053. http://dx.doi.org/10.1016/j.carbon.2010.07.05310.1016/j.carbon.2010.07.053Suche in Google Scholar
[69] Li, L., Feng, Y., Li, Y., Zhao, W., & Shi, J. (2009b). Fe3O4 core/layered double hydroxide shell nanocomposite: Versatile magnetic matrix for anionic functional materials. Angewandte Chemie International Edition, 48, 5888–5892. DOI: 10.1002/anie.200901730. http://dx.doi.org/10.1002/anie.20090173010.1002/anie.200901730Suche in Google Scholar PubMed
[70] Li, L., Ma, R., Ebina, Y., Iyi, N., & Sasaki, T. (2005b). Positively charged nanosheets derived from total delamination of layered double hydroxides. Chemistry of Materials, 17, 4386–4391. DOI: 10.1021/cm0510460. http://dx.doi.org/10.1021/cm051046010.1021/cm0510460Suche in Google Scholar
[71] Liang, L., & Li, L. (2007). Adsorption behavior of calcined layered double hydroxides towards removal of iodide contaminants. Journal of Radioanalytical and Nuclear Chemistry, 273, 221–226. DOI: 10.1007/s10967-007-0740-x. http://dx.doi.org/10.1007/s10967-007-0740-x10.1007/s10967-007-0740-xSuche in Google Scholar
[72] Link Shumaker, J., Crofcheck, C., Tackett, S. A., Santillan-Jimenez, E., & Crocker, M. (2007). Biodiesel production from soybean oil using calcined Li-Al layered double hydroxide catalysts. Catalysis Letters, 115, 56–61. DOI: 10.1007/s10562-007-9071-3. http://dx.doi.org/10.1007/s10562-007-9071-310.1007/s10562-007-9071-3Suche in Google Scholar
[73] Link Shumaker, J., Crofcheck, C., Tackett, S. A., Santillan-Jimenez, E., Morgan, T., Ji, Y., Crocker, M., & Toops, T. J. (2008). Biodiesel synthesis using calcined layered double hydroxide catalysts. Applied Catalysis B: Environmental, 82, 120–130. DOI: 10.1016/j.apcatb.2008.01.010. http://dx.doi.org/10.1016/j.apcatb.2008.01.01010.1016/j.apcatb.2008.01.010Suche in Google Scholar
[74] Liu, M., Yang, J. J., Wu, G. Q., & Wang, L. Y. (2006a). Performance and mechanism of Mg, Al layered double hydroxides and layered double oxides for sulfide anion removal. Chinese Journal of Inorganic Chemistry, 22, 1771–1777. Suche in Google Scholar
[75] Liu, P., Wang, C., & Li, C. (2009). Epoxidation of allylic alcohols on self-assembled polyoxometalates hosted in layered double hydroxides with aqueous H2O2 as oxidant. Journal of Catalysis, 262, 159–168. DOI: 10.1016/j.jcat.2008.12.018. http://dx.doi.org/10.1016/j.jcat.2008.12.01810.1016/j.jcat.2008.12.018Suche in Google Scholar
[76] Liu, S., Zhou, Q., Jin, Z., Jiang, H., & Jiang, X. (2010). Dodecylsulfate anion embedded layered double hydroxide supported nanopalladium catalyst for the suzuki reaction. Chinese Journal of Catalysis, 31, 557–561. DOI: 10.1016/S1872-2067(09)60072-3. http://dx.doi.org/10.1016/S1872-2067(09)60072-310.1016/S1872-2067(09)60072-3Suche in Google Scholar
[77] Liu, Z., Ma, R., Osada, M., Iyi, N., Ebina, Y., Takada, K., & Sasaki, T. (2006b). Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: Assembly of the exfoliated nanosheet/polyanion composite films and magnetooptical studies. Journal of the American Chemical Society, 128, 4872–4880. DOI: 10.1021/ja0584471. http://dx.doi.org/10.1021/ja058447110.1021/ja0584471Suche in Google Scholar
[78] Lotsch, B., Millange, F., Walton, R. I., & O’Hare, D. (2001). Separation of nucleoside monophosphates using preferential anion exchange intercalation in layered double hydroxides. Solid State Sciences, 3, 883–886. DOI: 10.1016/S1293-2558(01)01205-5. http://dx.doi.org/10.1016/S1293-2558(01)01205-510.1016/S1293-2558(01)01205-5Suche in Google Scholar
