Startseite Chemical conjugation of biomacromolecules: A mini-review
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Chemical conjugation of biomacromolecules: A mini-review

  • Pavol Farkaš EMAIL logo und Slavomír Bystrický
Veröffentlicht/Copyright: 23. September 2010
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Biological studies showed that assembles of biomolecules can dramatically change their physiological effectiveness. Covalent coupling of different types of biomolecules leads to novel biomacromolecules of different properties. Generally, bioconjugate chemistry opens a new dimension in biomedical and biotechnology research. In this review, some important chemical methods of bioconjugates preparation used in the practice are described. Proteins and saccharides modification methods and employment of linkers used to achieve new functionalities are discussed. Common bioconjugation methods are emphasized and novel methods from recent years are described. Except in chemistry, benefits and limits of the studied methods are outlined.

[1] Albericio, F. (2004). Developments in peptide and amide synthesis. Current Opinion in Chemical Biology, 8, 211–221. DOI: 10.1016/j.cbpa.2004.03.002. http://dx.doi.org/10.1016/j.cbpa.2004.03.00210.1016/j.cbpa.2004.03.002Suche in Google Scholar

[2] Amir-Kroll, H., Nussbaum, G., & Cohen, I. R. (2003). Proteins and their derived peptides as carriers in a conjugate vaccine for Streptococcus pneumoniae: Self-heat shock protein 60 and tetanus toxoid. The Journal of Immunology, 170, 6165–6171. 10.4049/jimmunol.170.12.6165Suche in Google Scholar

[3] Anderson, P., Pichichero, M. E., & Insel, R. A. (1985). Immunogens consisting of oligosaccharides from the capsule of Haemophilus influenzae type b coupled to diphtheria toxoid or CRM197. The Journal of Clinical Investigation, 76, 52–59. DOI: 10.1172/JCI111976. http://dx.doi.org/10.1172/JCI11197610.1172/JCI111976Suche in Google Scholar

[4] Baskin, J. M., Prescher, J. A., Laughlin, S. T., Agard, N. J., Chang, P. V., Miller, I, A., Lo, A., Codelli, J. A., & Bertozzi, C. R. (2007). Copper-free click chemistry for dynamic in vivo imaging. Proceedings of the National Academy of Sciences, 104, 16793–16797. DOI: 10.1073/pnas.0707090104. http://dx.doi.org/10.1073/pnas.070709010410.1073/pnas.0707090104Suche in Google Scholar

[5] Bauminger, S., & Wilcheck, M. (1980). The use of carbodiimides in the preparation of immunizing conjugates. Methods in Enzymology, 70, 151–159. http://dx.doi.org/10.1016/S0076-6879(80)70046-010.1016/S0076-6879(80)70046-0Suche in Google Scholar

[6] Berkin, A., Coxon, B., & Pozsgay, V. (2002). Towards a synthetic glycoconjugate vaccine against Neisseria meningitidis A. Chemistry — A European Journal, 8, 4424–4433. DOI: 10.1002/1521-3765(20021004)8:19<4424::AID-CHEM4424>3.0.CO;2-1. http://dx.doi.org/10.1002/1521-3765(20021004)8:19<4424::AID-CHEM4424>3.0.CO;2-110.1002/1521-3765(20021004)8:19<4424::AID-CHEM4424>3.0.CO;2-1Suche in Google Scholar

[7] Bernstein, M. A., & Hall, L. D. (1980). A general synthesis of model glycoproteins: coupling of alkenyl glycosides to proteins, using reductive ozonolysis followed by reductive amination with sodium cyanoborohydride. Carbohydrate Research, 78, C1–C3. DOI: 10.1016/S0008-6215(00)83676-9. http://dx.doi.org/10.1016/S0008-6215(00)83676-910.1016/S0008-6215(00)83676-9Suche in Google Scholar

[8] Bode, J. W., Fox, R. M., & Baucom, K. D. (2006). Chemoselective amide ligations by decarboxylative condensations of N-alkylhydroxylamines and α-ketoacids. Angewandte Chemie International Edition, 45, 1248–1252. DOI: 10.1002/anie.200503991. http://dx.doi.org/10.1002/anie.20050399110.1002/anie.200503991Suche in Google Scholar

