Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
Abstract
A series of poly(vinyl alcohol) (PVA)/poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) (PBLG-b-PEG) blend membranes with different PVA/PBLG-b-PEG mole ratios were prepared by pervaporation. Structure and morphologies of PVA/PBLG-b-PEG blend membranes were investigated using Fourier transformation infrared spectroscopy (FTIR), and atomic force microscopy (AFM). Mechanical and chemical properties of PVA/PBLG-b-PEG blend membrane were studied by tensile testing and other physical methods. It was revealed that the introduction of PBLG-b-PEG copolymer has significant effect on the properties of a PVA membrane.
[1] Bai, L., Zhu, L., Min, S., Liu, L., Cai, Y., & Yao, J. (2008). Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide. Applied Surface Science, 254, 2988–2995. DOI: 10.1016/j.apsusc.2007.10.049. http://dx.doi.org/10.1016/j.apsusc.2007.10.04910.1016/j.apsusc.2007.10.049Suche in Google Scholar
[2] Chua, C. K., Leong, K. F., Tan, K. H., Wiria, F. E., & Cheah, C. M. (2004). Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defectbs. Journal of Materials Science: Materials in Medicine, 15, 1113–1121. DOI: 10.1023/B:JMSM.0000046393.81449.a5. http://dx.doi.org/10.1023/B:JMSM.0000046393.81449.a510.1023/B:JMSM.0000046393.81449.a5Suche in Google Scholar
[3] Coluccio, M. L., Ciardelli, G., Bertoni, F., Silvestri, D., Cristallini, C., Giusti, P., & Barbani, N. (2006). Enzymatic erosion of bioartificial membranes to control drug delivery. Macromolecular Bioscience, 6, 403–411. DOI: 10.1002/mabi.200600022. http://dx.doi.org/10.1002/mabi.20060002210.1002/mabi.200600022Suche in Google Scholar
[4] Dai, W. S., & Barbari, T. A. (2000). Gel-impregnated pore membranes with mesh-size asymmetry for biohybrid artificial organs. Biomaterials, 21, 1363–1371. DOI: 10.1016/S0142-9612(00)00022-3. http://dx.doi.org/10.1016/S0142-9612(00)00022-310.1016/S0142-9612(00)00022-3Suche in Google Scholar
[5] DeMerlis, C. C., & Schoneker, D. R. (2003). Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chemical Toxicology, 41, 319–326. DOI: 10.1016/S0278-6915(02)00258-2. http://dx.doi.org/10.1016/S0278-6915(02)00258-210.1016/S0278-6915(02)00258-2Suche in Google Scholar
[6] Fasolka, M. J., Mayes, A. M., & Magonov, S. M. (2001). Thermal enhancement of AFM phase contrast for imaging diblock copolymer thin film morphology. Ultramicroscopy, 90, 21–31. DOI: 10.1016/S0304-3991(01)00129-2. http://dx.doi.org/10.1016/S0304-3991(01)00129-210.1016/S0304-3991(01)00129-2Suche in Google Scholar
[7] Hassan, C. M., & Peppas, N. A. (2000). Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Advances in Polymer Science, 153, 37–65. DOI: 10.1007/3-540-46414-X_2. http://dx.doi.org/10.1007/3-540-46414-X_210.1007/3-540-46414-X_2Suche in Google Scholar
[8] Higashi, N., Kawahara, J., & Niwa, M. (2005). Preparation of helical peptide monolayer-coated gold nanoparticles. Journal of Colloid and Interface Science, 288, 83–87. DOI: 10.1016/j.jcis.2005.02.086. http://dx.doi.org/10.1016/j.jcis.2005.02.08610.1016/j.jcis.2005.02.086Suche in Google Scholar
[9] Hodge, R. M., Edward, G. H., & Simon, G. P. (1996). Water absorption and states of water in semicrystalline poly(vinyl alcohol) films. Polymer, 37, 1371–1376. DOI: 10.1016/0032-3861(96)81134-7. http://dx.doi.org/10.1016/0032-3861(96)81134-710.1016/0032-3861(96)81134-7Suche in Google Scholar
[10] Hyon, S.-H., Cha, W.-I., Ikada, Y., Kita, M., Ogura, Y., & Honda, Y. (1994). Poly(vinyl alcohol) hydrogels as soft contact lens material. Journal of Biomaterials Science, Polymer Edition, 5, 397–406. DOI: 10.1163/156856294X00103. http://dx.doi.org/10.1163/156856294X0010310.1163/156856294X00103Suche in Google Scholar