[79] Lukashin, A. V., Vertegel, A. A., Eliseev, A. A., Nikiforov, M. P., Gornert, P., & Tretyakov, Yu. D. (2003). Chemical design of magnetic nanocomposites based on layered double hydroxides. Journal of Nanoparticle Research, 5, 455–464. DOI: 10.1023/B:NANO.0000006087.95385.81. http://dx.doi.org/10.1023/B:NANO.0000006087.95385.8110.1023/B:NANO.0000006087.95385.81Suche in Google Scholar
[80] Lv, L., He, J., Wei, M., Evans, D. G., & Duan, X. (2006a). Factors influencing the removal of fluoride from aqueous solution by calcined Mg-Al-CO3 layered double hydroxides. Journal of Hazardous Materials, 133, 119–128. DOI: 10.1016/j.jhazmat.2005.10.012. http://dx.doi.org/10.1016/j.jhazmat.2005.10.01210.1016/j.jhazmat.2005.10.012Suche in Google Scholar PubMed
[81] Lv, L., He, J., Wei, M., Evans, D. G., & Duan, X. (2006b). Uptake of chloride ion from aqueous solution by calcined layered double hydroxides: Equilibrium and kinetic studies. Water Research, 40, 735–743. DOI: 10.1016/j.watres.2005.11.043. http://dx.doi.org/10.1016/j.watres.2005.11.04310.1016/j.watres.2005.11.043Suche in Google Scholar PubMed
[82] Lv, L., Sun, P., Gu, Y., Du, H., Pang, X., Tao, X., Xu, R., & Xu, L. (2009). Removal of chloride ion from aqueous solution by ZnAl-NO3 layered double hydroxides as anionexchanger. Journal of Hazardous Materials, 161, 1444–1449. DOI: 10.1016/j.jhazmat.2008.04.114. http://dx.doi.org/10.1016/j.jhazmat.2008.04.11410.1016/j.jhazmat.2008.04.114Suche in Google Scholar PubMed
[83] Ma, R., Liu, Z., Li, L., Iyi, N., & Sasaki, T. (2006). Exfoliating layered double hydroxides in formamide: a method to obtain positively charged nanosheets. Journal of Materials Chemistry, 16, 3809–3813. DOI: 10.1039/B605422F. http://dx.doi.org/10.1039/b605422f10.1039/b605422fSuche in Google Scholar
[84] Manzi-Nshuti, C., Songtipya, P., Manias, E., Jimenez-Gasco, M. M., Hossenlopp, J. M., & Wilkie, C. A. (2009). Polymer nanocomposites using zinc aluminum and magnesium aluminum oleate layered double hydroxides: Effects of LDH divalent metals on dispersion, thermal, mechanical and fire performance in various polymers. Polymer, 50, 3564–3574. DOI: 10.1016/j.polymer.2009.06.014. http://dx.doi.org/10.1016/j.polymer.2009.06.01410.1016/j.polymer.2009.06.014Suche in Google Scholar
[85] Miyata, S. (1983). Anion-exchange properties of hydrotalcitelike compounds. Clays and Clay Minerals, 31, 305–311. http://dx.doi.org/10.1346/CCMN.1983.031040910.1346/CCMN.1983.0310409Suche in Google Scholar
[86] Mohanambe, L., & Vasudevan, S. (2004). Insertion of iodine in a functionalized inorganic layered solid. Inorganic Chemistry, 43, 6421–6425. DOI: 10.1021/ic0495721. http://dx.doi.org/10.1021/ic049572110.1021/ic0495721Suche in Google Scholar
[87] Oh, J. M., Biswick, T. T., & Choy, J. H. (2009). Layered nanomaterials for green materials. Journal of Materials Chemistry, 19, 2553–2563. DOI: 10.1039/b819094A. http://dx.doi.org/10.1039/b819094a10.1039/b819094aSuche in Google Scholar
[88] Oliveira, E. L. G., Grande, C. A., & Rodrigues, A. E. (2008). CO2 sorption on hydrotalcite and alkali-modified (K and Cs) hydrotalcites at high temperatures. Separation and Purification Technology, 62, 137–147. DOI: 10.1016/j.seppur.2008.01.011. http://dx.doi.org/10.1016/j.seppur.2008.01.01110.1016/j.seppur.2008.01.011Suche in Google Scholar
