Home Effect of dielectric medium on angiotensin converting enzyme inhibitors binding to Zn2+
Article
Licensed
Unlicensed Requires Authentication

Effect of dielectric medium on angiotensin converting enzyme inhibitors binding to Zn2+

  • Martin Šramko EMAIL logo , Július Šille , Pavol Ježko and Vladimír Garaj
Published/Copyright: March 31, 2010
Become an author with De Gruyter Brill

Abstract

The Becke3LYP density functional was used to study structural and thermodynamic parameters of bivalent zinc cation complexes with selected substrates and ACE inhibitors (H2O/OH−, neutral forms of captopril, zofenoprilat, omapatrilat, CH3CONHCH3, and N-terminal anions of captopril, zofenoprilat, omapatrilat, enalaprilat, perindoprilat, trandolaprilat, and fosinoprilat). The combination of DFT and the conductor-like polarizable continuum model (CPCM) were employed to compute the Gibbs interaction energies (ΔG) between Zn2+ and the selected ACE inhibitors for dielectric media with ɛ = 5 (to simulate the protein environment) and for water media (ɛ = 78.39) for comparison purposes. The results show that ΔG is sensitive to the dielectric constant of the environment and that lower dielectric medium favors the binding of inhibitors to the zinc cation.

[1] Andújar-Sánchez, M., Cámara-Artigas, A., & Jara-Pérez, V. (2004). A calorimetric study of the binding of lisinopril, enalaprilat and captopril to angiotensin-converting enzyme. Biophysical Chemistry, 111, 183–189. DOI: 10.1016/j.bpc.2004.05.011. http://dx.doi.org/10.1016/j.bpc.2004.05.01110.1016/j.bpc.2004.05.011Search in Google Scholar PubMed

[2] Barone, V., & Cossi, M. (1998). Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. The Journal of Physical Chemistry A, 102, 1995–2001. DOI: 10.1021/jp9716997. http://dx.doi.org/10.1021/jp971699710.1021/jp9716997Search in Google Scholar

[3] Barone, V., Cossi, M., & Tomasi, J. (1997). A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. The Journal of Chemical Physics, 107, 3210–3221. DOI: 10.1063/1.474671. http://dx.doi.org/10.1063/1.47467110.1063/1.474671Search in Google Scholar

[4] Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648–5652. DOI: 10.1063/1.464913. http://dx.doi.org/10.1063/1.46491310.1063/1.464913Search in Google Scholar

[5] Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behaviour. Physical Review A, 38, 3098–3100. DOI: 10.1103/PhysRevA.38.3098. http://dx.doi.org/10.1103/PhysRevA.38.309810.1103/PhysRevA.38.3098Search in Google Scholar

[6] Berman, H., Henrick, K., & Nakamura, H. (2003). Announcing the worldwide Protein Data Bank. Nature Structural Biology, 10, 980. DOI: 10.1038/nsb1203-980. http://dx.doi.org/10.1038/nsb1203-98010.1038/nsb1203-980Search in Google Scholar PubMed

[7] Bock, C. W., Katz, A. K., & Glusker, J. P. (1995). Hydration of zinc ions: A comparison with magnesium and beryllium ions. Journal of the American Chemical Society, 117, 3754–3765. DOI: 10.1021/ja00118a012. http://dx.doi.org/10.1021/ja00118a01210.1021/ja00118a012Search in Google Scholar

[8] Bock, C. W., Katz, A. K., Markham, G. D., & Glusker, J. P. (1999). Manganese as a replacement for magnesium and zinc: Functional comparison of the divalent ions. Journal of the American Chemical Society, 121, 7360–7372. DOI: 10.1021/ja9906960. http://dx.doi.org/10.1021/ja990696010.1021/ja9906960Search in Google Scholar

[9] Cheng, F., Zhang, R., Luo, X., Shen, J., Li, X., Gu, J., Zhu, W., Shen, J., Sagi, I., Ji, R., Chen, K., & Jiang, H. (2002). Quantum chemistry study on the interaction of the exogenous ligands and the catalytic zinc ion in matrix metalloproteinases. The Journal of Physical Chemistry B, 106, 4552–4559. DOI: 10.1021/jp013336j. http://dx.doi.org/10.1021/jp013336j10.1021/jp013336jSearch in Google Scholar

