Abstract
Conditions of polyaniline (PANI) nanotubes preparation were analyzed. Aniline was oxidized with ammonium peroxydisulfate in 0.4 M acetic acid. There are two subsequent oxidation steps and the products were collected after each of them. At pH > 3, neutral aniline molecules are oxidized to non-conducting aniline oligomers. These produce templates for the subsequent growth of PANI nanotubes, which takes place preferably at pH 2–3. At pH < 2, granular morphology of the conducting PANI is obtained. High final acidity of the medium should be avoided in the preparation of nanotubes, e.g., by reducing the amount of sulfuric acid which is a by-product. Reduction of the peroxydisulfate-to-aniline mole ratio was tested for this purpose in the present study. Lowering of the reaction temperature from 20°C to −4°C had a positive effect on the formation of nanotubes.
[1] Ayad, M. M., & Shenashin, M. A. (2004). Polyaniline film deposition from the oxidative polymerization of aniline using K2Cr2O7. European Polymer Journal, 40, 197–202. DOI: 10.1016/j.eurpolymj.2003.09.002. http://dx.doi.org/10.1016/j.eurpolymj.2003.09.00210.1016/j.eurpolymj.2003.09.002Search in Google Scholar
[2] Cai, Z., & Martin, C. R. (1989). Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities. Journal of the American Chemical Society, 111, 4138–4139. DOI: 10.1021/ja00193a077. http://dx.doi.org/10.1021/ja00193a07710.1021/ja00193a077Search in Google Scholar
[3] Chattopadhyay, D., Banerjee, S., Chakravorty, D., & Mandal, B. M. (1998). Ethyl(hydroxyethyl)cellulose stabilized polyaniline dispersions and destabilized nanoparticles therefrom. Langmuir, 14, 1544–1547. DOI: 10.1021/la970936u. http://dx.doi.org/10.1021/la970936u10.1021/la970936uSearch in Google Scholar
[4] Chiou, N.-R., & Epstein, A. J. (2005). Polyaniline nanofibers prepared by dilute polymerization. Advanced Materials, 17, 1679–1683. DOI: 10.1002/adma.200401000. http://dx.doi.org/10.1002/adma.20040100010.1002/adma.200401000Search in Google Scholar
[5] Chiou, N.-R., Lee, L. J., & Epstein, A. J. (2007). Self-assembled polyaniline nanofibers/nanotubes. Chemistry of Materials, 19, 3589–3591. DOI: 10.1021/cm070847v. http://dx.doi.org/10.1021/cm070847v10.1021/cm070847vSearch in Google Scholar
[6] Ćirić-Marjanović, G., Dragičević, L., Milojević, M., Mojović, M., Mentus, S., Dojčinović, B., Marjanović, B., & Stejskal, J. (2009). Synthesis and characterization of self-assembled polyaniline nanotubes/silica nanocomposites. Journal of Physical Chemistry B, 113, 7116–7127. DOI: 10.1021/jp900096b. http://dx.doi.org/10.1021/jp900096b10.1021/jp900096bSearch in Google Scholar PubMed
[7] Cruz-Silva, R., Ruiz-Flores, C., Arizmendi, L., Romero-García, J., Arias-Marin, E., Moggio, I., Castillon, F. F., & Farias, M. H. (2006). Enzymatic synthesis of colloidal polyaniline particles. Polymer, 47, 1563–1568. DOI: 10.1016/j.polymer.2005.12.082. http://dx.doi.org/10.1016/j.polymer.2005.12.08210.1016/j.polymer.2005.12.082Search in Google Scholar
[8] Dauginet-De Pra, L., & Demoustier-Champagne, S. (2005). A comparative study of the electronic structure and spectroelectrochemical properties of electrosynthesized polyaniline films and nanotubes. Thin Solid Films, 479, 321–328. DOI: 10.1016/j.tsf.2004.12.007. http://dx.doi.org/10.1016/j.tsf.2004.12.00710.1016/j.tsf.2004.12.007Search in Google Scholar
[9] Dispenza, C., Lo Presti, C., Belfiore, C., Spadaro, G., & Piazza, S. (2006). Electrically conductive hydrogel composites made of polyaniline nanoparticles and poly(N-vinyl-2-pyrrolidone). Polymer, 47, 961–971. DOI: 10.1016/j.polymer.2005.12.071. http://dx.doi.org/10.1016/j.polymer.2005.12.07110.1016/j.polymer.2005.12.071Search in Google Scholar
