Startseite Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer

  • Guo-Quan Zhu EMAIL logo , Qiao-Chun Gao , Zhi-He Li , Fa-Gang Wang und Hua Zhang
Veröffentlicht/Copyright: 23. September 2010
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A series of poly(vinyl alcohol) (PVA)/poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) (PBLG-b-PEG) blend membranes with different PVA/PBLG-b-PEG mole ratios were prepared by pervaporation. Structure and morphologies of PVA/PBLG-b-PEG blend membranes were investigated using Fourier transformation infrared spectroscopy (FTIR), and atomic force microscopy (AFM). Mechanical and chemical properties of PVA/PBLG-b-PEG blend membrane were studied by tensile testing and other physical methods. It was revealed that the introduction of PBLG-b-PEG copolymer has significant effect on the properties of a PVA membrane.

[1] Bai, L., Zhu, L., Min, S., Liu, L., Cai, Y., & Yao, J. (2008). Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide. Applied Surface Science, 254, 2988–2995. DOI: 10.1016/j.apsusc.2007.10.049. http://dx.doi.org/10.1016/j.apsusc.2007.10.04910.1016/j.apsusc.2007.10.049Suche in Google Scholar

[2] Chua, C. K., Leong, K. F., Tan, K. H., Wiria, F. E., & Cheah, C. M. (2004). Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defectbs. Journal of Materials Science: Materials in Medicine, 15, 1113–1121. DOI: 10.1023/B:JMSM.0000046393.81449.a5. http://dx.doi.org/10.1023/B:JMSM.0000046393.81449.a510.1023/B:JMSM.0000046393.81449.a5Suche in Google Scholar

[3] Coluccio, M. L., Ciardelli, G., Bertoni, F., Silvestri, D., Cristallini, C., Giusti, P., & Barbani, N. (2006). Enzymatic erosion of bioartificial membranes to control drug delivery. Macromolecular Bioscience, 6, 403–411. DOI: 10.1002/mabi.200600022. http://dx.doi.org/10.1002/mabi.20060002210.1002/mabi.200600022Suche in Google Scholar

[4] Dai, W. S., & Barbari, T. A. (2000). Gel-impregnated pore membranes with mesh-size asymmetry for biohybrid artificial organs. Biomaterials, 21, 1363–1371. DOI: 10.1016/S0142-9612(00)00022-3. http://dx.doi.org/10.1016/S0142-9612(00)00022-310.1016/S0142-9612(00)00022-3Suche in Google Scholar

[5] DeMerlis, C. C., & Schoneker, D. R. (2003). Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chemical Toxicology, 41, 319–326. DOI: 10.1016/S0278-6915(02)00258-2. http://dx.doi.org/10.1016/S0278-6915(02)00258-210.1016/S0278-6915(02)00258-2Suche in Google Scholar

[6] Fasolka, M. J., Mayes, A. M., & Magonov, S. M. (2001). Thermal enhancement of AFM phase contrast for imaging diblock copolymer thin film morphology. Ultramicroscopy, 90, 21–31. DOI: 10.1016/S0304-3991(01)00129-2. http://dx.doi.org/10.1016/S0304-3991(01)00129-210.1016/S0304-3991(01)00129-2Suche in Google Scholar

[7] Hassan, C. M., & Peppas, N. A. (2000). Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Advances in Polymer Science, 153, 37–65. DOI: 10.1007/3-540-46414-X_2. http://dx.doi.org/10.1007/3-540-46414-X_210.1007/3-540-46414-X_2Suche in Google Scholar

[8] Higashi, N., Kawahara, J., & Niwa, M. (2005). Preparation of helical peptide monolayer-coated gold nanoparticles. Journal of Colloid and Interface Science, 288, 83–87. DOI: 10.1016/j.jcis.2005.02.086. http://dx.doi.org/10.1016/j.jcis.2005.02.08610.1016/j.jcis.2005.02.086Suche in Google Scholar

