Abstract
Ammonium dioxothiotungstate was synthesized using different tungsten sources and characterized in detail by powder X-ray diffraction, energy dispersive X-ray spectrometry, transmission electron microscopy, nitrogen adsorption, and temperature-programmed sulfidation. It was found that tungsten oxide nanobelts are superior to ammonium metatungstate as tungsten source for the synthesis of ammonium dioxothiotungstate due to a time-consuming aging step being excluded from the synthesis route. Moreover, detailed characteristic data reveal that, when tungsten oxide nanobelts are used, the physical and chemical properties of the resulting ammonium dioxothiotungstate including particles size, specific surface area, and sulfidation pattern were improved. Also, the hydrodesulfurization measurements showed higher catalytic activity and balanced selectivity of the resulting ammonium dioxothiotungstate.
[1] An, G.-J., Liu, Y.-Q., Chai, Y.-M., Zhou, T.-N., & Liu, C.-G. (2006). Synthesis, characterization and thermal decomposition mechanism of ammonium tungsten oxide sulfide crystal. Chinese Journal of Inorganic Chemistry, 22, 1813–1818. Suche in Google Scholar
[2] Bollinger, M. V., Lauritsen, J. V., Jacobsen, K. W., Nørskov, J. K., Helveg, S., & Besenbacher, F. (2003). One-dimensional metallic edge states in MoS2. Physical Review Letters, 87, 196803–196804. DOI: 10.1103/PhysRevLett.87.196803. http://dx.doi.org/10.1103/PhysRevLett.87.19680310.1103/PhysRevLett.87.196803Suche in Google Scholar
[3] Dhas, N. A., & Gedanken, A. (1998). A sonochemical approach to the surface synthesis of cadmium sulfide nanoparticles on submicron silica. Applied Physics Letters, 72, 2514–2516. DOI: 10.1063/1.120624. http://dx.doi.org/10.1063/1.12062410.1063/1.120624Suche in Google Scholar
[4] Dhas, N. A., & Suslick, K. S. (2005). Sonochemical preparation of hollow nanospheres and hollow nanocrystals. Journal of the American Chemical Society, 127, 2368–2369. DOI: 10.1021/ja049494g. http://dx.doi.org/10.1021/ja049494g10.1021/ja049494gSuche in Google Scholar
[5] Iwata, Y., Araki, Y., Honna, K., Miki, Y., Sato, K., & Shimada, H. (2001). Hydrogenation active sites of unsupported molybdenum sulfide catalysts for hydroprocessing heavy oils. Catalysis Today, 65, 335–341. DOI: 10.1016/S0920-5861(00)00554-X. http://dx.doi.org/10.1016/S0920-5861(00)00554-X10.1016/S0920-5861(00)00554-XSuche in Google Scholar
[6] Iwata, Y., Sato, K., Yoneda, T., Miki, Y., Sugimoto, Y., Nishijima, A., & Shimada, H. (1998). Catalytic functionality of unsupported molybdenum sulfide catalysts prepared with different methods. Catalysis Today, 45, 353–359. DOI: 10.1016/S0920-5861(98)00262-4. http://dx.doi.org/10.1016/S0920-5861(98)00262-410.1016/S0920-5861(98)00262-4Suche in Google Scholar
[7] Le, Z., Afanasiev, P., Li, D., Long, X., & Vrinat, M. (2008). Solution synthesis of the unsupported Ni-W sulfide hydrotreating catalysts. Catalysis Today, 130, 24–31. DOI: 10.1016/j.cattod.2007.07.002. http://dx.doi.org/10.1016/j.cattod.2007.07.00210.1016/j.cattod.2007.07.002Suche in Google Scholar
[8] Liu, J.-Q., Xu, Z.-L., & Zhou, K.-G. (2004). Study on new method of the preparation of pure ammonium metatungstate (AMT) using a coupling process of neutralization-nanofiltration-crystallization. Journal of Membrane Science, 240, 1–9. DOI: 10.1016/j.memsci.2004.03. 027. http://dx.doi.org/10.1016/j.memsci.2004.03.02710.1016/j.memsci.2004.03.027Suche in Google Scholar
[9] Livage, J., & Guzman, G. (1996). Aqueous precursors for electrochromic tungsten oxide hydrates. Solid Sate Ionics, 84, 205–211. DOI: 10.1016/0167-2738(96)00018-5. http://dx.doi.org/10.1016/0167-2738(96)00018-510.1016/0167-2738(96)00018-5Suche in Google Scholar
[10] McDonald, J. W., Friesen, G. D., Rosenhein, L. D., & Newton, W. E. (1983). Syntheses and characterization of ammonium and tetraalkylammonium thiomolybdates and thiotungstates. Inorganica Chimica Acta, 72, 205–210. DOI: 10.1016/S0020-1693(00)81720-X. http://dx.doi.org/10.1016/S0020-1693(00)81720-X10.1016/S0020-1693(00)81720-XSuche in Google Scholar
[11] Michaud, P., Lemberton, J. L., & Pérot, G. (1998). Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene: Effect of an acid component on the activity of a sulfided NiMo on alumina catalyst. Applied Catalysis A: General, 169, 343–353. DOI: 10.1016/S0926-860X(98)00021-0. http://dx.doi.org/10.1016/S0926-860X(98)00021-010.1016/S0926-860X(98)00021-0Suche in Google Scholar
[12] Müller, A., Krebs, B. & Diemann, E. (1967). Preparation and properties of diammonium dioxodiselenomolybdate(VI). Angewandte Chemie International Edition in English, 6, 1081–1082. DOI: 10.1002/anie.196710812. http://dx.doi.org/10.1002/anie.19671081210.1002/anie.196710812Suche in Google Scholar
[13] Pourabbas, B., & Jamshidi, B. (2008). Preparation of MoS2 nanoparticles by a modified hydrothermal method and the photo-catalytic activity of MoS2/TiO2 hybrids in photooxidation of phenol. Chemical Engineering Journal, 138, 55–62. DOI: 10.1016/j.cej. 2007.05.028. http://dx.doi.org/10.1016/j.cej.2007.05.02810.1016/j.cej.2007.05.028Suche in Google Scholar
[14] Prasad, T. P., Diemann, E., & Müller, A. (1973). Thermal decomposition of (NH4)2MoO2S2, (NH4)2MoS4, (NH4)2WO2S2 and (NH4)2WS4. Journal of Inorganic Nuclear Chemistry, 35, 1895–1904. DOI: 10.1016/0022-1902(73)80124-1. http://dx.doi.org/10.1016/0022-1902(73)80124-110.1016/0022-1902(73)80124-1Suche in Google Scholar
[15] Siadati, M. (2004). U.S. Patent No. 7,132,386. Austin, TX: U.S. Patent and Trademark Office. Suche in Google Scholar
[16] Sing, K. S. W. (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57, 603–619. DOI: 10.1351/pac198557040603. http://dx.doi.org/10.1351/pac19855704060310.1351/pac198557040603Suche in Google Scholar
[17] Song, C. (2003). An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today, 86, 211–263. DOI: 10.1016/S0920-5861(03)00412-7. http://dx.doi.org/10.1016/S0920-5861(03)00412-710.1016/S0920-5861(03)00412-7Suche in Google Scholar
[18] Zebib, B., Lambert, J.-F., Blanchard, J., & Bressye, M. (2006). LRS-1: A new delaminated phyllosilicate materials with high acidity. Chemistry of Materials, 18, 34–40. DOI: 10.1021/cm050643j. http://dx.doi.org/10.1021/cm050643j10.1021/cm050643jSuche in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Immobilization of urease in poly(1-vinyl imidazole)/poly(acrylic acid) network
- Anodic reactions of sulphate in molten salts
- Fuels obtained by thermal cracking of individual and mixed polymers
- Synthesis, structure, and solvent-extraction properties of tridentate oxime ligands and their cobalt(II), nickel(II), copper(II), zinc(II) complexes
- Properties of a poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane
- Influence of tungsten sources on the synthesis and properties of ammonium dioxothiotungstate
- A Raman spectroscopy study on differently deposited DLC layers in pulse arc system
- 1,7′-dimethyl-2′-propyl-1H,3′H-2,5′-bibenzo[d]imidazole as a corrosion inhibitor of mild steel in 1 M HCl
- The role of acidity profile in the nanotubular growth of polyaniline
- Direct sulfenylation of acetone with benzothiazolesulfenamides to benzothiazolylthio-substituted alkylaminopropene: synthesis and application
- Substituted pyridopyrimidinones. Part 5. Behavior of 2-hydroxy-4-oxo-4H-pyrido[1,2-α]pyrimidine-3-carbaldehyde in nucleophilic condensation reactions
- Lidocaine hydrochloride preparations with ionic and non-ionic polymers assessed at standard and increased skin surface temperatures
- Phase separation in non-ionic surfactant Triton X-100 solutions in the presence of phenol
- Phase formation in sodium dodecylsulfate solutions in the presence of salicylic acid for preconcentration purposes
- Numerical properties of equations involving high-order derivatives of pressure with respect to volume
- Synthesis and characterization of conducting copolymer of (N 1,N 3-bis(thiophene-3-ylmethylene)benzene-1,3-diamine-co-3,4-ethylenedioxythiophene)
- Intercalation of non-aromatic heterocyclic amines into layered zirconium glycine-N,N-dimethylphosphonate
- Kinetics of catalytic Meerwein-Ponndorf-Verley reduction of aldehydes and ketones using boron triethoxide
Artikel in diesem Heft
- Immobilization of urease in poly(1-vinyl imidazole)/poly(acrylic acid) network
- Anodic reactions of sulphate in molten salts
- Fuels obtained by thermal cracking of individual and mixed polymers
- Synthesis, structure, and solvent-extraction properties of tridentate oxime ligands and their cobalt(II), nickel(II), copper(II), zinc(II) complexes
- Properties of a poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane
- Influence of tungsten sources on the synthesis and properties of ammonium dioxothiotungstate
- A Raman spectroscopy study on differently deposited DLC layers in pulse arc system
- 1,7′-dimethyl-2′-propyl-1H,3′H-2,5′-bibenzo[d]imidazole as a corrosion inhibitor of mild steel in 1 M HCl
- The role of acidity profile in the nanotubular growth of polyaniline
- Direct sulfenylation of acetone with benzothiazolesulfenamides to benzothiazolylthio-substituted alkylaminopropene: synthesis and application
- Substituted pyridopyrimidinones. Part 5. Behavior of 2-hydroxy-4-oxo-4H-pyrido[1,2-α]pyrimidine-3-carbaldehyde in nucleophilic condensation reactions
- Lidocaine hydrochloride preparations with ionic and non-ionic polymers assessed at standard and increased skin surface temperatures
- Phase separation in non-ionic surfactant Triton X-100 solutions in the presence of phenol
- Phase formation in sodium dodecylsulfate solutions in the presence of salicylic acid for preconcentration purposes
- Numerical properties of equations involving high-order derivatives of pressure with respect to volume
- Synthesis and characterization of conducting copolymer of (N 1,N 3-bis(thiophene-3-ylmethylene)benzene-1,3-diamine-co-3,4-ethylenedioxythiophene)
- Intercalation of non-aromatic heterocyclic amines into layered zirconium glycine-N,N-dimethylphosphonate
- Kinetics of catalytic Meerwein-Ponndorf-Verley reduction of aldehydes and ketones using boron triethoxide