[10] Frederikse, H. P. R., & Lide, D. R. (1995). (Eds.) CRC Handbook of chemistry and physics (76th ed., pp. 8–49). New York, NY, USA: CRC Press. Search in Google Scholar
[11] Fu, Y., & Elsenbaumer, R. L. (1994). Thermochemistry and kinetics of chemical polymerization of aniline determined by solution calorimetry. Chemistry of Materials, 6, 671–677. DOI: 10.1021/cm00041a018. http://dx.doi.org/10.1021/cm00041a01810.1021/cm00041a018Search in Google Scholar
[12] Gospodinova, N., Mokreva, P., & Terlemezyan, L. (1993). Chemical oxidative polymerization of aniline in aqueous medium without added acids. Polymer, 34, 2438–2439. DOI: 10.1016/0032-3861(93)90835-X. http://dx.doi.org/10.1016/0032-3861(93)90835-X10.1016/0032-3861(93)90835-XSearch in Google Scholar
[13] Han, J., Song, G., & Guo, R. (2006). A facile solution route for polymeric hollow spheres with controllable size. Advanced Materials, 18, 3140–3144. DOI: 10.1002/adma.200600282. http://dx.doi.org/10.1002/adma.20060028210.1002/adma.200600282Search in Google Scholar
[14] Huang, J. (2006). Syntheses and applications of conducting polymer polyaniline nanofibers. Pure and Applied Chemistry, 78, 15–27. DOI: 10.1351/pac200678010015. http://dx.doi.org/10.1351/pac20067801001510.1351/pac200678010015Search in Google Scholar
[15] Huang, J., & Wan, M. X. (1999). In situ doping polymerization of polyaniline microtubules in the presence of β-naphthalenesulfonic acid. Journal of Polymer Science, Part A: Polymer Chemistry, 37, 151–157. http://dx.doi.org/10.1002/(SICI)1099-0518(19990115)37:2<151::AID-POLA5>3.0.CO;2-R10.1002/(SICI)1099-0518(19990115)37:2<151::AID-POLA5>3.0.CO;2-RSearch in Google Scholar
[16] Huang, K., Meng, X.-H., & Wan, M. (2006). Polyaniline hollow microspheres constructed with their own self-assembled nanofibers. Journal of Applied Polymer Science, 100, 3050–3054. DOI: 10.1002/app.23704. http://dx.doi.org/10.1002/app.2370410.1002/app.23704Search in Google Scholar
[17] Huang, K., & Wan, M. (2002). Self-assembled polyaniline nanostructures with photoisomerization function. Chemistry of Materials, 14, 3486–3492. DOI: 10.1021/cm020206u. http://dx.doi.org/10.1021/cm020206u10.1021/cm020206uSearch in Google Scholar
[18] Huang, K., Wan, M., Long, Y., Chen, Z., & Wei, Y. (2005). Multi-functional polypyrrole nanofibers via a functional dopant-introduced process. Synthetic Metals, 155, 495–500. DOI: 10.1016/j.synthmet.2005.06.013. http://dx.doi.org/10.1016/j.synthmet.2005.06.01310.1016/j.synthmet.2005.06.013Search in Google Scholar
[19] Huang, Y. F., & Lin, C. W. (2009). Introduction of methanol in the formation of polyaniline nanotubes in an acid-free aqueous solution throuhg a self-curling process. Polymer, 50, 775–782. DOI: 10.1016/j.polymer.2008.12.016. http://dx.doi.org/10.1016/j.polymer.2008.12.01610.1016/j.polymer.2008.12.016Search in Google Scholar
[20] Jing, X., Wang, Y., Wu, D., She, L., & Guo, Y. (2006). Polyaniline nanofibers prepared with ultrasonic irradiation. Journal of Polymer Science, Part A: Polymer Chemistry, 44, 1014–1019. DOI: 10.1002/pola.21217. http://dx.doi.org/10.1002/pola.2121710.1002/pola.21217Search in Google Scholar
[21] Kan, J., Zhang, S., & Jing, G. (2006). Effect of ethanol on chemically synthesized polyaniline nanothread. Journal of Applied Polymer Science, 99, 1848–1853. DOI: 10.1002/app.22345. http://dx.doi.org/10.1002/app.2234510.1002/app.22345Search in Google Scholar
[22] Konyushenko, E. N., Stejskal, J., Šeděnková, M., Sapurina, I., Cieslar, M., & Prokeš, J. (2006). Polyaniline nanotubes: conditions of formation. Polymer International, 55, 31–39. DOI: 10.1002/pi.1899. http://dx.doi.org/10.1002/pi.189910.1002/pi.1899Search in Google Scholar
[23] Laslau, C., Zujovic, Z. D., Zhang, L., Bowmaker, G. A., & Travas-Sejdic, J. (2009). Morphological evolution of selfassembled polyaniline nanostructures obtained by pH-stat chemical oxidation. Chemistry of Materials, 21, 954–962. DOI: 10.1021/cm803447a. http://dx.doi.org/10.1021/cm803447a10.1021/cm803447aSearch in Google Scholar