[89] Peterson, C. L., Perry, D. L., Masood, H., Lin, H., White, J. L., Hem, S. L., Fritsch, C., & Haeusler, F. (1993). Characterization of antacid compounds containing both aluminium and magnesium. I. Crystalline powders. Pharmaceutical Research, 10, 998–1004. DOI: 10.1023/A:1018958621782. http://dx.doi.org/10.1023/A:101895862178210.1023/A:1018958621782Suche in Google Scholar
[90] Phillips, J. D., & Vandeperre, L. J. (2010a). Designing wasteforms for technetium: anion capture with layered double hydroxides. In DIAMOND’10 Conference: Decommissioning, immobilisation and management of nuclear waste for disposal, December 15–16, 2010 (pp. 1–4). Manchester, UK. Suche in Google Scholar
[91] Phillips, J. D., & Vandeperre, L. J. (2010b). Anion capture with calcium, aluminium and iron containing layered double hydroxides. Journal of Nuclear Materials, 416, 225–229. DOI: 10.1016/j.jnucmat.2010.11.101. http://dx.doi.org/10.1016/j.jnucmat.2010.11.10110.1016/j.jnucmat.2010.11.101Suche in Google Scholar
[92] Qi, C., Amphlett, J. C., & Peppley, B. A. (2007). K (Na)-promoted Ni, Al layered double hydroxide catalysts for the steam reforming of methanol. Journal of Power Sources, 171, 842–849. DOI: 10.1016/j.jpowsour.2007.06.018. http://dx.doi.org/10.1016/j.jpowsour.2007.06.01810.1016/j.jpowsour.2007.06.018Suche in Google Scholar
[93] Ram Reddy, M. K., Xu, Z. P., Lu, G. Q., & Diniz da Costa, J. C. (2006). Layered double hydroxides for CO2 capture: Structure evolution and regeneration. Industrial & Engineering Chemistry Research, 45, 7504–7508. DOI: 10.1021/ie060757k. http://dx.doi.org/10.1021/ie060757k10.1021/ie060757kSuche in Google Scholar
[94] Reinholdt, M. X., & Kirkpatrick, R. J. (2006). Experimental investigations of amino acid-layered double hydroxide complexes: Glutamate-hydrotalcite. Chemistry of Materials, 18, 2567–2576. DOI: 10.1021/cm052107x. http://dx.doi.org/10.1021/cm052107x10.1021/cm052107xSuche in Google Scholar
[95] Ren, Z. F., He, J., Zhang, C. Q., & Duan, X. (2002). Removal of chloride anion by calcined layered double hydroxides. Fine Chemicals, 19, 339–342. Suche in Google Scholar
[96] Rives, V. (2001). Layered double hydroxides: Present and future. New York, NY, USA: Nova Science Publishers. Suche in Google Scholar
[97] Rives, V., & Ulibarri, M. A. (1999). Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coordination Chemistry Reviews, 181, 61–120. DOI: 10.1016/S0010-8545(98)00216-1. http://dx.doi.org/10.1016/S0010-8545(98)00216-110.1016/S0010-8545(98)00216-1Suche in Google Scholar
[98] Ryu, S. J., Jung, H., Oh, J. M., Lee, J. K., & Choy, J. H. (2010). Layered double hydroxide as novel antibacterial drug delivery system. Journal of Physics and Chemistry of Solids, 71, 685–688. DOI: 10.1016/j.jpcs.2009.12.066. http://dx.doi.org/10.1016/j.jpcs.2009.12.06610.1016/j.jpcs.2009.12.066Suche in Google Scholar
[99] Sarakha, L., Forano, C., & Boutinaud, P. (2009). Intercalation of luminescent Europium(III) complexes in layered double hydroxides. Optical Materials, 31, 562–566. DOI: 10.1016/j.optmat.2007.10.018. http://dx.doi.org/10.1016/j.optmat.2007.10.01810.1016/j.optmat.2007.10.018Suche in Google Scholar