[9] Boratyńsky, J., & Roy, R. (1998). High temperature conjugation of proteins with carbohydrates. Glycoconjugate Journal, 15, 131–138. DOI: 10.1023/A:1007067513242. http://dx.doi.org/10.1023/A:100706751324210.1023/A:1007067513242Suche in Google Scholar

[10] Bulpitt, P., & Aeschlimann, D. (1999). New strategy for chemical modification of hyaluronic acid: Preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. Journal of Biomedical Materials Research Part A, 47, 152–169. DOI: 10.1002/(SICI)1097-4636(199911)47:2<152::AID-JBM5>3.0.CO;2-I. http://dx.doi.org/10.1002/(SICI)1097-4636(199911)47:2<152::AID-JBM5>3.0.CO;2-I10.1002/(SICI)1097-4636(199911)47:2<152::AID-JBM5>3.0.CO;2-ISuche in Google Scholar

[11] Bystrický, S., Machová, E., Bartek, P., Kolarova, N., & Kogan, G. (2000). Conjugation of yeast mannans with protein employing cyanopyridinium agent (CDAP). an effective route of antifungal vaccine preparation. Glycoconjugate Journal, 17, 677–680. DOI: 10.1023/A:1011002118819. http://dx.doi.org/10.1023/A:101100211881910.1023/A:1011002118819Suche in Google Scholar

[12] Canalle, L. A., Löwik, D. W. P. M., & Hest, J. C. M. (2010). Polypeptide-polymer bioconjugates. Chemical Society Reviews, 39, 329–353, DOI: 10.1039/b807871h. http://dx.doi.org/10.1039/b807871h10.1039/B807871HSuche in Google Scholar PubMed

[13] Chan, T. R., Hilgraf, R., Sharpless, K. B., & Fokin, V. V. (2004). Polytriazoles as copper(I)-stabilizing ligands in catalysis. Organic Letters, 6, 2853–2855. DOI: 10.1021/ol0493094. http://dx.doi.org/10.1021/ol049309410.1021/ol0493094Suche in Google Scholar PubMed

[14] Dalpathado, D. S., Jiang, H., Kater, M. A., & Desaire, H. (2005). Reductive amination of carbohydrates using NaBH(OAc)3. Analytical and Bioanalytical Chemistry, 381, 1130–1137. DOI: 10.1007/s00216-004-3028-9. http://dx.doi.org/10.1007/s00216-004-3028-910.1007/s00216-004-3028-9Suche in Google Scholar PubMed

[15] Dawson, P. E., Muir, T. W., Clark-Lewis, I., & Kent, S. B. (1994). Synthesis of proteins by native chemical ligation. Science, 266, 776–779. DOI: 10.1126/science.7973629. http://dx.doi.org/10.1126/science.797362910.1126/science.7973629Suche in Google Scholar PubMed

[16] Ďurana, R., Lacík, I., Paulovičová, E., & Bystický, S. (2006). Functionalization of mannans from pathogenic yeasts by different means of oxidations—preparation of precursors for conjugation reactions with respect to preservation of immunological properties. Carbohydrate Polymers, 63, 72–81. DOI: 10.1016/j.carbpol.2005.08.003. http://dx.doi.org/10.1016/j.carbpol.2005.08.00310.1016/j.carbpol.2005.08.003Suche in Google Scholar

[17] Dziadek, S., Jacques, S., & Bundle, D. R. (2008). A novel linker methodology for the synthesis of tailored conjugate vaccines composed of complex carbohydrate antigens and specific THcell peptide epitopes. Chemistry — A European Journal, 14, 5908–5917. DOI: 10.1002/chem.200800065. http://dx.doi.org/10.1002/chem.20080006510.1002/chem.200800065Suche in Google Scholar PubMed

[18] Farkaš, P., & Bystrický, S. (2008). Hydrolysis of the terminal dimethylacetal moiety on the spacers bound to carboxy groups containing glucans. Carbohydrate Polymers, 74, 133–136. DOI: 10.1016/j.carbpol.2008.01.005. http://dx.doi.org/10.1016/j.carbpol.2008.01.00510.1016/j.carbpol.2008.01.005Suche in Google Scholar