[11] Jin, L., & Bai, R. (2002). Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir, 18, 9765–9770. DOI: 10.1021/la025917l. http://dx.doi.org/10.1021/la025917l10.1021/la025917lSuche in Google Scholar
[12] Kondo, T., Sawatari, C., Manley, R. St. J., & Gray, D. G. (1994). Characterization of hydrogen bonding in cellulose-synthetic polymer blend systems with regioselectively substituted methylcellulose. Macromolecules, 27, 210–215. DOI: 10.1021/ma00079a031. http://dx.doi.org/10.1021/ma00079a03110.1021/ma00079a031Suche in Google Scholar
[13] Li, T., Lin, J., Chen, T., & Zhang, S. (2006). Polymeric micelles formed by polypeptide graft copolymer and its mixtures with polypeptide block copolymer. Polymer, 47, 4485–4489. DOI: 10.1016/j.polymer.2006.04.011. http://dx.doi.org/10.1016/j.polymer.2006.04.01110.1016/j.polymer.2006.04.011Suche in Google Scholar
[14] Lin, J., Zhu, G., Zhu, X., Lin, S., Nose, T., & Ding, W. (2008). Aggregate structure change induced by intramolecular helix-coil transition. Polymer, 49, 1132–1136. DOI: 10.1016/j.polymer.2008.01.021. http://dx.doi.org/10.1016/j.polymer.2008.01.02110.1016/j.polymer.2008.01.021Suche in Google Scholar
[15] Lio, K., Minoura, N., & Nagura, M. (1995). Swelling characteristics of a blend hydrogel made of poly(allylbiguanido-co-allylamine) and poly(vinyl alcohol). Polymer, 36, 2579–2583. DOI: 10.1016/0032-3861(95)91204-k. http://dx.doi.org/10.1016/0032-3861(95)91204-K10.1016/0032-3861(95)91204-KSuche in Google Scholar
[16] Nishio, Y., & Manley, R. St. J. (1988). Cellulose-poly(vinyl alcohol) blends prepared from solutions in N,N-dimethyl acetamide-lithium chloride. Macromolecules, 21, 1270–1277. DOI: 10.1021/ma00183a016. http://dx.doi.org/10.1021/ma00183a01610.1021/ma00183a016Suche in Google Scholar
[17] Papancea, A., Valente, A. J. M., Patachia, S., Miguel, M. G., & Lindman, B. (2008). PVA-DNA cryogel membranes: Characterization, swelling, and transport studies. Langmuir, 24, 273–279. DOI: 10.1021/la702639d. http://dx.doi.org/10.1021/la702639d10.1021/la702639dSuche in Google Scholar
[18] Park, J.-S., Park, J.-W., & Ruckenstein, E. (2001). Thermal and dynamic mechanical analysis of PVA/MC blend hydrogels. Polymer, 42, 4271–4280. DOI: 10.1016/S0032-3861(00)00768-0. http://dx.doi.org/10.1016/S0032-3861(00)00768-010.1016/S0032-3861(00)00768-0Suche in Google Scholar
[19] Reifer, D., Windeit, R., Kumpf, R. J., Karbach, A., & Fuchs, H. (1995). AFM and TEM investigations of polypropylene/polyurethane blends. Thin Solid Films, 264, 148–152. DOI: 10.1016/0040-6090(95)05852-4. http://dx.doi.org/10.1016/0040-6090(95)05852-410.1016/0040-6090(95)05852-4Suche in Google Scholar
[20] Sawatari, C., & Kondo, T. (1999). Interchain hydrogen bonds in blend films of poly(vinyl alcohol) and its derivatives with poly(ethylene oxide). Macromolecules, 32, 1949–1955. DOI: 10.1021/ma980900o. http://dx.doi.org/10.1021/ma980900o10.1021/ma980900oSuche in Google Scholar
[21] Tang, D., Lin, J., Lin, S., Zhang, S., Chen, T., & Tian, X. (2004). Self-assembly of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) and its mixtures with poly(γ-benzyl l-glutamate) homopolymer. Macromolecular Rapid Communications, 25, 1241–1246. DOI: 10.1002/marc.200400100. http://dx.doi.org/10.1002/marc.20040010010.1002/marc.200400100Suche in Google Scholar
[22] Wang, L., Li, J., Lin, Y., & Chen, C. (2007). Separation of dimethyl carbonate/methanol mixtures by pervaporation with poly(acrylic acid)/poly(vinyl alcohol) blend membranes. Journal of Membrane Science, 305, 238–246. DOI: 10.1016/j.memsci.2007.08.008. http://dx.doi.org/10.1016/j.memsci.2007.08.00810.1016/j.memsci.2007.08.008Suche in Google Scholar
[23] Zhang, L., Yu, P., & Luo, Y. (2006). Separation of caprolactam-water system by pervaporaton through crosslinked PVA membranes. Separation and Purification Technology, 52, 77–83. DOI: 10.1016/j.seppur.2006.03.020. http://dx.doi.org/10.1016/j.seppur.2006.03.02010.1016/j.seppur.2006.03.020Suche in Google Scholar