[100] Shan, D., Cosnier, S., & Mousty, C. (2003). Layered double hydroxides: An attractive material for electrochemical biosensor design. Analytical Chemistry, 75, 3872–3879. DOI: 10.1021/ac030030v. http://dx.doi.org/10.1021/ac030030v10.1021/ac030030vSuche in Google Scholar PubMed
[101] Shi, H., & He, J. (2011). Orientated intercalation of tartrate as chiral ligand to impact asymmetric catalysis. Journal of Catalysis, 279, 155–162. DOI: 10.1016/j.jcat.2011.01.012. http://dx.doi.org/10.1016/j.jcat.2011.01.01210.1016/j.jcat.2011.01.012Suche in Google Scholar
[102] Singh, R., Ram Reddy, M. K., Wilson, S., Joshi, K., Diniz da Costa, J. C., & Webley, P. (2009). High temperature materials for CO2 capture. Energy Procedia, 1(1), 623–630. DOI: 10.1016/j.egypro.2009.01.082. http://dx.doi.org/10.1016/j.egypro.2009.01.08210.1016/j.egypro.2009.01.082Suche in Google Scholar
[103] Tammaro, L., Costantino, U., Bolognese, A., Sammartino, G., Marenzi, G., Calignano, A., Tetè, S., Mastrangelo, F., Califano, L., & Vittoria, V. (2007). Nanohybrids for controlled antibiotic release in topical applications. International Journal of Antimicrobial Agents, 29, 417–423. DOI: 10.1016/j.ijantimicag.2006.11.019. http://dx.doi.org/10.1016/j.ijantimicag.2006.11.01910.1016/j.ijantimicag.2006.11.019Suche in Google Scholar PubMed
[104] Tammaro, L., Costantino, U., Nochetti, M., & Vittoria, V. (2009). Incorporation of active nano-hybrids into poly(ɛ-caprolactone) for local controlled release: Antifibrinolytic drug. Applied Clay Science, 43, 350–356. DOI: 10.1016/j.clay.2008.10.005. http://dx.doi.org/10.1016/j.clay.2008.10.00510.1016/j.clay.2008.10.005Suche in Google Scholar
[105] Thomas, N., & Rajamathi, M. (2009). Intracrystalline oxidation of thiosulfate-intercalated layered double hydroxides. Langmuir, 25, 2212–2216. DOI: 10.1021/la803402j. http://dx.doi.org/10.1021/la803402j10.1021/la803402jSuche in Google Scholar PubMed
[106] Tong, D. S., Zhou, C. H., Li, M. Y., Yu, W. H., Beltramini, J., Lin, C. X., & Xu, Z. P. (2010). Structure and catalytic properties of Sn-containing layered double hydroxides synthesized in the presence of dodecylsulfate and dodecylamine. Applied Clay Science, 48, 569–574. DOI: 10.1016/j.clay.2010.03.005. http://dx.doi.org/10.1016/j.clay.2010.03.00510.1016/j.clay.2010.03.005Suche in Google Scholar
[107] Trikeriotis, M., & Ghanotakis, D. F. (2007). Intercalation of hydrophilic and hydrophobic antibiotics in layered double hydroxides. International Journal of Pharmaceutics, 332, 176–184. DOI: 10.1016/j.ijpharm.2006.09.031. http://dx.doi.org/10.1016/j.ijpharm.2006.09.03110.1016/j.ijpharm.2006.09.031Suche in Google Scholar PubMed
[108] Tyner, K. M., Schiffman, S. R., & Giannelis, E. P. (2004). Nanobiohybrids as delivery vehicles for camptothecin. Journal of Controlled Release, 95, 501–514. DOI: 10.1016/j.jconrel.2003.12.027. http://dx.doi.org/10.1016/j.jconrel.2003.12.02710.1016/j.jconrel.2003.12.027Suche in Google Scholar
[109] Ulibarri, M. A., & Hermosín, M. C. (2001). Layered double hydroxides in water decontamination. In V. Rives (Ed.), Layered double hydroxides: Present and future. New York, NY, USA: Nova Science Publishers. Suche in Google Scholar
[110] Utracki, L. A., Sepehr, M., & Boccaleri, E. (2007). Synthetic layered nanoparticles for polymeric nanocomposites (PNCs). Polymers for Advanced Technologies, 18, 1–37. DOI: 10.1002/pat.852. http://dx.doi.org/10.1002/pat.85210.1002/pat.852Suche in Google Scholar