[19] Farkaš, P., & Bystický, S. (2007). Efficient activation of carboxyl polysaccharides for the preparation of conjugates. Carbohydrate Polymers, 68, 187–190. DOI: 10.1016/j.carbpol.2006.07.013. http://dx.doi.org/10.1016/j.carbpol.2006.07.01310.1016/j.carbpol.2006.07.013Suche in Google Scholar

[20] García, A., Hernández, K., Chico, B., García, D., Villalonga, M. L., & Villalonga, R. (2009). Preparation of thermostable trypsin.polysaccharide neoglycoenzymes through Ugi multicomponent reaction. Journal of Molecular Catalysis B: Enzymatic, 59, 126–130. DOI: 10.1016/j.molcatb.2009.02.001. http://dx.doi.org/10.1016/j.molcatb.2009.02.00110.1016/j.molcatb.2009.02.001Suche in Google Scholar

[21] Grabarek, Z., & Gergely, J. (1990). Zero-length crosslinking procedure with the use of active esters. Analytical Biochemistry, 185, 131–135. DOI: 10.1016/0003-2697(90)90267-D. http://dx.doi.org/10.1016/0003-2697(90)90267-D10.1016/0003-2697(90)90267-DSuche in Google Scholar

[22] Grandjean, C., Boutonnier, A., Dassy, B., Fournier, J.-M., & Mulard, L. A. (2009). Investigation towards bivalent chemically defined glycoconjugate immunogens prepared from acid-detoxified lipopolysaccharide of Vibrio cholerae O1, serotype Inaba. Glycoconjugate Journal, 26, 41–55. DOI: 10.1007/s10719-008-9160-6. http://dx.doi.org/10.1007/s10719-008-9160-610.1007/s10719-008-9160-6Suche in Google Scholar

[23] Grandjean, C., Boutonnier, A., Guerreiro, C., Fournier, J.-M., & Mulard, L. A. (2005). On the preparation of carbohydrate-protein conjugates using the traceless Staudinger ligation. Journal of the Organic Chemistry, 70, 7123–7132. DOI: 10.1021/jo0505472. http://dx.doi.org/10.1021/jo050547210.1021/jo0505472Suche in Google Scholar

[24] Griesbaum, K. (1970). Problems and possibilities of the free-radical addition of thiols to unsaturated compounds. Angewandte Chemie International Edition, 9, 273–287. DOI: 10.1002/anie.197002731. http://dx.doi.org/10.1002/anie.19700273110.1002/anie.197002731Suche in Google Scholar

[25] Gurd, F. R. N. (1967). Carboxymethylation. Methods in Enzymology, 11, 532–541. DOI: 10.1016/S0076-6879(67)11064-1. http://dx.doi.org/10.1016/S0076-6879(67)11064-110.1016/S0076-6879(67)11064-1Suche in Google Scholar

[26] Hermanson, G. T. (1996). Bioconjugate techniques. San Diego, CA, USA: Academic Press, Inc. Suche in Google Scholar

[27] Hou, S.-J., Saksena, R., & Kova., P. (2008). Preparation of glycoconjugates by dialkyl squarate chemistry revisited. Carbohydrate Research, 343, 196–210. DOI: 10.1016/j.carres.2007.10.015. http://dx.doi.org/10.1016/j.carres.2007.10.01510.1016/j.carres.2007.10.015Suche in Google Scholar PubMed PubMed Central

[28] Hoyle, C. E., & Bowman, C. N. (2010). Thiol-ene click chemistry. Angewandte Chemie International Edition, 49, 1540–1573. DOI: 10.1002/anie.200903924. http://dx.doi.org/10.1002/anie.20090392410.1002/anie.200903924Suche in Google Scholar PubMed

[29] Izumi, M., Okumura, S., Yuasa, H., & Hashimoto, H. (2003). Mannose-BSA conjugates: Comparison between commercially available linkers in reactivity and bioactivity. Journal of Carbohydrate Chemistry, 22, 317–329. DOI: 10.1081/CAR-120023475. http://dx.doi.org/10.1081/CAR-12002347510.1081/CAR-120023475Suche in Google Scholar