[24] Li, D., & Kaner, R. B. (2006). Shape and aggregation control of nanoparticles: Not shaken, not stirred. Journal of the American Chemical Society, 128, 968–975. DOI: 10.1021/ja056609n. http://dx.doi.org/10.1021/ja056609n10.1021/ja056609nSearch in Google Scholar
[25] Li, J. S., Shen, L. J., Gu, D. W., Yuan, P. F., Cui, X. B., & Yang, N. R. (2006). Optimum conditions for the preparation of polyaniline films under very high pressure. Reactive and Functional Polymers, 66, 1319–1326. DOI: 10.1016/j.reactfunctpolym.2006.03.014. http://dx.doi.org/10.1016/j.reactfunctpolym.2006.03.01410.1016/j.reactfunctpolym.2006.03.014Search in Google Scholar
[26] Long, Y., Zhang, L., Ma, Y., Chen, Z., Wang, N., Zhang, Z., & Wan, M. (2003). Electrical conductivity of an individual polyaniline nanotube synthesized by a self-assembly method. Macromolecular Rapid Communications, 24, 938–942. DOI: 10.1002/marc.200300039. http://dx.doi.org/10.1002/marc.20030003910.1002/marc.200300039Search in Google Scholar
[27] Lu, X., Mao, H., Chao, D., Zhang, W., & Wei, Y. (2006). Fabrication of polyaniline nanostructures under ultrasonic irradiation: From nanotubes to nanofibers. Macromolecular Chemistry and Physics, 207, 2142–2152. DOI: 10.1002/macp.200 600424. http://dx.doi.org/10.1002/macp.200600424Search in Google Scholar
[28] Mazur, M., Tagowska, M., Pałys, B., & Jackowska, K. (2003). Template synthesis of polyaniline and poly(2-methoxyanil ine) nanotubes: comparison of the formation mechanisms. Electrochemistry Communications, 5, 403–407. DOI: 10.1016 /s1388-2481(03)00078-X. http://dx.doi.org/10.1016/S1388-2481(03)00078-X10.1016/S1388-2481(03)00078-XSearch in Google Scholar
[29] McCarthy, P. A., Huang, J., Yang, S.-C., & Wang, H.-L. (2002). Synthesis and characterization of water-soluble chiral conducting polymer nanocomposites. Langmuir, 18, 259–263. DOI: 10.1021/la0111093. http://dx.doi.org/10.1021/la011109310.1021/la0111093Search in Google Scholar
[30] Park, M.-C., Sun, Q., & Deng, Y. (2007). Polyaniline microspheres consisting of highly crystallized nanorods. Macromolecular Rapid Communications, 28, 1237–1242. DOI: 10.1002/marc.200700066. http://dx.doi.org/10.1002/marc.20070006610.1002/marc.200700066Search in Google Scholar
[31] Qiu, H., Wan, M., Matthews, B., & Dai, L. (2001). Conducting polyaniline nanotubes by template-free polymerization. Macromolecules, 34, 675–677. DOI: 10.1021/ma001525e. http://dx.doi.org/10.1021/ma001525e10.1021/ma001525eSearch in Google Scholar
[32] Sapurina, I., & Stejskal, J. (2008). The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International, 57, 1295–1325. DOI: 10.1002/pi.2476. http://dx.doi.org/10.1002/pi.247610.1002/pi.2476Search in Google Scholar
[33] Šeděnková, I., Trchová, M., Blinova, N. V., & Stejskal, J. (2006). In-situ polymerized polyaniline films. Preparation in solutions of hydrochloric, sulfuric, or phosphoric acid. Thin Solid Films, 515, 1640–1646. DOI: 10.1016/j.tsf.2006.05.038. http://dx.doi.org/10.1016/j.tsf.2006.05.03810.1016/j.tsf.2006.05.038Search in Google Scholar
[34] Song, G., Han, J., & Guo, R. (2007). Synthesis of polyaniline/NiO nanobelts by a self-assembly process. Synthetic Metals, 157, 170–175. DOI: 10.1016/j.synthmet.2006.12.007. http://dx.doi.org/10.1016/j.synthmet.2006.12.00710.1016/j.synthmet.2006.12.007Search in Google Scholar
[35] Stejskal, J. (2001). Colloidal dispersions of conducting polymers. Journal of Polymer Materials, 18, 225–258. Search in Google Scholar
[36] Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and Applied Chemistry, 74, 857–867. DOI: 0.1351/pac200274050857. http://dx.doi.org/10.1351/pac20027405085710.1351/pac200274050857Search in Google Scholar