[111] Vaccari, A., Basile, F., & Fornasari, G. (2007). Catalytic activity of layered double hydroxides or hydrotalcite-type anionic clays. In P. Somasundaran, & A. Hubbard (Eds.), Encyclopedia of surface and colloid science (2nd ed.). New York, NY, USA: Taylor & Francis. DOI: 10.1081/E-ESCS-120000046. Suche in Google Scholar
[112] Walspurger, S., Cobden, P. D., Safonova, O. V., Wu, Y., & Anthony, E. J. (2010). High CO2 storage capacity in alkali-promoted hydrotalcite-based material: In situ detection of reversible formation of magnesium carbonate. Chemistry — A European Journal, 16, 12694–12700. DOI: 10.1002/chem.201000687. http://dx.doi.org/10.1002/chem.20100068710.1002/chem.201000687Suche in Google Scholar
[113] Wang, L., Meng, X., & Xiao, F. (2010). Au nanoparticles supported on a layered double hydroxide with excellent catalytic properties for the aerobic oxidation of alcohols. Chinese Journal of Catalysis, 31, 943–947. DOI: 10.1016/S1872-2067(09)60091-7. http://dx.doi.org/10.1016/S1872-2067(09)60091-710.1016/S1872-2067(09)60091-7Suche in Google Scholar
[114] Wang, L., Wang, D., Dong, X. Y., Zhang, Z. J., Pei, X. F., Chen, X. J., Chen, B., & Jin, J. (2011a). Layered assembly of graphene oxide and Co-Al layered double hydroxide nanosheets as electrode materials for supercapacitors. Chemical Communications, 47, 3556–3558. DOI: 10.1039/C0CC05420H. http://dx.doi.org/10.1039/c0cc05420h10.1039/c0cc05420hSuche in Google Scholar PubMed
[115] Wang, S., Yan, S., Ma, X., & Gong, J. (2011b). Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy & Environmental Science, 4, 3805–3819. DOI: 10.1039/C1EE01116B. http://dx.doi.org/10.1039/c1ee01116b10.1039/c1ee01116bSuche in Google Scholar
[116] Wang, Y., Bryan, C., Gao, H., Phol, P. I., Brinker, C. J., Yu, K., Xu, H., Yang, Y., Braterman, P. S., & Xu, Z. (2003). Potential applications of nanostructured materials in nuclear waste management. Albuquerque, NM, USA: Sandia National Laboratories. (Sandia National Laboratories report: SAND2003-3313). Retrieved August, 2011, from http://www.sandia.gov Suche in Google Scholar
[117] Wang, Y., & Gao, H. (2006). Compositional and structural control on anion sorption capability of layered double hydroxides (LDHs). Journal of Colloid and Interface Science, 301, 19–26. DOI: 10.1016/j.jcis.2006.04.061. http://dx.doi.org/10.1016/j.jcis.2006.04.06110.1016/j.jcis.2006.04.061Suche in Google Scholar PubMed
[118] Wang, Z., Liu, F., & Chao, L. (2011c). Mg-Al-carbonate layered double hydroxides as a novel catalyst of luminol chemiluminescence. Chemical Communications, 47, 5479–5481. DOI: 10.1039/C1CC10520E. http://dx.doi.org/10.1039/c1cc10520e10.1039/C1CC10520ESuche in Google Scholar
[119] Wang, Z., Wang, E., Gao, L., & Xu, L. (2005). Synthesis and properties of Mg2Al layered double hydroxides containing 5-fluorouracil. Journal of Solid State Chemistry, 178, 736–741. DOI: 10.1016/j.jssc.2004.11.005. http://dx.doi.org/10.1016/j.jssc.2004.11.00510.1016/j.jssc.2004.11.005Suche in Google Scholar
[120] Wei, M., Guo, J., Shi, Z., Yuan, Q., Pu, M., Rao, G., & Duan, X. (2007). Preparation and characterization of l-cystine and l-cysteine intercalated layered double hydroxides. Journal of Materials Science, 42, 2684–2689. DOI: 10.1007/s10853-006- 1368-x. http://dx.doi.org/10.1007/s10853-006-1368-x10.1007/s10853-006-1368-xSuche in Google Scholar