[30] Johnson, E. C. B., & Kent, S. B. H. (2006). Insights into the mechanism and catalysis of the native chemical ligation reaction. Journal of the American Chemical Society, 128, 6640–6646. DOI: 10.1021/ja058344i. http://dx.doi.org/10.1021/ja058344i10.1021/ja058344iSuche in Google Scholar PubMed

[31] Jonkheijm, P., Weinrich, D., Köhn, M., Engelkamp, H., Christianen, P. C. M., Kuhlmann, J., Maan, J. C., Nüsse, D., Schroeder, H., Wacker, R., Breinbauer, R., Niemeyer, C. M., & Waldmann, H. (2008). Photochemical surface patterning by the thiol-ene reaction. Angewandte Chemie International Edition, 47, 4421–4424. DOI: 10.1002/anie.200800101. http://dx.doi.org/10.1002/anie.20080010110.1002/anie.200800101Suche in Google Scholar PubMed

[32] Kiick, K. L., Saxon, E., Tirrell, D. A., & Bertozzi, C. R. (2002). Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proceedings of the National Academy of Sciences, 99, 19–24. DOI: 10.1073/pnas.012583299. http://dx.doi.org/10.1073/pnas.01258329910.1073/pnas.012583299Suche in Google Scholar

[33] Kohn, J., & Wilchek, M. (1983). 1-Cyano-4-dimethylamino pyridinium tetrafluoroborate as a cyanylating agent for the covalent attachment of ligand to polysaccharide resins. FEBS Letters, 154, 209–210. DOI: 10.1016/0014-5793(83)80905-3. http://dx.doi.org/10.1016/0014-5793(83)80905-310.1016/0014-5793(83)80905-3Suche in Google Scholar

[34] Köhn, M., & Breinbauer, R. (2004). The Staudinger ligation — a gift to chemical biology. Angewandte Chemie International Edition, 43, 3106–3116. DOI: 10.1002/anie.200401744. http://dx.doi.org/10.1002/anie.20040174410.1002/anie.200401744Suche in Google Scholar PubMed

[35] Kubler-Kielb, J., Liu, T.-Y., Mocca, C., Majadly, F., Robbins, J. B., & Schneerson, R. (2006). Additional conjugation methods and immunogenicity of Bacillus anthracis poly-γ-D-glutamic acid-protein conjugates. Infection and Immunity, 74, 4744–4749. DOI: 10.1128/IAI.00315-06. http://dx.doi.org/10.1128/IAI.00315-0610.1128/IAI.00315-06Suche in Google Scholar PubMed PubMed Central

[36] Kubler-Kielb, J., & Pozsgay, V. (2005). A new method for conjugation of carbohydrates to proteins using an aminooxy-thiol heterobifunctional linker. Journal of the Organic Chemistry, 70, 6987–6990. DOI: 10.1021/jo050934b. http://dx.doi.org/10.1021/jo050934b10.1021/jo050934bSuche in Google Scholar PubMed

[37] Lees, A., Sen, G., & Acosta, A. L. (2006). Versatile and efficient synthesis of protein.polysaccharide conjugate vaccines using aminooxy reagents and oxime chemistry. Vaccine, 24, 716–729. DOI: 10.1016/j.vaccine.2005.08.096. http://dx.doi.org/10.1016/j.vaccine.2005.08.09610.1016/j.vaccine.2005.08.096Suche in Google Scholar PubMed

[38] Leung, C., Chibba, A., Gómez-Biagi, R. F., & Nitz, M. (2009). Efficient synthesis and protein conjugation of β-(1→6)-D-N-acetylglucosamine oligosaccharides from the polysaccharide intercellular adhesin. Carbohydrate Research, 344, 570–575. DOI: 10.1016/j.carres.2008.12.021. http://dx.doi.org/10.1016/j.carres.2008.12.02110.1016/j.carres.2008.12.021Suche in Google Scholar PubMed