[10] Cini, R. (1999). Molecular orbital study of complexes of zinc(II) with sulphide, thiomethanolate, thiomethanol, dimethylthioether, thiophenolate, formiate, acetate, carbonate, hydrogen carbonate, iminomethane and imidazole: Relationships with structural and catalytic zinc in some metallo-enzymes. Journal of Biomolecular Structure and Dynamics, 16, 1225–1237. 10.1080/07391102.1999.10508330Search in Google Scholar PubMed

[11] Corradi, H. R., Chitapi, I., Sewell, B. T., Georgiadis, D., Dive, V., Sturrock, E. D., & Acharya, K. R. (2007). The structure of testis angiotensin-converting enzyme in complex with the C domain-specific inhibitor RXPA380. Biochemistry, 46, 5473–5478. DOI: 10.1021/bi700275e. http://dx.doi.org/10.1021/bi700275e10.1021/bi700275eSearch in Google Scholar

[12] Corradi, H. R., Schwager, S. L. U., Nchinda, A. T., Sturrock, E. D., & Acharya, K. R. (2006). Crystal structure of the N domain of human somatic angiotensin I-converting enzyme provides a structural basis for domain-specific inhibitor design. Journal of Molecular Biology, 357, 964–974. DOI: 10.1016/j.jmb.2006.01.048. http://dx.doi.org/10.1016/j.jmb.2006.01.04810.1016/j.jmb.2006.01.048Search in Google Scholar

[13] Deerfield, D. W., Carter, C. W., Jr., & Pedersen, L. G. (2001). Models for protein-zinc ion binding sites. II: The catalytic sites. International Journal of Quantum Chemistry, 83, 150–165. DOI: 10.1002/qua.1207. http://dx.doi.org/10.1002/qua.120710.1002/qua.1207Search in Google Scholar

[14] Dudev, T., & Lim, C. (2003). Principles governing Mg, Ca, and Zn binding and selectivity in proteins. Chemical Reviews, 103, 773–788. DOI: 10.1021/cr020467n. http://dx.doi.org/10.1021/cr020467n10.1021/cr020467nSearch in Google Scholar

[15] Dudev, T., & Lim, C. (2000a). Tetrahedral vs octahedral zinc complexes with ligands of biological interest: A DFT/CDM study. Journal of the American Chemical Society, 122, 11146–11153. DOI: 10.1021/ja0010296. http://dx.doi.org/10.1021/ja001029610.1021/ja0010296Search in Google Scholar

[16] Dudev, T., & Lim, C. (2000b). Metal binding in proteins: The effect of the dielectric medium. The Journal of Physical Chemistry B, 104, 3692–3694. DOI: 10.1021/jp9941559. http://dx.doi.org/10.1021/jp994155910.1021/jp9941559Search in Google Scholar

[17] Fernandez, M., Liu, X., Wouters, M. A., Heyberger, S., & Husain, A. (2001). Angiotensin I-converting enzyme transition state stabilization by His1089. Evidence for a catalytic mechanism distinct from other gluzincin metalloproteinases. The Journal of Biological Chemistry, 276, 4998–5004. DOI: 10.1074/jbc.M009009200. http://dx.doi.org/10.1074/jbc.M00900920010.1074/jbc.M009009200Search in Google Scholar

[18] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Jr., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J. A. (2004). Gaussian 03, Revision D.01. Wallingford, CT, USA: Gaussian, Inc. Search in Google Scholar

[19] Garmer, D. R., Gresh, N., & Roques, B.-P. (1998). Modeling of inhibitor-metalloenzyme interactions and selectivity using molecular mechanics grounded in quantum chemistry. Proteins: Structure, Function, and Genetics, 31, 42–60. DOI: 10.1002/(SICI)1097-0134(19980401)31:1〈42. http://dx.doi.org/10.1002/(SICI)1097-0134(19980401)31:1<42::AID-PROT5>3.0.CO;2-J10.1002/(SICI)1097-0134(19980401)31:1<42::AID-PROT5>3.0.CO;2-JSearch in Google Scholar

[20] Gilson, M. K., & Honig, B. H. (1986). The dielectric constant of a folded protein. Biopolymers, 25, 2097–2119. DOI: 10.1002/bip.360251106. http://dx.doi.org/10.1002/bip.36025110610.1002/bip.360251106Search in Google Scholar

[21] Hartmann, M., Clark, T., & van Eldik, R. (1997). Hydration and water exchange of zinc(II) ions. Application of density functional theory. Journal of the American Chemical Society, 119, 7843–7850. DOI: 10.1021/ja970483f. 10.1021/ja970483fSearch in Google Scholar

