Startseite Lidocaine hydrochloride preparations with ionic and non-ionic polymers assessed at standard and increased skin surface temperatures
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Lidocaine hydrochloride preparations with ionic and non-ionic polymers assessed at standard and increased skin surface temperatures

  • Witold Musial EMAIL logo , Vanja Kokol und Bojana Voncina
Veröffentlicht/Copyright: 28. November 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, the release of lidocaine hydrochloride was assessed considering the use of both the ionic and the non-ionic polymeric carrier at temperatures of 22°C, 32°C, and 42°C; temperature of 32°C was chosen as the reference surface body temperature. The obtained release rates and respective amounts of lidocaine hydrochloride loaded both to methylcellulose beads and polyacrylic acid beads were compared with respective viscosity, pH and conductivity of the studied systems. The release of lidocaine hydrochloride from the methylcellulose system is influenced by temperature; with the increase of temperature the release rate decreases whereas the viscosity increases. In the polyacrylic acid system, release rates are lower, however, in the first stage they are slightly increasing with the increase of temperature. The final amount of released drug after 24 h increases with the temperature of the release process environment, and it is higher in case of a methylcellulose system. The maximum differences between the released amounts for methylcellulose were in the range of 15 %, whereas in case of polyacrylic acid, the difference was approximately 12 %. Thus, this research is important for patients with differentiated skin surface temperature conditions to whom a local analgesic is to be applied.

[1] Bonacucina, G., Cespi, M., Misici-Falzi, M., & Palmieri, G. F. (2006). Rheological, adhesive and release characterization of semisolid Carbopol/tetraglycol systems. International Journal of Pharmaceutics, 307, 129–140. DOI: 10.1016/j.ijpharm.2005.09.034. http://dx.doi.org/10.1016/j.ijpharm.2005.09.03410.1016/j.ijpharm.2005.09.034Suche in Google Scholar

[2] Bozkir, A., & Aydinli, A. (1997). In vitro release study of lidocaine hydrochloride from ophthalmic gels containing polyacrylic acid polymers. Acta Pharmaceutica, 47, 21–30. Suche in Google Scholar

[3] DeToledo, J. C. (2000). Lidocaine and seizures. Therapeutic Drug Monitoring, 22, 320–322. http://dx.doi.org/10.1097/00007691-200006000-0001410.1097/00007691-200006000-00014Suche in Google Scholar

[4] Farkas, E., Zelkó, R., Németh, Zs., Pálinkás, J., Marton, S., & Rácz, I. (2000). The effect of liquid crystalline structure on chlorhexidine diacetate release. International Journal of Pharmaceutics, 193, 239–245. DOI: 10.1016/S0378-5173(99)00346-4. http://dx.doi.org/10.1016/S0378-5173(99)00346-410.1016/S0378-5173(99)00346-4Suche in Google Scholar

[5] Ganguly, S., & Dash, A. K. (2004). A novel in situ gel for sustained drug delivery and targeting. International Journal of Pharmaceutics, 276, 83–92. DOI: 10.1016/j.ijpharm.2004.02.014. http://dx.doi.org/10.1016/j.ijpharm.2004.02.01410.1016/j.ijpharm.2004.02.014Suche in Google Scholar

[6] Generali, J., & Cada, D. J. (2001). Intranasal lidocaine: Migraine headaches. Hospital Pharmacy, 36, 192–196. 10.1177/001857870103600207Suche in Google Scholar

[7] Kanlayanaphotporn, R., & Janwantanakul, P. (2005). Comparison of skin surface temperature during the application of various cryotherapy modalities. Archives of Physical Medicine and Rehabilitation, 86, 1411–1415. DOI: 10.1016/j.apmr.2004.11.034. http://dx.doi.org/10.1016/j.apmr.2004.11.03410.1016/j.apmr.2004.11.034Suche in Google Scholar

[8] Kohli-Bardhan, K., Ukhopadhya, S., & Chatterjee, S. R. (1985). Viscometric studies of graft copolymers of methylcellulose and polyacrylamide. Defence Science Journal, 35, 47–53. 10.14429/dsj.35.5999Suche in Google Scholar

[9] Kundu, P. P., & Kundu, M. (2001). Effect of salts and surfactant and their doses on the gelation of extremely dilute solutions of methyl cellulose. Polymer, 42, 2015–2020. DOI: 10.1016/S0032-3861(00)00506-1. http://dx.doi.org/10.1016/S0032-3861(00)00506-110.1016/S0032-3861(00)00506-1Suche in Google Scholar

[10] Mancuso, D. L., & Knight, K. L. (1992). Effects of prior physical activity on skin surface temperature response of the ankle during and after a 30-minute ice pack application. Journal of Athletic Training, 27, 242–249. Suche in Google Scholar

[11] Modok, S., Hyde, P., Mellor, H. R., Roose, T., & Callaghan, R. (2006). Diffusivity and distribution of vinblastine in three-dimensional tumour tissue: Experimental and mathematical modelling. European Journal of Cancer, 42, 2404–2413. DOI: 10.1016/j.ejca.2006.05.020. http://dx.doi.org/10.1016/j.ejca.2006.05.02010.1016/j.ejca.2006.05.020Suche in Google Scholar PubMed