[39] Li, C.-J. (2005). Organic reactions in aqueous media with a focus on carbon.carbon bond formations: A decade update. Chemical Reviews, 105, 3095–3165. DOI: 10.1021/cr030009u. http://dx.doi.org/10.1021/cr030009u10.1021/cr030009uSuche in Google Scholar PubMed

[40] Lin, F. L., Hoyt, H. M., van Halbeek, H., Bergman, R. G., & Bertozzi, C. R. (2005). Mechanistic investigation of the Staudinger ligation. Journal of the American Chemical Society, 127, 2686–2695. DOI: 10.1021/ja044461m. http://dx.doi.org/10.1021/ja044461m10.1021/ja044461mSuche in Google Scholar PubMed

[41] Lutz, J.-F., & Börner, H. G. (2008). Modern trends in polymer bioconjugates design. Progress in Polymer Science, 33, 1–39. DOI: 10.1016/j.progpolymsci.2007.07.005. http://dx.doi.org/10.1016/j.progpolymsci.2007.07.00510.1016/j.progpolymsci.2007.07.005Suche in Google Scholar

[42] Lutz, J.-F., & Zarafshani, Z. (2008). Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide.alkyne “click” chemistry. Advanced Drug Delivery Reviews, 60, 958–970. DOI: 10.1016/j.addr.2008.02.004. http://dx.doi.org/10.1016/j.addr.2008.02.00410.1016/j.addr.2008.02.004Suche in Google Scholar

[43] Mieszala, M., Kogan, G., & Jennings, H. J. (2003). Conjugation of meningococcal lipooligosaccharides through their lipid A terminus conserves their inner epitopes and results in conjugate vaccines having improved immunological properties. Carbohydrate Research, 338, 167–175. DOI: 10.1016/S0008-6215(02)00395-6. http://dx.doi.org/10.1016/S0008-6215(02)00395-610.1016/S0008-6215(02)00395-6Suche in Google Scholar

[44] Montalbetti, C. A. G. N., & Falque, V. (2005). Amide bond formation and peptide coupling. Tetrahedron, 61, 10827–10852. DOI: 10.1016/j.tet.2005.08.031. http://dx.doi.org/10.1016/j.tet.2005.08.03110.1016/j.tet.2005.08.031Suche in Google Scholar

[45] Pavliakova, D., Chu, C., Bystrický, S., Tolson, N. W., Shiloach, J., Kaufman, J. B., Bryla, D. A., Robbins, J. B., & Schneerson, R. (1999). Treatment with succinic anhydride improves the immunogenicity of Shigella flexneri Type 2a O-specific polysaccharide-protein conjugates in mice. Infection and Immunity, 67, 5526–5529. 10.1128/IAI.67.10.5526-5529.1999Suche in Google Scholar

[46] Pawlowski, A., Källenius, G., & Svenson, S. B. (2000). Preparation of pneumococcal capsular polysaccharide-protein conjugate vaccines utilizing new fragmentation and conjugation technologies. Vaccine, 18, 1873–1885. DOI: 10.1016/S0264-410X(99)00336-9. http://dx.doi.org/10.1016/S0264-410X(99)00336-910.1016/S0264-410X(99)00336-9Suche in Google Scholar

[47] Pawlowski, A., Källenius, G., & Svenson, S. B. (1999). A new method of non-cross-linking conjugation of polysaccharides to proteins via thioether bonds for the preparation of saccharide.protein conjugate vaccines. Vaccine, 17, 1474–1483. DOI: 10.1016/S0264-410X(98)00385-5. http://dx.doi.org/10.1016/S0264-410X(98)00385-510.1016/S0264-410X(98)00385-5Suche in Google Scholar

[48] Pozsgay, V., & Kubler-Kielb, J. (2008). Conjugation methods toward synthetic vaccines. In R. Roy (Ed.), Carbohydrate based vaccines (pp. 36–70). Washington, DC, USA: American Chemical Society. http://dx.doi.org/10.1021/bk-2008-0989.ch00310.1021/bk-2008-0989.ch003Suche in Google Scholar

[49] Pozsgay, V., Vieira, N. E., & Yergey, A. (2002). A method for bioconjugation of carbohydrates using Diels-Alder cycloaddition. Organic Letters, 4, 3191–3194. DOI: 10.1021/ol026179v. http://dx.doi.org/10.1021/ol026179v10.1021/ol026179vSuche in Google Scholar PubMed

