Home Fuels obtained by thermal cracking of individual and mixed polymers
Article
Licensed
Unlicensed Requires Authentication

Fuels obtained by thermal cracking of individual and mixed polymers

  • Božena Mlynková EMAIL logo , Martin Bajus , Elena Hájeková , Gabriel Kostrab and Dušan Mravec
Published/Copyright: November 28, 2009
Become an author with De Gruyter Brill

Abstract

Utilization of oils/waxes obtained from thermal cracking of individual LDPE (low density polyethylene), HDPE (high density polyethylene), LLDPE (linear low density polyethylene), PP (polypropylene), or cracking of mixed polymers PP/LDPE (1: 1 mass ratio), HDPE/LDPE/PP (1: 1: 1 mass ratio), HDPE/LDPE/LLDPE/PP (1: 1: 1: 1 mass ratio) for the production of automotive gasolines and diesel fuels is overviewed. Thermal cracking was carried out in a batch reactor at 450°C in the presence of nitrogen. The principal process products, gaseous and liquid hydrocarbon fractions, are similar to the refinery cracking products. Liquid cracking products are unstable due to the olefins content and their chemical composition and their properties strongly depend on the feed composition. Naphtha and diesel fractions were hydrogenated over a Pd/C catalyst. Bromine numbers of hydrogenated fractions decreased to values from 0.02 g to 6.9 g of Br2 per 100 g of the sample. Research octane numbers (RON) before the hydrogenation of naphtha fractions were in the range from 80.5 to 93.4. After the hydrogenation of naphtha fractions, RON decreased to values from 61.0 to 93.6. Diesel indexes (DI) for diesel fractions were in the range from 73.7 to 75.6. After the hydrogenation of diesel fractions, DI increased up to 104.9.

[1] Aguado, J., Serrano, D. P., & Escola, J. M. (2006). Catalytic upgrading of plastic wastes. In J. Scheirs and W. Kaminsky (Eds.), Feedstock recycling and pyrolysis of waste plastics (pp. 73–110). Chichester, UK: Wiley. DOI: 10.1002/0470021543.ch3. http://dx.doi.org/10.1002/0470021543.ch310.1002/0470021543.ch3Search in Google Scholar

[2] Achilias, D. S., Roupakias, C., Megalokonomos, P., Lappas, A. A., & Antonakou, E. V. (2007). Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials, 149, 536–542. DOI: 10.1016/j.jhazmat.2007.06.076. http://dx.doi.org/10.1016/j.jhazmat.2007.06.07610.1016/j.jhazmat.2007.06.076Search in Google Scholar

[3] ASTM International (2007a). ASTM D1159 — 07 Standard test method for bromine numbers of petroleum distillates and commercial aliphatic olefins by electrometric titration. Retrieved October 22, 2009, from http://www.astm.org/Standards/D1159.htm. DOI: 10.1520/D1159-07. 10.1520/D1159-07Search in Google Scholar

[4] ASTM International (2007b). ASTM D611 — 07 Standard test methods for aniline point and mixed aniline point of petroleum products and hydrocarbon solvents. Retrieved October 22, 2009, from http://www.astm.org/Standards/D611.htm. DOI: 10.1520/D0611-07. 10.1520/D0611-07Search in Google Scholar

[5] ASTM International (2005). ASTM D1298 — 99(2005) Standard test method for density, relative density (specific gravity), or API gravity of crude petroleum and liquid petroleum products by hydrometer method. Retrieved October 22, 2009, from http://www.astm.org/Standards/D1298.htm. DOI: 10. 1520/D1298-99R05. Search in Google Scholar

[6] ASTM International (2004). ASTM D2710 — 99(2004)e1 Standard test method for bromine index of petroleum hydrocarbons by electrometric titration. Retrieved October 22, 2009, from http://www.astm.org/Standards/D2710.htm. DOI: 10.1520/D2710-99R04E01. 10.1520/D2710-99R04E01Search in Google Scholar

[7] Blazsó, M. (2006). Composition of liquid fuels derived from the pyrolysis of plastics. In J. Scheirs and W. Kaminsky (Eds.), Feedstock recycling and pyrolysis of waste plastics (pp. 315–344). Chichester, UK: Wiley. DOI: 10.1002/0470021543.ch12. http://dx.doi.org/10.1002/0470021543.ch1210.1002/0470021543.ch12Search in Google Scholar