[12] Nurkeeva, Z. S., Mun, G. A., Khutoryanskiy, V. V., Bitekenova, A. B., & Dzhusupbekova, A. B. (2002). Polymeric complexes of lidocaine hydrochloride with poly(acrylic acid) and poly(2-hydroxyethyl vinyl ether). Journal of Biomaterial Science, Polymer Edition, 13, 759–768. DOI: 10.1163/156856202760197393. http://dx.doi.org/10.1163/15685620276019739310.1163/156856202760197393Suche in Google Scholar PubMed

[13] Park, N. A., & Irvine, T. F., Jr. (1997). Anomalous viscosity-temperature behavior of aqueous Carbopol solutions. Journal of Rheology, 41, 167–173. DOI: 10.1122/1.550813. http://dx.doi.org/10.1122/1.55081310.1122/1.550813Suche in Google Scholar

[14] Pollack, G. L., & Enyeart, J. J. (1985). Atomic test of the Stokes-Einstein law. II. Diffusion of Xe through liquid hydrocarbons. Physical Review A, 31, 980–984. DOI: 10.1103/PhysRevA.31.980. http://dx.doi.org/10.1103/PhysRevA.31.98010.1103/PhysRevA.31.980Suche in Google Scholar

[15] Rasband, W. S. (1997–2008). ImageJ [computer software]. Bethesda, MD: U. S. National Institutes of Health. Available at http://rsb.info.nih.gov/ij/ Suche in Google Scholar

[16] Sarkar, N. (1979). Thermal gelation properties of methyl and hydroxypropyl methylcellulose. Journal of Applied Polymer Science, 24, 1073–1087. DOI: 10.1002/app.1979.070240420. http://dx.doi.org/10.1002/app.1979.07024042010.1002/app.1979.070240420Suche in Google Scholar

[17] Su, F., Nguyen, N. D., Wang, Z., Cai, Y., Rogiers, P., & Vincent, J.-L. (2005). Fever control in septic shock: Beneficial or harmful? Shock, 23, 516–520. Suche in Google Scholar

[18] United States Pharmacopoeial Convention (2007). United States pharmacopoeia-National formulary (USP31 NF26) (pp. 2155–2156). Rockville, MD, USA: United States Pharmacopoeial Convention. Suche in Google Scholar

[19] Wang, Q., Li, L., Liu, E., Xu, Y., & Liu, J. (2006). Effects of SDS on the sol-gel transition of methylcellulose in water. Polymer, 47, 1372–1378. DOI: 10.1016/polymer.2005.12.049. http://dx.doi.org/10.1016/j.polymer.2005.12.049Suche in Google Scholar

[20] Zatz, J. L., & Segers, J. D. (1998). Techniques for measuring in vitro release from semisolids. Dissolution Technologies, 5, 3–17. 10.14227/DT050198P3Suche in Google Scholar

[21] Zheng, P., Li, L., Hu, X., & Zhao, X. (2004). Sol-gel transition of methylcellulose in phosphate buffer saline solutions. Journal of Polymer Science Part B: Polymer Physics, 42, 1849–1860. DOI: 10.1002/polb.20070. http://dx.doi.org/10.1002/polb.2007010.1002/polb.20070Suche in Google Scholar

Published Online: 2009-11-28
Published in Print: 2010-2-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Immobilization of urease in poly(1-vinyl imidazole)/poly(acrylic acid) network
  2. Anodic reactions of sulphate in molten salts
  3. Fuels obtained by thermal cracking of individual and mixed polymers
  4. Synthesis, structure, and solvent-extraction properties of tridentate oxime ligands and their cobalt(II), nickel(II), copper(II), zinc(II) complexes
  5. Properties of a poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane
  6. Influence of tungsten sources on the synthesis and properties of ammonium dioxothiotungstate
  7. A Raman spectroscopy study on differently deposited DLC layers in pulse arc system
  8. 1,7′-dimethyl-2′-propyl-1H,3′H-2,5′-bibenzo[d]imidazole as a corrosion inhibitor of mild steel in 1 M HCl
  9. The role of acidity profile in the nanotubular growth of polyaniline
  10. Direct sulfenylation of acetone with benzothiazolesulfenamides to benzothiazolylthio-substituted alkylaminopropene: synthesis and application
  11. Substituted pyridopyrimidinones. Part 5. Behavior of 2-hydroxy-4-oxo-4H-pyrido[1,2-α]pyrimidine-3-carbaldehyde in nucleophilic condensation reactions
  12. Lidocaine hydrochloride preparations with ionic and non-ionic polymers assessed at standard and increased skin surface temperatures
  13. Phase separation in non-ionic surfactant Triton X-100 solutions in the presence of phenol
  14. Phase formation in sodium dodecylsulfate solutions in the presence of salicylic acid for preconcentration purposes
  15. Numerical properties of equations involving high-order derivatives of pressure with respect to volume
  16. Synthesis and characterization of conducting copolymer of (N 1,N 3-bis(thiophene-3-ylmethylene)benzene-1,3-diamine-co-3,4-ethylenedioxythiophene)
  17. Intercalation of non-aromatic heterocyclic amines into layered zirconium glycine-N,N-dimethylphosphonate
  18. Kinetics of catalytic Meerwein-Ponndorf-Verley reduction of aldehydes and ketones using boron triethoxide
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0089-4/html
Button zum nach oben scrollen