[50] Rideout, D. C., & Breslow, R. (1980). Hydrophobic acceleration of Diels-Alder reactions. Journal of the American Chemical Society, 102, 7816–7817. DOI: 10.1021/ja00546a048. http://dx.doi.org/10.1021/ja00546a04810.1021/ja00546a048Suche in Google Scholar

[51] Rodionov, V. O., Presolski, S. I., Gardinier, S., Lim, Y.-H., & Finn, M. G. (2007). Benzimidazole and related ligands for Cu-catalyzed azide-alkyne cycloaddition. Journal of the American Chemical Society, 129, 12696–12704. DOI: 10.1021/ja072678l. http://dx.doi.org/10.1021/ja072678l10.1021/ja072678lSuche in Google Scholar PubMed

[52] Rogers, L. K., Leinweber, B. L., & Smith, C. V. (2006). Detection of reversible protein thiol modifications in tissues. Analytical Biochemistry, 358, 171–184. DOI: 10.1016/j.ab.2006.08.020. http://dx.doi.org/10.1016/j.ab.2006.08.02010.1016/j.ab.2006.08.020Suche in Google Scholar

[53] Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective ligation of azides and terminal alkynes. Angewandte Chemie International Edition, 41, 2596–2599.DOI: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4. http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-410.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4Suche in Google Scholar

[54] Sanki, A. K., Talan, R. S., & Sucheck, S. J. (2009). Synthesis of small glycopeptides by decarboxylative condensation and insight into the reaction mechanism. The Journal of Organic Chemisty, 74, 1886–1896. DOI: 10.1021/jo802278w. http://dx.doi.org/10.1021/jo802278w10.1021/jo802278wSuche in Google Scholar

[55] Saxon, E., & Bertozzi, C. R. (2000). Cell surface engineering by a modified Staudinger reaction. Science, 287, 2007–2010. DOI: 10.1126/science.287.5460.2007. http://dx.doi.org/10.1126/science.287.5460.200710.1126/science.287.5460.2007Suche in Google Scholar

[56] Schlottmann, S. A., Jain, N., Chirmule, N., & Esser, M. T. (2006). A novel chemistry for conjugating pneumococcal polysaccharides to Luminex microspheres. Journal of Immunological Methods, 309, 75–85. DOI: 10.1016/j.jim.2005.11.019. http://dx.doi.org/10.1016/j.jim.2005.11.01910.1016/j.jim.2005.11.019Suche in Google Scholar

[57] Shafer, D. E., Toll, B., Schuman, R. F., Nelson, B. L., Mond, J. J., & Lees, A. (2000). Activation of soluble polysaccharides with 1-cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP) for use in protein-polysaccharide conjugate vaccines and immunological reagents. II. Selective crosslinking of proteins to CDAP-activated polysaccharides. Vaccine, 18, 1273–1281. DOI: 10.1016/S0264-410X(99)00370-9. http://dx.doi.org/10.1016/S0264-410X(99)00370-910.1016/S0264-410X(99)00370-9Suche in Google Scholar

[58] Singh, R., & Whitesides, G. M. (1991). A reagent for reduction of disulfide bonds in proteins that reduces disulfide bonds faster than does dithiothreitol. Journal of Organic Chemistry, 56, 2332–2337. DOI: 10.1021/jo00007a018. http://dx.doi.org/10.1021/jo00007a01810.1021/jo00007a018Suche in Google Scholar

[59] Sletten, E. M., & Bertozzi, C. R. (2009). Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angewandte Chemie International Edition, 48, 6974–6998. DOI: 10.1002/anie.200900942. http://dx.doi.org/10.1002/anie.20090094210.1002/anie.200900942Suche in Google Scholar

[60] Sletten, E. M., & Bertozzi, C. R. (2008). A hydrophilic azacyclooctyne for Cu-free click chemistry. Organic Letters, 10, 3097–3099. DOI: 10.1021/ol801141k. http://dx.doi.org/10.1021/ol801141k10.1021/ol801141kSuche in Google Scholar