[121] Wypych, F., Bubniak, G. A., Hamla, M., & Nakagaki, S. (2003). Exfoliation and immobilization of anionic porphyrin in layered double hydroxides. Journal of Colloid and Interface Science, 264, 203–207. DOI: 10.1016/S0021-9797(03)00374-6. http://dx.doi.org/10.1016/S0021-9797(03)00374-610.1016/S0021-9797(03)00374-6Suche in Google Scholar
[122] Xia, S. J., Ni, Z. M., Xu, Q., Hu, B. X., & Hu, J. (2008). Layered double hydroxides as supports for intercalation and sustained release of antihypertensive drugs. Journal of Solid State Chemistry, 181, 2610–2619. DOI: 10.1016/j.jssc.2008.06.009. http://dx.doi.org/10.1016/j.jssc.2008.06.00910.1016/j.jssc.2008.06.009Suche in Google Scholar
[123] Xu, Z. P., & Lu, G. Q. (2006). Layered double hydroxide nanomaterials as potential cellular drug delivery agents. Pure and Appied Chemistry, 78, 1771–1779. DOI: 10.1351/pac200678091771. http://dx.doi.org/10.1351/pac20067809177110.1351/pac200678091771Suche in Google Scholar
[124] Xu, Z. P., Walker, T. L., Liu, K. L., Cooper, H. M., Max Lu, G. Q., & Bartlett, P. F. (2007). Layered double hydroxide nanoparticles as cellular delivery vectors of supercoiled plasmid DNA. International Journal of Nanomedicine, 2, 163–174. DOI: 10.2147/IJN.S. Suche in Google Scholar
[125] Xu, Z. P., Zhang, J., Adebajo, M. O., Zhang, H., & Zhou, C. (2011). Catalytic applications of layered double hydroxides and derivatives. Applied Clay Science, 53, 139–150. DOI: 10.1016/j.clay.2011.02.007. http://dx.doi.org/10.1016/j.clay.2011.02.00710.1016/j.clay.2011.02.007Suche in Google Scholar
[126] You, Y., Vance, G. F., & Zhao, H. (2001). Selenium adsorption on Mg-Al and Zn-Al layered double hydroxides. Applied Clay Science, 20, 13–25. DOI: 10.1016/S0169-1317(00)00043-0. http://dx.doi.org/10.1016/S0169-1317(00)00043-010.1016/S0169-1317(00)00043-0Suche in Google Scholar
[127] Yu, J. J., Wang, X. P., Tao, Y. X., Hao, Z. P., & Xu, Z. P. (2007). Effective NOx decomposition and storage/reduction over mixed oxides derived from layered double hydroxides. Industrial & Engineering Chemistry Research, 46, 5794–5797. DOI: 10.1021/ie0705958. http://dx.doi.org/10.1021/ie070595810.1021/ie0705958Suche in Google Scholar
[128] Yucca Mountain (2011). Yucca Mountain nuclear repository project. Retrieved August, 2011, http://www.yuccamountain.org Suche in Google Scholar
[129] Zhang, F., Xiang, X., Li, F., & Duan, X. (2008). Layered double hydroxides as catalytic materials: Recent developments. Catalysis Surveys from Asia, 12, 253–265. DOI 10.1007/s10563-008-9061-5. http://dx.doi.org/10.1007/s10563-008-9061-510.1007/s10563-008-9061-5Suche in Google Scholar
[130] Zhang, H., Pan, D., & Duan, X. (2009a). Synthesis, characterization, and magnetically controlled release behavior of novel core-shell structural magnetic ibuprofen-intercalated LDH nanohybrids. The Journal of Physical Chemistry C, 113, 12140–12148. DOI: 10.1021/jp901060v. http://dx.doi.org/10.1021/jp901060v10.1021/jp901060vSuche in Google Scholar
[131] Zhang, H., Pan, D., Zou, K., He, J., & Duan, X. (2009b). A novel core-shell structured magnetic organic-inorganic nanohybrid involving drug-intercalated layered double hydroxides coated on a magnesium ferrite core for magnetically controlled drug release. Materials Chemistry, 19, 3069–3077. DOI: 10.1039/B820176E. http://dx.doi.org/10.1039/b820176e10.1039/b820176eSuche in Google Scholar