[9] Hodge, R. M., Edward, G. H., & Simon, G. P. (1996). Water absorption and states of water in semicrystalline poly(vinyl alcohol) films. Polymer, 37, 1371–1376. DOI: 10.1016/0032-3861(96)81134-7. http://dx.doi.org/10.1016/0032-3861(96)81134-710.1016/0032-3861(96)81134-7Suche in Google Scholar

[10] Hyon, S.-H., Cha, W.-I., Ikada, Y., Kita, M., Ogura, Y., & Honda, Y. (1994). Poly(vinyl alcohol) hydrogels as soft contact lens material. Journal of Biomaterials Science, Polymer Edition, 5, 397–406. DOI: 10.1163/156856294X00103. http://dx.doi.org/10.1163/156856294X0010310.1163/156856294X00103Suche in Google Scholar

[11] Jin, L., & Bai, R. (2002). Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir, 18, 9765–9770. DOI: 10.1021/la025917l. http://dx.doi.org/10.1021/la025917l10.1021/la025917lSuche in Google Scholar

[12] Kondo, T., Sawatari, C., Manley, R. St. J., & Gray, D. G. (1994). Characterization of hydrogen bonding in cellulose-synthetic polymer blend systems with regioselectively substituted methylcellulose. Macromolecules, 27, 210–215. DOI: 10.1021/ma00079a031. http://dx.doi.org/10.1021/ma00079a03110.1021/ma00079a031Suche in Google Scholar

[13] Li, T., Lin, J., Chen, T., & Zhang, S. (2006). Polymeric micelles formed by polypeptide graft copolymer and its mixtures with polypeptide block copolymer. Polymer, 47, 4485–4489. DOI: 10.1016/j.polymer.2006.04.011. http://dx.doi.org/10.1016/j.polymer.2006.04.01110.1016/j.polymer.2006.04.011Suche in Google Scholar

[14] Lin, J., Zhu, G., Zhu, X., Lin, S., Nose, T., & Ding, W. (2008). Aggregate structure change induced by intramolecular helix-coil transition. Polymer, 49, 1132–1136. DOI: 10.1016/j.polymer.2008.01.021. http://dx.doi.org/10.1016/j.polymer.2008.01.02110.1016/j.polymer.2008.01.021Suche in Google Scholar

[15] Lio, K., Minoura, N., & Nagura, M. (1995). Swelling characteristics of a blend hydrogel made of poly(allylbiguanido-co-allylamine) and poly(vinyl alcohol). Polymer, 36, 2579–2583. DOI: 10.1016/0032-3861(95)91204-k. http://dx.doi.org/10.1016/0032-3861(95)91204-K10.1016/0032-3861(95)91204-KSuche in Google Scholar

[16] Nishio, Y., & Manley, R. St. J. (1988). Cellulose-poly(vinyl alcohol) blends prepared from solutions in N,N-dimethyl acetamide-lithium chloride. Macromolecules, 21, 1270–1277. DOI: 10.1021/ma00183a016. http://dx.doi.org/10.1021/ma00183a01610.1021/ma00183a016Suche in Google Scholar

[17] Papancea, A., Valente, A. J. M., Patachia, S., Miguel, M. G., & Lindman, B. (2008). PVA-DNA cryogel membranes: Characterization, swelling, and transport studies. Langmuir, 24, 273–279. DOI: 10.1021/la702639d. http://dx.doi.org/10.1021/la702639d10.1021/la702639dSuche in Google Scholar

[18] Park, J.-S., Park, J.-W., & Ruckenstein, E. (2001). Thermal and dynamic mechanical analysis of PVA/MC blend hydrogels. Polymer, 42, 4271–4280. DOI: 10.1016/S0032-3861(00)00768-0. http://dx.doi.org/10.1016/S0032-3861(00)00768-010.1016/S0032-3861(00)00768-0Suche in Google Scholar

[19] Reifer, D., Windeit, R., Kumpf, R. J., Karbach, A., & Fuchs, H. (1995). AFM and TEM investigations of polypropylene/polyurethane blends. Thin Solid Films, 264, 148–152. DOI: 10.1016/0040-6090(95)05852-4. http://dx.doi.org/10.1016/0040-6090(95)05852-410.1016/0040-6090(95)05852-4Suche in Google Scholar