[22] Hasegawa, K., Ono, T.-a., & Noguchi, T. (2002). Ab initio density functional theory calculations and vibrational analysis of zinc-bound 4-methylimidazole as a model of a histidine ligand in metalloenzymes. The Journal of Physical Chemistry A, 106, 3377–3390. DOI: 10.1021/jp012251f. http://dx.doi.org/10.1021/jp012251f10.1021/jp012251fSearch in Google Scholar

[23] James, M. N. G., & Sielecki, A. R. (1983). Structure and refinement of penicillopepsin at 1.8 Å resolution. Journal of Molecular Biology, 163, 299–361. DOI: 10.1016/0022-2836(83)90008-6. http://dx.doi.org/10.1016/0022-2836(83)90008-610.1016/0022-2836(83)90008-6Search in Google Scholar

[24] Karplus, M., McCammon, J. A., & Peticolas, W. L. (1981). The internal dynamics of globular proteins. Critical Reviews in Biochemistry and Molecular Biology, 9, 293–349. DOI: 10.3109/10409238109105437. http://dx.doi.org/10.3109/1040923810910543710.3109/10409238109105437Search in Google Scholar PubMed

[25] Katz, A. K., Glusker, J. P., Beebe, S. A., & Bock, C. W. (1996). Calcium ion coordination: A comparison with that of beryllium, magnesium, and zinc. Journal of the American Chemical Society, 118, 5752–5763. DOI: 10.1021/ja953943i. http://dx.doi.org/10.1021/ja953943i10.1021/ja953943iSearch in Google Scholar

[26] Kimura, E. (2001). Model studies for molecular recognition of carbonic anhydrase and carboxypeptidase. Accounts of Chemical Research, 34, 171–179. DOI: 10.1021/ar000001w. http://dx.doi.org/10.1021/ar000001w10.1021/ar000001wSearch in Google Scholar PubMed

[27] Lee, C., Yang, W., & Paar, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789. DOI: 10.1103/PhysRevB.37.785. http://dx.doi.org/10.1103/PhysRevB.37.78510.1103/PhysRevB.37.785Search in Google Scholar

[28] Lee, S., Kim, J., Park, J. K., & Kim, K. S. (1996). Ab initio study of the structures, energetics, and spectra of Aquazinc(II). The Journal of Physical Chemistry, 100, 14329–14338. DOI: 10.1021/jp960714p. http://dx.doi.org/10.1021/jp960714p10.1021/jp960714pSearch in Google Scholar

[29] McCall, K. A., Huang, C.-c., & Fierke, C. A. (2000). Function and mechanism of zinc metalloenzymes. Journal of Nutrition, 130, 1437S–1446S. 10.1093/jn/130.5.1437SSearch in Google Scholar PubMed

[30] Menziani, M. C., De Benedetti, P. G., Gago, F., & Richards, W. G. (1989). The binding of benzenesulfonamides to carbonic anhydrase enzyme. A molecular mechanics study and quantitative structure-activity relationships. Journal of Medicinal Chemistry, 32, 951–956. DOI: 10.1021/jm00125a005. http://dx.doi.org/10.1021/jm00125a00510.1021/jm00125a005Search in Google Scholar PubMed

[31] Mertz, E. L., & Krishtalik, L. I. (2000). Low dielectric response in enzyme active site. Proceedings of the National Academy of Sciences of the USA, 97, 2081–2086. DOI: 10.1073/pnas.050316997. http://dx.doi.org/10.1073/pnas.05031699710.1073/pnas.050316997Search in Google Scholar PubMed PubMed Central

[32] Nakamura, H., Sakamoto, T., & Wada, A. (1988). A theoretical study of the dielectric constant of protein. Protein Engineering, 2, 177–183. DOI: 10.1093/protein/2.3.177. http://dx.doi.org/10.1093/protein/2.3.17710.1093/protein/2.3.177Search in Google Scholar PubMed

[33] Natesh, R., Schwager, S. L. U., Evans, H. R., Sturrock, E. D., & Acharya, K. R. (2004). Structural details on the binding of antihypertensive drugs captopril and enalaprilat to human testicular angiotensin I-converting enzyme. Biochemistry, 43, 8718–8724. DOI: 10.1021/bi049480n. http://dx.doi.org/10.1021/bi049480n10.1021/bi049480nSearch in Google Scholar PubMed