[132] Zhang, H., Qi, R., Evans, D. G., & Duan, X. (2004). Synthesis and characterization of a novel nano-scale magnetic solid base catalyst involving a layered double hydroxide supported on a ferrite core. Journal of Solid State Chemistry, 177, 772–780. DOI: 10.1016/j.jssc.2003.09.009. http://dx.doi.org/10.1016/j.jssc.2003.09.00910.1016/j.jssc.2003.09.009Suche in Google Scholar
[133] Zhang, H., Zou, K., Sun, H., & Duan, X. (2005). A magnetic organic-inorganic composite: Synthesis and characterization of magnetic 5-aminosalicylic acid intercalated layered double hydroxides. Journal of Solid State Chemistry, 178, 3485–3493. DOI: 10.1016/j.jssc.2005.09.008. http://dx.doi.org/10.1016/j.jssc.2005.09.00810.1016/j.jssc.2005.09.008Suche in Google Scholar
[134] Zhao, S., Xu, J., Wie, M., & Song, Y. F. (2011). Synergistic catalysis by polyoxometalate-intercalated layered double hydroxides: oximation of aromatic aldehydes with large enhancement of selectivity. Green Chemistry, 13, 384–389. DOI: 10.1039/C0GC00664E. http://dx.doi.org/10.1039/c0gc00664e10.1039/c0gc00664eSuche in Google Scholar
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Layered double hydroxides — multifunctional nanomaterials
- A novel reagent for spectroscopic determination of Mo(VI)
- Influence of chemical composition of nanocrystalline iron’s surface on the rates of two parallel reactions: nitriding and catalytic decomposition of ammonia
- Application of 2-(octylsulphanyl)benzoic acid as Pb2+ selective ionophore in hybrid membrane system
- Additive-assisted Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water
- Treatment of acidic palm oil for fatty acid methyl esters production
- Synthesis, structure, and luminescent properties of two novel polynuclear complexes of 1,3-di(pyridin-2-yl)propane-1,3-dione
- Mixed-ligand complexes of boric acid with organic biomolecules
- Ultrasound-assisted rapid synthesis of β-aminoketones with direct-type catalytic Mannich reaction using bismuth(III) triflate in aqueous media at room temperature
- Design, synthesis, preliminary pharmacological evaluation, and docking studies of pyrazoline derivatives
- One-pot synthesis and luminescent spectra of 3-allyl substituted quinazoline-2,4-dione derivatives as allyl capping agents
Artikel in diesem Heft
- Layered double hydroxides — multifunctional nanomaterials
- A novel reagent for spectroscopic determination of Mo(VI)
- Influence of chemical composition of nanocrystalline iron’s surface on the rates of two parallel reactions: nitriding and catalytic decomposition of ammonia
- Application of 2-(octylsulphanyl)benzoic acid as Pb2+ selective ionophore in hybrid membrane system
- Additive-assisted Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water
- Treatment of acidic palm oil for fatty acid methyl esters production
- Synthesis, structure, and luminescent properties of two novel polynuclear complexes of 1,3-di(pyridin-2-yl)propane-1,3-dione
- Mixed-ligand complexes of boric acid with organic biomolecules
- Ultrasound-assisted rapid synthesis of β-aminoketones with direct-type catalytic Mannich reaction using bismuth(III) triflate in aqueous media at room temperature
- Design, synthesis, preliminary pharmacological evaluation, and docking studies of pyrazoline derivatives
- One-pot synthesis and luminescent spectra of 3-allyl substituted quinazoline-2,4-dione derivatives as allyl capping agents