[8] Durand, J. P., Boscher, Y., Petroff, N., & Berthelin, M. (1987). Automatic gas chromatographic determination of gasoline components: Application to octane number determination. Journal of Chromatography A, 395, 229–240. DOI:10.1016/S0021-9673(01)94113-5. http://dx.doi.org/10.1016/S0021-9673(01)94113-510.1016/S0021-9673(01)94113-5Search in Google Scholar

[9] Hájeková, E., & Bajus, M. (2005). Recycling of low-density polyethylene and polypropylene via copyrolysis of polyalkene oil/waxes with naphtha: product distribution and coke formation. Journal of Analytical and Applied Pyrolysis, 74, 270–281. DOI: 10.1016/j.jaap.2004.11.016. http://dx.doi.org/10.1016/j.jaap.2004.11.01610.1016/j.jaap.2004.11.016Search in Google Scholar

[10] Hájeková, E., Špodová, B. (2007). Separation and characterization of products from thermal cracking of individual and mixed polyalkenes. Chemical Papers, 61, 262–270. DOI: 10.2478/s11696-007-0031-6. http://dx.doi.org/10.2478/s11696-007-0031-610.2478/s11696-007-0031-6Search in Google Scholar

[11] Horvat, N., & Ng, F. T. T. (1999). Tertiary polymer recycling: study of polyethylene thermolysis as a first step to synthetic diesel fuel. Fuel, 78, 459–470. DOI: 10.1016/S0016-2361(98)00158-6. http://dx.doi.org/10.1016/S0016-2361(98)00158-610.1016/S0016-2361(98)00158-6Search in Google Scholar

[12] Kaminsky, W. (2008). Feedstock recycling of synthetic and natural rubber by pyrolysis in a fluidized bed. In J. A. González-Pérez and F. J. González-Vila (Eds.), Proceedings of the 18th International Symposium on Analytical and Applied Pyrolysis, 18–23 May 2008 (K-2, p. 36). Lanzarote, Canary Island, Spain. Search in Google Scholar

[13] Kaminsky, W., & Hartmann, F. (2005). Simulation and experiments of polyethylene pyrolysis in a fluidized bed process. In au]M. Müller-Hagedorn and H. Bockhorn(Eds.), Feedstock recycling of plastics (pp. 73–88). Karlsruhe, Germany: Universitätsverlag Karlsruhe. Search in Google Scholar

[14] Koç, A., Şimşek, E. H., & Bilgesü, A. Y. (2009). Oxidative thermal degradation of LDPE and the determination of some thermodynamic quantities. Journal of Analytical and Applied Pyrolysis, 85, 380–383. DOI: 10.1016/j.jaap.2008.11.031. http://dx.doi.org/10.1016/j.jaap.2008.11.03110.1016/j.jaap.2008.11.031Search in Google Scholar

[15] Koželuhová, M. (2007). Separation and analysis of products from thermal cracking of polymers. Diploma thesis, Slovak University of Technology, Bratislava, Slovak Republic. Search in Google Scholar

[16] Marcilla, A., Beltrán, M. I., & Navarro, R. (2009). Evolution of products during the degradation of polyethylene in a batch reactor. Journal of Analytical and Applied Pyrolysis, 78, 14–21. DOI: 10.1016/j.jaap.2009.03.004. http://dx.doi.org/10.1016/j.jaap.2009.03.00410.1016/j.jaap.2009.03.004Search in Google Scholar

[17] Mastral, J. F., Martinez, S., Ceamanos, J., & Berrucco, C. (2008). Catalytic pyrolysis of high density polyethylene for maximum generation of the liquid fraction. In J. A. González-Pérez and F. J. González-Vila (Eds.), Proceedings of the 18th International Symposium on Analytical and Applied Pyrolysis, 18–23 May 2008 (P-65, p. 201). Lanzarote, Canary Island, Spain. Search in Google Scholar

[18] Masuda, T., & Tago, T. (2006). Development of a process for the continuous conversion of waste plastics mixtures to fuel. In J. Scheirs and W. Kaminsky (Eds.), Feedstock recycling and pyrolysis of waste plastics (pp. 161–192). Chichester, UK: Wiley. DOI: 10.1002/0470021543.ch6. http://dx.doi.org/10.1002/0470021543.ch610.1002/0470021543.ch6Search in Google Scholar