[34] Natesh, R., Schwager, S. L. U., Sturrock, E. D., & Acharya, K. R. (2003). Crystal structure of the human angiotensinconverting enzyme-lisinopril complex. Nature, 421, 551–554. DOI: 10.1038/nature01370. http://dx.doi.org/10.1038/nature0137010.1038/nature01370Search in Google Scholar PubMed

[35] Nchinda, A. T., Chibale, K., Redelinghuys, P., & Sturrock, E. D. (2006). Synthesis of novel keto-ACE analogues as domain-selective angiotensin-I converting enzyme inhibitors. Bioorganic & Medicinal Chemistry Letters, 16, 4612–4615. DOI: 10.1016/j.bmcl.2006.06.003. http://dx.doi.org/10.1016/j.bmcl.2006.06.00310.1016/j.bmcl.2006.06.003Search in Google Scholar PubMed

[36] Opie, L. H. (1994). Angiotensin converting enzyme inhibitors (2nd ed.). New York, NY, USA: Wiley-Liss. Search in Google Scholar

[37] Pavlov, M., Siegbahn, P. E. M., & Sandström, M. (1998). Hydration of beryllium, magnesium, calcium, and zinc ions using density functional theory. The Journal of Physical Chemistry A, 102, 219–228. DOI: 10.1021/jp972072r. http://dx.doi.org/10.1021/jp972072r10.1021/jp972072rSearch in Google Scholar

[38] Peschke, M., Blades, A. T., & Kebarle, P. (2000). Binding energies for doubly-charged ions M2+ = Mg2+, Ca2+ and Zn2+ with the ligands L = H2O, acetone and N-methylacetamide in complexes: M L n2+ for n = 1 to 7 from gas phase equilibria determinations and theoretical calculations. Journal of the American Chemical Society, 122, 10440–10449. DOI: 10.1021/ja002021z. http://dx.doi.org/10.1021/ja002021z10.1021/ja002021zSearch in Google Scholar

[39] Pethig, R. (1979). Dielectric and electronic properties of biological materials. New York, NY, USA: Wiley. Search in Google Scholar

[40] Redelinghuys, P., Nchinda, A. T., & Sturrock, E. D. (2005). Development of domain-selective angiotensin I-converting enzyme inhibitors. Annals of the New York Academy of Sciences, 1056, 160–175. DOI: 10.1196/annals.1352.035. http://dx.doi.org/10.1196/annals.1352.03510.1196/annals.1352.035Search in Google Scholar PubMed

[41] Remko, M. (2007). Acidity, lipophilicity, solubility, absorption, and polar surface area of some ACE inhibitors. Chemical Papers, 61, 133–141. DOI: 10.2478/s11696-007-0010-y. http://dx.doi.org/10.2478/s11696-007-0010-y10.2478/s11696-007-0010-ySearch in Google Scholar

[42] Remko, M., & Garaj, V. (2003). Thermodynamics of binding of Zn2+ to carbonic anhydrase inhibitors. Molecular Physics, 101, 2357–2368. DOI: 10.1080/0026897031000716583. http://dx.doi.org/10.1080/002689703100071658310.1080/0026897031000716583Search in Google Scholar

[43] Remko, M., & Rode, B. M. (2006). Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine. The Journal of Physical Chemistry A, 110, 1960–1967. DOI: 10.1021/jp054119b. http://dx.doi.org/10.1021/jp054119b10.1021/jp054119bSearch in Google Scholar PubMed

[44] Remko, M., & Rode, B. M. (2000). Thermodynamics of binding of Li+, Na+, Mg2+ and Zn2+ to Lewis bases in the gas phase. Journal of Molecular Structure: Theochem, 505, 269–281. DOI: 10.1016/S0166-1280(99)00381-4. http://dx.doi.org/10.1016/S0166-1280(99)00381-410.1016/S0166-1280(99)00381-4Search in Google Scholar

[45] Rogalewicz, F., Ohanessian, G., & Gresh, N. (2000). Interaction of neutral and zwitterionic glycine with Zn2+ in gas phase: ab initio and SIBFA molecular mechanics calculations. Journal of Computational Chemistry, 21, 963–973. DOI: 10.1002/1096-987X(200008)21:11〈963::AIDJCC6〉3.0.CO;2–3. http://dx.doi.org/10.1002/1096-987X(200008)21:11<963::AID-JCC6>3.0.CO;2-310.1002/1096-987X(200008)21:11<963::AID-JCC6>3.0.CO;2-3Search in Google Scholar