[61] Soellner, M. B., Nilsson, B. L., & Raine, R. T. (2006). Reaction mechanism and kinetics of the traceless Staudinger ligation. Journal of the American Chemical Society, 128, 8820–8828. DOI: 10.1021/ja060484k. http://dx.doi.org/10.1021/ja060484k10.1021/ja060484kSuche in Google Scholar

[62] Staudinger, H., & Meyer, J. (1919). Über neue organische Phosphorverbindungen III. Phosphinmethylenderivate und phosphinimine. Helvetica Chimimica Acta, 2, 635–646. DOI: 10.1002/hlca.19190020164. http://dx.doi.org/10.1002/hlca.1919002016410.1002/hlca.19190020164Suche in Google Scholar

[63] Tietze, L. F., Schröter, C., Gabius, S., Brinck, U., Goerlach-Graw, A., & Gabius, H.-J. (1991). Conjugation of paminophenyl glycosides with squaric acid diester to a carrier protein and the use of the neoglycoprotein in the histochemical detection of lectins. Bioconjugate Chemistry, 2, 148–153. DOI: 10.1021/bc00009a003. http://dx.doi.org/10.1021/bc00009a00310.1021/bc00009a003Suche in Google Scholar

[64] Wang, J. Y., Chang, A. H. C., Guttormsen, H.-K., Rosas, A. L., & Kaspe, D. L. (2002). Construction of designer glycoconjugate vaccines with size-specific oligosaccharide antigens and site-controlled coupling. Vaccine, 21, 1112–1117. DOI: 10.1016/S0264-410X(02)00625-4. http://dx.doi.org/10.1016/S0264-410X(02)00625-410.1016/S0264-410X(02)00625-4Suche in Google Scholar

[65] Wang, Q., Chan, T. R., Hilgraf, R., Fokin, V. V., Sharpless, K. B., & Finn, M. G. (2003). Bioconjugation by copper(I)-catalyzed azide-alkine [3 + 2] cycloaddition. Journal of the American Chemical Society, 125, 3192–3193. DOI: 10.1021/ja021381e. http://dx.doi.org/10.1021/ja021381e10.1021/ja021381eSuche in Google Scholar

[66] Xin, H., Dziadek, S., Bundle, D. R., & Cutler, J. E. (2008). Synthetic glycopeptide vaccines combining β-mannan and peptide epitopes induce protection against candidiasis. Proceedings of the National Academy of Sciences, 105, 13526–13531. DOI: 10.1073/pnas.0803195105. http://dx.doi.org/10.1073/pnas.080319510510.1073/pnas.0803195105Suche in Google Scholar

[67] Xue, J., Pan, Y., & Guo, Z. (2002). Neoglycoprotein cancer vaccines: synthesis of an azido derivative of GM3 and its efficient coupling to proteins through a new linker. Tetrahedron Leters, 43, 1599–1602. DOI: 10.1016/S0040-4039(02)00071-0. http://dx.doi.org/10.1016/S0040-4039(02)00071-010.1016/S0040-4039(02)00071-0Suche in Google Scholar

[68] Zhang, J., Yergey, A., Kowalak, J., & Kováč, P. (1998). Linking carbohydrates to proteins using N-(2,2-dimethoxyethyl)-6-hydroxy hexanamide. Tetrahedron, 54, 11783–11792. DOI: 10.1016/S0040-4020(98)83039-1. 10.1016/S0040-4020(98)83039-1Suche in Google Scholar

Published Online: 2010-9-23
Published in Print: 2010-12-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Chemical conjugation of biomacromolecules: A mini-review
  2. Talaromyces flavus and its metabolites
  3. Application of non-steroidal anti-inflammatory drugs for palladium determination
  4. A naked-eye, selective and sensitive chemosensor for fluoride ion
  5. Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
  6. The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
  7. Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
  8. Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
  9. Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
  10. Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
  11. Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
  12. Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
  13. Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
  14. Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
  15. Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
  16. ZnO nanoparticles in the synthesis of AB ring core of camptothecin
  17. Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
  18. Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0057-z/html?lang=de
Button zum nach oben scrollen