[19] Miskolczi, N. (2006). Kinetic model of the chemical and catalytic recycling of waste polyethylene into fuels. In J. Scheirs and W. Kaminsky (Eds.), Feedstock recycling and pyrolysis of waste plastics (pp. 225–247). Chichester, UK: Wiley. DOI:10.1002/0470021543.ch9. http://dx.doi.org/10.1002/0470021543.ch910.1002/0470021543.ch9Search in Google Scholar

[20] Miskolczi, N., Angyal, A., Bartha, L., & Valkai, I. (2008). Converting of waste plastics into lighter hydrocarbons: The effect of the size increasing of process to the pyrolysis. In J. A. González-Pérez and F. J. González-Vila (Eds.), Proceedings of the 18th International Symposium on Analytical and Applied Pyrolysis, 18–23 May 2008 (P-80, p. 216). Lanzarote, Canary Island, Spain. Search in Google Scholar

[21] Okuwaki, A., Yoshioka, T., Asai, M., Tachibana, H., Wakai, K., & Tada, K. (2006). The liquefaction of plastic containers and packaging in Japan. In: J. Scheirs and W. Kaminsky (Eds.), Feedstock recycling and pyrolysis of waste plastics (pp. 663–708). Chichester, UK: Wiley. DOI: 10.1002/0470021543.ch26. http://dx.doi.org/10.1002/0470021543.ch2610.1002/0470021543.ch26Search in Google Scholar

[22] Pasquini, C., Vidal de Aquino, E., das Virgens Reboucas, M., & Barbieri Gonzaga, F. (2007). Robust flow-batch coulometric/biamperometric titration system: Determination of bromine index and bromine number of petrochemicals. Analytica Chimica Acta, 600, 84–89. DOI:10.1016/j.aca.2006.12.039. http://dx.doi.org/10.1016/j.aca.2006.12.03910.1016/j.aca.2006.12.039Search in Google Scholar

[23] Pinto, F., Costa, P., Gulyurtlu, I., & Cabrita, I. (1999). Pyrolysis of plastic wastes. 1. Effect of plastic waste composition on product yield. Journal of Analytical and Applied Pyrolysis, 51, 39–55. DOI: 10.1016/S0165-2370(99)00007-8. http://dx.doi.org/10.1016/S0165-2370(99)00007-810.1016/S0165-2370(99)00007-8Search in Google Scholar

[24] Ramadhas, A. S., Jayaraj, S., Muraleedharan, C., & Padmakumari, K. (2006). Artificial neural networks used for the prediction of the cetane number of biodiesel. Renewable Energy, 31, 2524–2533. DOI: 10.1016/j.renene.2006.01.009. http://dx.doi.org/10.1016/j.renene.2006.01.00910.1016/j.renene.2006.01.009Search in Google Scholar

[25] Scheirs, J. (2006). Overview of commercial pyrolysis processes for waste plastics. In J. Scheirs and W. Kaminsky (Eds.), Feedstock recycling and pyrolysis of waste plastics (pp. 384–433). Chichester, UK: Wiley. DOI: 10.1002/0470021543.ch15. http://dx.doi.org/10.1002/047002154310.1002/0470021543.ch15Search in Google Scholar

[26] Slišková, M. (1999). Evaluation of octane number of gasolines. Bachelor thesis, Slovak University of Technology, Bratislava, Slovak Republic. Search in Google Scholar

[27] Soják, L., Kubinec, R., Jurdáková, H., Hájeková, E., & Bajus, M. (2007). High resolution gas chromatographic-mass spectrometric analysis of polyethylene and polypropylene thermal cracking products. Journal of Analytical and Applied Pyrolysis, 78, 387–399. DOI: 10.1016/j.jaap.2006.09.012. http://dx.doi.org/10.1016/j.jaap.2006.09.01210.1016/j.jaap.2006.09.012Search in Google Scholar

[28] STN (1989). STN 656185 Ropné vyrobky. Stanovenie brómového čísla elektrometrickou metódou. Retrieved October 22, 2009, from http://eshop.normservis.cz/stn/656185/1.10. 1989. Search in Google Scholar

[29] STN (1985). STN 656180 Ropné vyrobky a uhľovodíkové rozpúšťadlá. Stanovenie anilínového bodu. Retrieved October 22, 2009, from http://eshop.normservis.cz/stn/656180/1.2.1985. Search in Google Scholar

[30] STN (1983). STN 656010 Ropa a ropné vyrobky. Metódy stanovenia hustoty. Retrieved October 22, 2009, from http://eshop.normservis.cz/stn/656010/1.8.1983. Search in Google Scholar

[31] The European Committee for Standardization (2004). The European Standard: Automotive fuels — Unleaded petrol — Requirements and test methods. EN 228. Brussels, Belgium. Search in Google Scholar

[32] Tukker, A. (2002). Plastic waste — feedstock recycling, chemical recycling and incineration. Rapra Review Reports 13(4), Report 148. Shawbury, UK: Rapra Technology Ltd. Search in Google Scholar

[33] Walendziewski, J. (2002). Engine fuel derived from waste plastics by thermal treatment. Fuel, 81, 473–481. DOI:10.1016/S0016-2361(01)00118-1. http://dx.doi.org/10.1016/S0016-2361(01)00118-110.1016/S0016-2361(01)00118-1Search in Google Scholar

[34] Wauquier, J.-P. (1995). Petroleum refining 1. Crude oil, petroleum products, process flowsheets (pp. 155). Paris, France: Éditions Technip. Search in Google Scholar

[35] Walendziewski, J. (2005). Continuous flow cracking of waste plastics. Fuel Processing Technology, 86, 1265–1278. DOI:10.1016/j.fuproc.2004.12.004. http://dx.doi.org/10.1016/j.fuproc.2004.12.00410.1016/j.fuproc.2004.12.004Search in Google Scholar

[36] Wikipedia (2008). Bromine number. Retrieved November 21, 2001, from http://en.wikipedia.org/wiki/Bromine_number Search in Google Scholar

[37] Williams, P. T. (2006). Yield and composition of gases and oils/waxes from the feedstock recycling of waste plastic. In J. Scheirs and W. Kaminsky (Eds.), Feedstock recycling and pyrolysis of waste plastics (pp. 285–313). Chichester, UK: Wiley. DOI: 10.1002/0470021543.ch11. http://dx.doi.org/10.1002/0470021543.ch1110.1002/0470021543.ch11Search in Google Scholar

[38] Yuan, X. (2006). Converting waste plastics into liquid fuel by pyrolysis: Developments in China. In J. Scheirs and W. Kaminsky (Eds.), Feedstock recycling and pyrolysis of waste plastics (pp. 729–755). Chichester, UK: Wiley. DOI:10.1002/0470021543.ch28. 10.1002/0470021543.ch28Search in Google Scholar

Published Online: 2009-11-28
Published in Print: 2010-2-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Immobilization of urease in poly(1-vinyl imidazole)/poly(acrylic acid) network
  2. Anodic reactions of sulphate in molten salts
  3. Fuels obtained by thermal cracking of individual and mixed polymers
  4. Synthesis, structure, and solvent-extraction properties of tridentate oxime ligands and their cobalt(II), nickel(II), copper(II), zinc(II) complexes
  5. Properties of a poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane
  6. Influence of tungsten sources on the synthesis and properties of ammonium dioxothiotungstate
  7. A Raman spectroscopy study on differently deposited DLC layers in pulse arc system
  8. 1,7′-dimethyl-2′-propyl-1H,3′H-2,5′-bibenzo[d]imidazole as a corrosion inhibitor of mild steel in 1 M HCl
  9. The role of acidity profile in the nanotubular growth of polyaniline
  10. Direct sulfenylation of acetone with benzothiazolesulfenamides to benzothiazolylthio-substituted alkylaminopropene: synthesis and application
  11. Substituted pyridopyrimidinones. Part 5. Behavior of 2-hydroxy-4-oxo-4H-pyrido[1,2-α]pyrimidine-3-carbaldehyde in nucleophilic condensation reactions
  12. Lidocaine hydrochloride preparations with ionic and non-ionic polymers assessed at standard and increased skin surface temperatures
  13. Phase separation in non-ionic surfactant Triton X-100 solutions in the presence of phenol
  14. Phase formation in sodium dodecylsulfate solutions in the presence of salicylic acid for preconcentration purposes
  15. Numerical properties of equations involving high-order derivatives of pressure with respect to volume
  16. Synthesis and characterization of conducting copolymer of (N 1,N 3-bis(thiophene-3-ylmethylene)benzene-1,3-diamine-co-3,4-ethylenedioxythiophene)
  17. Intercalation of non-aromatic heterocyclic amines into layered zirconium glycine-N,N-dimethylphosphonate
  18. Kinetics of catalytic Meerwein-Ponndorf-Verley reduction of aldehydes and ketones using boron triethoxide
Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0102-y/html
Scroll to top button