[46] Ryde, U. (1999). Carboxylate binding modes in zinc proteins: A theoretical study. Biophysical Journal, 77, 2777–2787. DOI: 10.1016/S0006-3495(99)77110-9. http://dx.doi.org/10.1016/S0006-3495(99)77110-910.1016/S0006-3495(99)77110-9Search in Google Scholar

[47] Simonson, T., & Perahia, D. (1995). Internal and interfacial dielectric properties of cytochrome c from molecular dynamics in aqueous solution. Proceedings of the National Academy of Sciences of the USA, 92, 1082–1086. http://dx.doi.org/10.1073/pnas.92.4.108210.1073/pnas.92.4.1082Search in Google Scholar

[48] Smieško, M., & Remko, M. (2005). Structure and gas-phase stability of Zn(II)—molecule complexes. Chemical Papers, 59, 310–315. Search in Google Scholar

[49] Smieško, M., & Remko, M. (2004). Two-layer ONIOM calculation of gas-phase acidities of selected ACE inhibitors. Chemical Papers, 58, 71–78. Search in Google Scholar

[50] Smieško, M., & Remko, M. (2003). Coordination and thermodynamics of stable Zn(II) complexes in the gas phase. Journal of Biomolecular Structure and Dynamics, 20, 759–770. 10.1080/07391102.2003.10506893Search in Google Scholar

[51] Smieško, M., & Remko, M. (2002). Preferred conformation of selected ACE inhibitors for interaction with ACE active site. Chemical Papers, 56, 138–143. Search in Google Scholar

[52] Smith, P. E., Brunne, R. M., Mark, A. E., & van Gunsteren, W. F. (1993). Dielectric properties of trypsin inhibitor and lysozyme calculated from molecular dynamics simulations. The Journal of Physical Chemistry, 97, 2009–2014. DOI: 10.1021/j100111a046. http://dx.doi.org/10.1021/j100111a04610.1021/j100111a046Search in Google Scholar

[53] Spyroulias, G. A., & Cordopatis, P. (2005). Current inhibition concepts of zinc metallopeptidases involved in blood pressure regulation. Current Enzyme Inhibition, 1, 29–42. DOI: 10.2174/1573408052952702. http://dx.doi.org/10.2174/157340805295270210.2174/1573408052952702Search in Google Scholar

[54] Šramko, M., Garaj, V., & Remko, M. (2008). Thermodynamics of binding of angiotensin-converting enzyme inhibitors to enzyme active site model. Journal of Molecular Structure: Theochem, 869, 19–28. DOI: 10.1016/j.theochem.2008.08.018. http://dx.doi.org/10.1016/j.theochem.2008.08.01810.1016/j.theochem.2008.08.018Search in Google Scholar

[55] Šramko, M., Remko, M., & Garaj, V. (2005). Theoretical study of gas-phase acidities of selected angiotensin-converting enzyme inhibitors. Structural Chemistry, 16, 391–399. DOI: 10.1007/s11224-005-6348-2. http://dx.doi.org/10.1007/s11224-005-6348-210.1007/s11224-005-6348-2Search in Google Scholar

[56] Strömberg, D., Sandström, M., & Wahlgren, U. (1990). Theoretical calculations on the structure of the hexahydrated divalent zinc, cadmium and mercury ions. Chemical Physics Letters, 172, 49–54. DOI: 10.1016/0009-2614(90)87215-D. http://dx.doi.org/10.1016/0009-2614(90)87215-D10.1016/0009-2614(90)87215-DSearch in Google Scholar

[57] Swamy, K. M. K., Lin, M.-J., & Sun, C.-M. (2003). Advances in angiotensin converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs). Mini-Reviews in Medicinal Chemistry, 3, 621–631. DOI: 10.2174/1389557033487944. http://dx.doi.org/10.2174/138955703348794410.2174/1389557033487944Search in Google Scholar

[58] Tanaka, A., & Ishida, Y. (1973). Relation between dielectric behavior and structure in some solid polypeptides. Journal of Polymer Science: Polymer Physics Edition, 11, 1117–1138. DOI: 10.1002/pol.1973.180110607. http://dx.doi.org/10.1002/pol.1973.18011100410.1002/pol.1973.180110607Search in Google Scholar