[24] Zhu, G. (2007). Properties of polyurethane-poly(2,2,3,3-tetra-fluoropropyl acrylate) triblock copolymer aqueous dispersion and its film cast from the dispersion. Fibers and Polymers, 8, 243–248. DOI: 10.1007/BF02877265. http://dx.doi.org/10.1007/BF0287726510.1007/BF02877265Suche in Google Scholar
[25] Zhu, G.-Q. (2010). Properties of a poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane. Chemical Papers, 64, 34–39. DOI: 10.2478/s11696-009-0090-y. http://dx.doi.org/10.2478/s11696-009-0090-y10.2478/s11696-009-0090-ySuche in Google Scholar
[26] Zhu, G.-Q. (2009a). Study on polymeric micelles of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and its mixtures with poly(γ-benzyl l-glutamate) homopolymer in ethanol. Chemical Papers, 63, 683–688. DOI: 10.2478/s11696-009-0074-y. http://dx.doi.org/10.2478/s11696-009-0074-y10.2478/s11696-009-0074-ySuche in Google Scholar
[27] Zhu, G.-Q. (2009b). Structure and performance of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane. Fibers and Polymers, 10, 425–429. DOI: 10.1007/s12221-009-0425-x. http://dx.doi.org/10.1007/s12221-009-0425-x10.1007/s12221-009-0425-xSuche in Google Scholar
[28] Zhu, G. Q., Wang, F. G., Liu, Y. Y., & Gao, Q. C. (2010). Factors influencing aggregation behavior of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in mixed solvents. Chemical Papers, 64, 657–662. DOI: 10.2478/s11696-010-0046-2. http://dx.doi.org/10.2478/s11696-010-0046-210.2478/s11696-010-0046-2Suche in Google Scholar
© 2010 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Chemical conjugation of biomacromolecules: A mini-review
- Talaromyces flavus and its metabolites
- Application of non-steroidal anti-inflammatory drugs for palladium determination
- A naked-eye, selective and sensitive chemosensor for fluoride ion
- Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
- The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
- Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
- Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
- Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
- Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
- Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
- Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
- Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
- Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
- Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
- ZnO nanoparticles in the synthesis of AB ring core of camptothecin
- Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
- Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate
Artikel in diesem Heft
- Chemical conjugation of biomacromolecules: A mini-review
- Talaromyces flavus and its metabolites
- Application of non-steroidal anti-inflammatory drugs for palladium determination
- A naked-eye, selective and sensitive chemosensor for fluoride ion
- Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
- The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
- Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
- Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
- Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
- Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
- Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
- Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
- Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
- Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
- Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
- ZnO nanoparticles in the synthesis of AB ring core of camptothecin
- Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
- Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate