Abstract
Poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) (PEG-block-PBLG-graft-PEG) copolymer was synthesized by the ester exchange reaction of PBLG-block-PEG copolymer with a PEG chain. Surface morphology of the PEG-block-PBLG-graft-PEG copolymer membrane was characterized by atomic force microscopy (AFM). Mechanical and chemical properties of the PEG-block-PBLG-graft-PEG copolymer membrane were investigated by tensile testing and contact angle testing. The effects of grafting ratio on the properties of PEG-block-PBLG-graft-PEG copolymer membrane were primarilly studied.
[1] Bai, L., Zhu, L., Min, S., Liu, L., Cai, Y., & Yao, J. (2008). Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide. Applied Surface Science, 254, 2988–2995. DOI: 10.1016/j.apsusc.2007.10.049. http://dx.doi.org/10.1016/j.apsusc.2007.10.04910.1016/j.apsusc.2007.10.049Suche in Google Scholar
[2] Chen, T., Lin, S., Lin, J., & Zhang, L. (2007). Effect of electrical field on polypeptide phase behavior involving a conformationally coupled anisotropic-isotropic transition. Polymer, 48, 2056–2063. DOI: 10.1016/j.polymer.2007.02.001. http://dx.doi.org/10.1016/j.polymer.2007.02.00110.1016/j.polymer.2007.02.001Suche in Google Scholar
[3] Cheon, J.-B., Jeong, Y.-I., & Cho, C.-S. (1999). Effects of temperature on diblock copolymer micelle composed of poly(γ-benzyl l-glutamate) and poly(N-isopropylacrylamide). Polymer, 40, 2041–2050. DOI: 10.1016/S0032-3861(98)00432-7. http://dx.doi.org/10.1016/S0032-3861(98)00432-710.1016/S0032-3861(98)00432-7Suche in Google Scholar
[4] Cho, C.-S., Cheon, J.-B., Jeong, Y.-I., Kim, I.-S., Kim, S.-H., & Akaike, T. (1997). Novel core-shell type thermo-sensitive nanoparticles composed of poly(γ-benzyl l-glutamate) as the core and poly(N-isopropylacrylamide) as the shell. Macromolecular Rapid Communications, 18, 361–369. DOI: 10.1002/marc.1997.030180502. http://dx.doi.org/10.1002/marc.1997.03018050210.1002/marc.1997.030180502Suche in Google Scholar
[5] Cho, C.-S., Nah, J.-W., Jeong, Y.-I., Cheon, J.-B., Asayama, S., Ise, H., & Akaike, T. (1999). Conformational transition of nanoparticles composed of poly(γ-benzyl l-glutamate) as the core and poly(ethylene oxide) as the shell. Polymer, 40, 6769–6775. DOI: 10.1016/S0032-3861(99)00007-5. http://dx.doi.org/10.1016/S0032-3861(99)00007-510.1016/S0032-3861(99)00007-5Suche in Google Scholar
[6] Gao, Z. S., Desjardins, A., & Eisenberg, A. (1992). Solubilization equilibria of water in nonaqueous solutions of block ionomer reverse micelles: an NMR study. Macromolecules, 25, 1300–1303. DOI: 10.1021/ma00030a015. http://dx.doi.org/10.1021/ma00030a01510.1021/ma00030a015Suche in Google Scholar
[7] Harada, A., Cammas, S., & Kataoka, K. (1996). Stabilized-helix structure of poly(l-lysine)-block-poly(ethylene glycol) in aqueous medium through supramolecular assembly. Macromolecules, 29, 6183–6188. DOI: 10.1021/ma960487p. http://dx.doi.org/10.1021/ma960487p10.1021/ma960487pSuche in Google Scholar
[8] Harada, A., & Kataoka, K. (1995). Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments. Macromolecules, 28, 5294–5299. DOI: 10.1021/ma00119a019. http://dx.doi.org/10.1021/ma00119a01910.1021/ma00119a019Suche in Google Scholar
[9] Higashi, N., Kawahara, J., & Niwa, M. (2005). Preparation of helical peptide monolayer-coated gold nanoparticles. Journal of Colloid and Interface Science, 288, 83–87. DOI: 10.1016/j.jcis.2005.02.086. http://dx.doi.org/10.1016/j.jcis.2005.02.08610.1016/j.jcis.2005.02.086Suche in Google Scholar PubMed
[10] Ibarboure, E., Papon, E., & Rodríguez-Hernández, J. (2007). Nanostructured thermotropic PBLG-PDMS-PBLG block copolymers. Polymer, 48, 3717–3725. DOI: 10.1016/j.polymer.2007.04.046. http://dx.doi.org/10.1016/j.polymer.2007.04.04610.1016/j.polymer.2007.04.046Suche in Google Scholar
[11] Inomata, K., Ohara, N., Shimizu, H., & Nose, T. (1998). Phase behaviour of rod with flexible side chains/coil/solvent systems: poly(α-l-glutamate) with tri(ethylene glycol) side chains, poly(ethylene glycol), and dimethylformamide. Polymer, 39, 3379–3386. DOI: 10.1016/S0032-3861(97)10037-4. http://dx.doi.org/10.1016/S0032-3861(97)10037-410.1016/S0032-3861(97)10037-4Suche in Google Scholar
[12] Jeong, Y.-I., Nah, J.-W., Lee, H.-C., Kim, S.-H., & Cho, C.-S. (1999). Adriamycin release from flower-type polymeric micelle based on star-block copolymer composed of poly(γ-benzyl l-glutamate) as the hydrophobic part and poly(ethylene oxide) as the hydrophilic part. International Journal of Pharmaceutics, 188, 49–58. DOI: 10.1016/S0378-5173(99)00202-1. http://dx.doi.org/10.1016/S0378-5173(99)00202-110.1016/S0378-5173(99)00202-1Suche in Google Scholar
[13] Jokei, K., Oka, M., Hayashi, T., & Miyachi, Y. (1999). Enzymatic hydrolysis of random copolypeptides consisting of N-hydroxyethyl-l-glutamine and l-alanine, l-leucine, or l-valine. European Polymer Journal, 35, 945–951. DOI: 10.1016/S0014-3057(98)00051-2. http://dx.doi.org/10.1016/S0014-3057(98)00051-210.1016/S0014-3057(98)00051-2Suche in Google Scholar
[14] Kwon, G., Naito, M., Yokoyama, M., Okano, T., Sakurai, Y., & Kataoka, K. (1993). Micelles based on AB block copolymers of poly(ethylene oxide) and poly(β-benzyl l-aspartate). Langmuir, 9, 945–949. DOI: 10.1021/la00028a012. http://dx.doi.org/10.1021/la00028a01210.1021/la00028a012Suche in Google Scholar
[15] Lee, N. H., & Frank, C. W. (2002). Separation of chiral molecules using polypeptide-modified poly(vinylidene fluoride) membranes. Polymer, 43, 6255–6262. DOI: 10.1016/S0032-3861(02)00555-4. http://dx.doi.org/10.1016/S0032-3861(02)00555-410.1016/S0032-3861(02)00555-4Suche in Google Scholar
[16] Li, T., Lin, J., Chen, T., & Zhang, S. (2006). Polymeric micelles formed by polypeptide graft copolymer and its mixtures with polypeptide block copolymer. Polymer, 47, 4485–4489. DOI: 10.1016/j.polymer.2006.04.011. http://dx.doi.org/10.1016/j.polymer.2006.04.01110.1016/j.polymer.2006.04.011Suche in Google Scholar
[17] Lin, J., Abe, A., Furuya, H., & Okamoto, S. (1996). Liquid crystal formation coupled with the coil-helix transition in the ternary system poly(γ-benzyl l-glutamate)/dichloroacetic acid/dichloroethane. Macromolecules, 29, 2584–2589. DOI: 10.1021/ma951026r. http://dx.doi.org/10.1021/ma951026r10.1021/ma951026rSuche in Google Scholar
[18] Lin, J., Liu, N., Chen, J., & Zhou, D. (2000). Conformational changes coupled with the isotropic-anisotropic transition Part 1. Experimental phenomena and theoretical considerations. Polymer, 41, 6189–6194. DOI: 10.1016/S0032-3861(99)00848-4. http://dx.doi.org/10.1016/S0032-3861(99)00848-410.1016/S0032-3861(99)00848-4Suche in Google Scholar
[19] Lin, J., Zhang, S., Chen, T., Lin, S., & Jin, H. (2007). Micelle formation and drug release behavior of polypeptide graft copolymer and its mixture with polypeptide block copolymer. International Journal of Pharmaceutics, 336, 49–57. DOI: 10.1016/j.ijpharm.2006.11.026. http://dx.doi.org/10.1016/j.ijpharm.2006.11.02610.1016/j.ijpharm.2006.11.026Suche in Google Scholar PubMed
[20] Lin, J., Zhang, S., Chen, T., Liu, C., Lin, S., & Tian, X. (2006). Calcium phosphate cement reinforced by polypeptide copolymers. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 76B, 432–439. DOI: 10.1002/jbm.b.30392. http://dx.doi.org/10.1002/jbm.b.3039210.1002/jbm.b.30392Suche in Google Scholar PubMed
[21] Lin, J., Zhu, J., Chen, T., Lin, S., Cai, C., Zhang, L., Zhuang, Y., & Wang, X.-S. (2009). Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer. Biomaterials, 30, 108–117. DOI: 10.1016/j.biomaterials.2008.09.010. http://dx.doi.org/10.1016/j.biomaterials.2008.09.01010.1016/j.biomaterials.2008.09.010Suche in Google Scholar
[22] Lin, J., Zhu, G., Zhu, X., Lin, S., Nose, T., & Ding, W. (2008). Aggregate structure change induced by intramolecular helix-coil transition. Polymer, 49, 1132–1136. DOI: 10.1016/j.polymer.2008.01.021. http://dx.doi.org/10.1016/j.polymer.2008.01.02110.1016/j.polymer.2008.01.021Suche in Google Scholar
[23] Markland, P., Amidon, G. L., & Yang, V. C. (1999). Modified polypeptides containing γ-benzyl glutamic acid as drug delivery platforms. International Journal of Pharmaceutics, 178, 183–192. DOI: 10.1016/S0378-5173(98)00373-1. http://dx.doi.org/10.1016/S0378-5173(98)00373-110.1016/S0378-5173(98)00373-1Suche in Google Scholar
[24] Minich, E. A., Nowak, A. P., Deming, T. J., & Pochan, D. J. (2004). Rod-rod and rod-coil self-assembly and phase behavior of polypeptide diblock copolymers. Polymer, 45, 1951–1957. DOI: 10.1016/j.polymer.2004.01.009. http://dx.doi.org/10.1016/j.polymer.2004.01.00910.1016/j.polymer.2004.01.009Suche in Google Scholar
[25] Miyachi, Y., Jokei, K., Oka, M., & Hayashi, T. (1999). Preparation and properties of biodegradable copoly(N-hydroxyalkyl-d,l-glutamine) membranes. European Polymer Journal, 35, 767–773. DOI: 10.1016/S0014-3057(98)00059-7. http://dx.doi.org/10.1016/S0014-3057(98)00059-710.1016/S0014-3057(98)00059-7Suche in Google Scholar
[26] Moffitt, M., & Eisenberg, A. (1997). Scaling relations and size control of block ionomer microreactors containing different metal ions. Macromolecules, 30, 4363–4373. DOI: 10.1021/ma961577x. http://dx.doi.org/10.1021/ma961577x10.1021/ma961577xSuche in Google Scholar
[27] Oh, I., Lee, K., Kwon, H.-Y., Lee, Y.-B., Shin, S.-C., Cho, C.-S., & Kim, C.-K. (1999). Release of adriamycin from poly(γ-benzyl-l-glutamate)/poly(ethylene oxide) nanoparticles. International Journal of Pharmaceutics, 181, 107–115. DOI: 10.1016/S0378-5173(99)00012-5. http://dx.doi.org/10.1016/S0378-5173(99)00012-510.1016/S0378-5173(99)00012-5Suche in Google Scholar
[28] Park, Y., Choi, Y.-W., Park, S., Cho, C. S., Fasolka, M. J., & Sohn, D. (2005). Monolayer formation of PBLG-PEO block copolymers at the air-water interface. Journal of Colloid and Interface Science, 283, 322–328. DOI: 10.1016/j.jcis.2004.09.023. http://dx.doi.org/10.1016/j.jcis.2004.09.02310.1016/j.jcis.2004.09.023Suche in Google Scholar PubMed
[29] Tang, D. M., Lin, J. P., Lin, S. L., Zhang, S. N., Chen, T., & Tian, X. H. (2004). Self-assembly of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) and its mixtures with poly(γ-benzyl l-glutamate) homopolymer. Macromolecular Rapid Communications, 25, 1241–1246. DOI: 10.1002/marc.200400100. http://dx.doi.org/10.1002/marc.20040010010.1002/marc.200400100Suche in Google Scholar
[30] Watanabe, J., Ono, H., Uematsu, I., & Abe, A. (1985). Thermotropic polypeptides. 2. Molecular packing and thermotropic behavior of poly(l-glutamates) with long n-alkyl side chains. Macromolecules, 18, 2141–2148. DOI: 10.1021/ma00153a013. http://dx.doi.org/10.1021/ma00153a01310.1021/ma00153a013Suche in Google Scholar
[31] Zhong, X. F., Varshney, S. K., & Eisenberg, A. (1992). Critical micelle lengths for ionic blocks in solutions of polystyrene-b-poly(sodium acrylate) ionomers. Macromolecules, 25, 7160–7167. DOI: 10.1021/ma00052a014. http://dx.doi.org/10.1021/ma00052a01410.1021/ma00052a014Suche in Google Scholar
[32] Zhu, G., Feng, L., & Zhang, S. (2009). Factors of influencing the grafting ratio of poly(γ-benzyl-l-glutamate)-graft-poly( ethylene glycol) copolymer. Journal of Macromolecular Science, Part A, 46, 694–698. DOI: 10.1080/10601320902939002. http://dx.doi.org/10.1080/1060132090293900210.1080/10601320902939002Suche in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Immobilization of urease in poly(1-vinyl imidazole)/poly(acrylic acid) network
- Anodic reactions of sulphate in molten salts
- Fuels obtained by thermal cracking of individual and mixed polymers
- Synthesis, structure, and solvent-extraction properties of tridentate oxime ligands and their cobalt(II), nickel(II), copper(II), zinc(II) complexes
- Properties of a poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane
- Influence of tungsten sources on the synthesis and properties of ammonium dioxothiotungstate
- A Raman spectroscopy study on differently deposited DLC layers in pulse arc system
- 1,7′-dimethyl-2′-propyl-1H,3′H-2,5′-bibenzo[d]imidazole as a corrosion inhibitor of mild steel in 1 M HCl
- The role of acidity profile in the nanotubular growth of polyaniline
- Direct sulfenylation of acetone with benzothiazolesulfenamides to benzothiazolylthio-substituted alkylaminopropene: synthesis and application
- Substituted pyridopyrimidinones. Part 5. Behavior of 2-hydroxy-4-oxo-4H-pyrido[1,2-α]pyrimidine-3-carbaldehyde in nucleophilic condensation reactions
- Lidocaine hydrochloride preparations with ionic and non-ionic polymers assessed at standard and increased skin surface temperatures
- Phase separation in non-ionic surfactant Triton X-100 solutions in the presence of phenol
- Phase formation in sodium dodecylsulfate solutions in the presence of salicylic acid for preconcentration purposes
- Numerical properties of equations involving high-order derivatives of pressure with respect to volume
- Synthesis and characterization of conducting copolymer of (N 1,N 3-bis(thiophene-3-ylmethylene)benzene-1,3-diamine-co-3,4-ethylenedioxythiophene)
- Intercalation of non-aromatic heterocyclic amines into layered zirconium glycine-N,N-dimethylphosphonate
- Kinetics of catalytic Meerwein-Ponndorf-Verley reduction of aldehydes and ketones using boron triethoxide
Artikel in diesem Heft
- Immobilization of urease in poly(1-vinyl imidazole)/poly(acrylic acid) network
- Anodic reactions of sulphate in molten salts
- Fuels obtained by thermal cracking of individual and mixed polymers
- Synthesis, structure, and solvent-extraction properties of tridentate oxime ligands and their cobalt(II), nickel(II), copper(II), zinc(II) complexes
- Properties of a poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane
- Influence of tungsten sources on the synthesis and properties of ammonium dioxothiotungstate
- A Raman spectroscopy study on differently deposited DLC layers in pulse arc system
- 1,7′-dimethyl-2′-propyl-1H,3′H-2,5′-bibenzo[d]imidazole as a corrosion inhibitor of mild steel in 1 M HCl
- The role of acidity profile in the nanotubular growth of polyaniline
- Direct sulfenylation of acetone with benzothiazolesulfenamides to benzothiazolylthio-substituted alkylaminopropene: synthesis and application
- Substituted pyridopyrimidinones. Part 5. Behavior of 2-hydroxy-4-oxo-4H-pyrido[1,2-α]pyrimidine-3-carbaldehyde in nucleophilic condensation reactions
- Lidocaine hydrochloride preparations with ionic and non-ionic polymers assessed at standard and increased skin surface temperatures
- Phase separation in non-ionic surfactant Triton X-100 solutions in the presence of phenol
- Phase formation in sodium dodecylsulfate solutions in the presence of salicylic acid for preconcentration purposes
- Numerical properties of equations involving high-order derivatives of pressure with respect to volume
- Synthesis and characterization of conducting copolymer of (N 1,N 3-bis(thiophene-3-ylmethylene)benzene-1,3-diamine-co-3,4-ethylenedioxythiophene)
- Intercalation of non-aromatic heterocyclic amines into layered zirconium glycine-N,N-dimethylphosphonate
- Kinetics of catalytic Meerwein-Ponndorf-Verley reduction of aldehydes and ketones using boron triethoxide