[20] Sawatari, C., & Kondo, T. (1999). Interchain hydrogen bonds in blend films of poly(vinyl alcohol) and its derivatives with poly(ethylene oxide). Macromolecules, 32, 1949–1955. DOI: 10.1021/ma980900o. http://dx.doi.org/10.1021/ma980900o10.1021/ma980900oSuche in Google Scholar

[21] Tang, D., Lin, J., Lin, S., Zhang, S., Chen, T., & Tian, X. (2004). Self-assembly of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) and its mixtures with poly(γ-benzyl l-glutamate) homopolymer. Macromolecular Rapid Communications, 25, 1241–1246. DOI: 10.1002/marc.200400100. http://dx.doi.org/10.1002/marc.20040010010.1002/marc.200400100Suche in Google Scholar

[22] Wang, L., Li, J., Lin, Y., & Chen, C. (2007). Separation of dimethyl carbonate/methanol mixtures by pervaporation with poly(acrylic acid)/poly(vinyl alcohol) blend membranes. Journal of Membrane Science, 305, 238–246. DOI: 10.1016/j.memsci.2007.08.008. http://dx.doi.org/10.1016/j.memsci.2007.08.00810.1016/j.memsci.2007.08.008Suche in Google Scholar

[23] Zhang, L., Yu, P., & Luo, Y. (2006). Separation of caprolactam-water system by pervaporaton through crosslinked PVA membranes. Separation and Purification Technology, 52, 77–83. DOI: 10.1016/j.seppur.2006.03.020. http://dx.doi.org/10.1016/j.seppur.2006.03.02010.1016/j.seppur.2006.03.020Suche in Google Scholar

[24] Zhu, G. (2007). Properties of polyurethane-poly(2,2,3,3-tetra-fluoropropyl acrylate) triblock copolymer aqueous dispersion and its film cast from the dispersion. Fibers and Polymers, 8, 243–248. DOI: 10.1007/BF02877265. http://dx.doi.org/10.1007/BF0287726510.1007/BF02877265Suche in Google Scholar

[25] Zhu, G.-Q. (2010). Properties of a poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane. Chemical Papers, 64, 34–39. DOI: 10.2478/s11696-009-0090-y. http://dx.doi.org/10.2478/s11696-009-0090-y10.2478/s11696-009-0090-ySuche in Google Scholar

[26] Zhu, G.-Q. (2009a). Study on polymeric micelles of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and its mixtures with poly(γ-benzyl l-glutamate) homopolymer in ethanol. Chemical Papers, 63, 683–688. DOI: 10.2478/s11696-009-0074-y. http://dx.doi.org/10.2478/s11696-009-0074-y10.2478/s11696-009-0074-ySuche in Google Scholar

[27] Zhu, G.-Q. (2009b). Structure and performance of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane. Fibers and Polymers, 10, 425–429. DOI: 10.1007/s12221-009-0425-x. http://dx.doi.org/10.1007/s12221-009-0425-x10.1007/s12221-009-0425-xSuche in Google Scholar

[28] Zhu, G. Q., Wang, F. G., Liu, Y. Y., & Gao, Q. C. (2010). Factors influencing aggregation behavior of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in mixed solvents. Chemical Papers, 64, 657–662. DOI: 10.2478/s11696-010-0046-2. http://dx.doi.org/10.2478/s11696-010-0046-210.2478/s11696-010-0046-2Suche in Google Scholar

Published Online: 2010-9-23
Published in Print: 2010-12-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Chemical conjugation of biomacromolecules: A mini-review
  2. Talaromyces flavus and its metabolites
  3. Application of non-steroidal anti-inflammatory drugs for palladium determination
  4. A naked-eye, selective and sensitive chemosensor for fluoride ion
  5. Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
  6. The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
  7. Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
  8. Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
  9. Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
  10. Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
  11. Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
  12. Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
  13. Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
  14. Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
  15. Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
  16. ZnO nanoparticles in the synthesis of AB ring core of camptothecin
  17. Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
  18. Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate
Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0069-8/html?lang=de
Button zum nach oben scrollen