[59] Tiraboschi, G., Fournié-Zaluski, M.-C., Roques, B.-P., & Gresh, N. (2001). Intramolecular chelation of Zn2+ by α- and β-mercaptocarboxamides. A parallel ab initio and polarizable molecular mechanics investigation. Assessment of the role of multipole transferability. Journal of Computational Chemistry, 22, 1038–1047. DOI: 10.1002/jcc.1064. http://dx.doi.org/10.1002/jcc.106410.1002/jcc.1064Search in Google Scholar

[60] Tiraboschi, G., Gresh, N., Giessner-Prettre, C., Pedersen, L. G., & Deerfield, D. W. (2000). Parallel ab initio and molecular mechanics investigation of polycoordinated Zn(II) complexes with model hard and soft ligands: Variations of the binding energy and of its components with number and charges of ligands. Journal of Computational Chemistry, 21, 1011–1039. DOI: 10.1002/1096-987X(200009)21:12〈1011. http://dx.doi.org/10.1002/1096-987X(200009)21:12<1011::AID-JCC1>3.0.CO;2-B10.1002/1096-987X(200009)21:12<1011::AID-JCC1>3.0.CO;2-BSearch in Google Scholar

[61] Wyvratt, M. J., & Patchett, A. A. (1985). Recent developments in the design of angiotensin-converting enzyme inhibitors. Medicinal Research Reviews, 5, 483–531. DOI: 10.1002/med.2610050405. http://dx.doi.org/10.1002/med.261005040510.1002/med.2610050405Search in Google Scholar

[62] Yazal, J. E., & Pang, Y.-P. (2000). Proton dissociation energies of zinc-coordinated hydroxamic acids and their relative affinities for zinc: Insights into design inhibitors of zinccontaining proteinases. The Journal of Physical Chemistry B, 104, 6499–6504. DOI: 10.1021/jp0012707. http://dx.doi.org/10.1021/jp001270710.1021/jp0012707Search in Google Scholar

[63] Yazal, J. E., & Pang, Y.-P. (1999). Ab initio calculations of proton dissociation energies of zinc ligands: Hypothesis of imidazolate as zinc ligand in proteins. The Journal of Physical Chemistry B, 103, 8773–8779. DOI: 10.1021/jp991787m. http://dx.doi.org/10.1021/jp991787m10.1021/jp991787mSearch in Google Scholar

[64] Yazal, J. E., Roe, R. R., & Pang, Y.-P. (2000). Zincșs affect on proton transfer between imidazole and acetate predicted by ab initio calculations. The Journal of Physical Chemistry B, 104, 6662–6667. DOI: 10.1021/jp994283x. http://dx.doi.org/10.1021/jp994283x10.1021/jp994283xSearch in Google Scholar

Published Online: 2010-3-31
Published in Print: 2010-6-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. A proposal of reference values for relative uncertainty increase in spectrophotometric analysis of pharmaceutical formulations
  2. Spectrophotometric quantification of fluoxetine hydrochloride: Application to quality control and quality assurance processes
  3. A simple turbidimetric flow injection system for saccharin determination in sweetener products
  4. Determination of metoprolol tartrate by capillary isotachophoresis
  5. Model predictive control of a CSTR: A hybrid modeling approach
  6. Application of extended NRTL equation for ternary liquid-liquid and vapor-liquid-liquid equilibria description
  7. Synthesis, DNA binding, and antimicrobial studies of novel metal complexes containing a pyrazolone derivative Schiff base
  8. Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 4-cyanopyridine Cu4OBrnCl(6−n)(4-CNpy)4 complexes
  9. Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 3-cyanopyridine Cu4OBrnCl(6−n)(3-CNpy)4 complexes
  10. Deposition and release of chlorhexidine from non-ionic and anionic polymer matrices
  11. Synthesis of new antimicrobial 4-aminosubstituted 3-nitrocoumarins
  12. Spectroscopic characterization of halogen- and cyano-substituted pyridinevinylenes synthesized without catalyst or solvent
  13. Chemical composition and antimicrobial activity of Erodium species: E. ciconium L., E. cicutarium L., and E. absinthoides Willd. (Geraniaceae)
  14. Photo-Fenton and photo-Fenton-like processes for the degradation of methyl orange in aqueous medium: Influence of oxidation states of iron
  15. Voltammetry of resazurin at a mercury electrode
  16. Effect of dielectric medium on angiotensin converting enzyme inhibitors binding to Zn2+
  17. HPLC analysis of a syrup containing nimesulide and its hydrolytic degradation product
Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0005-y/html?lang=en
Scroll to top button