[37] Stejskal, J., Sapurina, I., Prokeš, J., & Zemek, J. (1999a). In-situ polymerized polyaniline films. Synthetic Metals, 105, 195–202. DOI: 10.1016/S0379-6779(99)00105-8. http://dx.doi.org/10.1016/S0379-6779(99)00105-810.1016/S0379-6779(99)00105-8Search in Google Scholar
[38] Stejskal, J., Sapurina, I., Trchová, M., & Konyushenko, E. N. (2008). Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules, 41, 3530–3536. DOI: 10.1021/ma702601q. http://dx.doi.org/10.1021/ma702601q10.1021/ma702601qSearch in Google Scholar
[39] Stejskal, J., Sapurina, I., Trchová, M., Konyushenko, E. N., & Holler, P. (2006). The genesis of polyaniline nanotubes. Polymer, 47, 8253–8262. DOI: 10.1016/j.polymer.2006.10.007. http://dx.doi.org/10.1016/j.polymer.2006.10.00710.1016/j.polymer.2006.10.007Search in Google Scholar
[40] Stejskal, J., Špírková, M., Riede, A., Helmstedt, M., Mokreva, P., & Prokeš, J. (1999b). Polyaniline dispersions 8. The control of particle morphology. Polymer, 40, 2487–2492. DOI: 10.1016/S0032-3861(98)00478-9. http://dx.doi.org/10.1016/S0032-3861(98)00478-910.1016/S0032-3861(98)00478-9Search in Google Scholar
[41] Sun, Q., & Deng, Y. (2008). The unique role of DL-tartaric acid in determining the morphology of polyaniline nanostructures during an interfacial oxidation polymerization. Materials Letters, 62, 1831–1834. DOI: 10.1016/j.matlet.2007.10.038. http://dx.doi.org/10.1016/j.matlet.2007.10.03810.1016/j.matlet.2007.10.038Search in Google Scholar
[42] Surwade, S. P., Dua, V., Manohar, N., Manohar, S. K., Beck, E., & Ferraris, J. P. (2009). Oligoaniline intermediates in the aniline-peroxydisulfate system. Synthetic Metals, 159, 445–455. DOI: 10.1016/j.synthmet.2008.11.002. http://dx.doi.org/10.1016/j.synthmet.2008.11.00210.1016/j.synthmet.2008.11.002Search in Google Scholar
[43] Tran, H. D., Wang, Y., D’Arcy, J. M., & Kaner, R. B. (2008). Toward an understanding of the formation of conducting polymer nanofibers. ACS Nano, 2, 1841–1848. DOI: 10.1021/nn800272z. http://dx.doi.org/10.1021/nn800272z10.1021/nn800272zSearch in Google Scholar PubMed
[44] Trchová, M., Šeděnková, I., Konyushenko, E. N., Stejskal, J., Holler, P., Ćirić-Marjanović, G. (2006). Evolution of polyaniline nanotubes: The oxidation of aniline in water. Journal of Physical Chemistry B, 110, 9461–9468. DOI: 10.1021/jp057528g. http://dx.doi.org/10.1021/jp057528g10.1021/jp057528gSearch in Google Scholar
[45] Venancio, E. C., Wang, P.-C., Toledo, O. Y., & MacDiarmid, A. G. (2007). First preparation of optical quality films of nano/micro hollow spheres of polymers of aniline. Synthetic Metals, 157, 758–763. DOI: 10.1016/j.synthmet.2007.08.006. http://dx.doi.org/10.1016/j.synthmet.2007.08.00610.1016/j.synthmet.2007.08.006Search in Google Scholar
[46] Wang, X., Liu, N., Yan, X., Zhang, W., & Wei, Y. (2005). Alkaliguided synthesis of polyaniline hollow microspheres. Chemistry Letters, 34, 42–43. DOI: 10.1246/cl.2005.42. http://dx.doi.org/10.1246/cl.2005.4210.1246/cl.2005.42Search in Google Scholar
[47] Wang, Y., & Jing, X. (2008). Formation of polyaniline nanofibers: A morphological study. Journal of Physical Chemistry B, 112, 1157–1162. DOI: 10.1021/jp076112v. http://dx.doi.org/10.1021/jp076112v10.1021/jp076112vSearch in Google Scholar
[48] Wang, Y., Jing, X., & Kong, J. (2007). Polyaniline nanofibers prepared with hydrogen peroxide as oxidant. Synthetic Metals, 157, 269–275. DOI: 10.1016/j.synthmet.2007.03.007. http://dx.doi.org/10.1016/j.synthmet.2007.03.00710.1016/j.synthmet.2007.03.007Search in Google Scholar
[49] Wei, Z., & Wan, M. (2002). Hollow microspheres of polyaniline synthesized with an aniline emulsion template. Advanced Materials, 14, 1314–1317. DOI: 10.1002/1521-4095(20020916) 14:18〈1314::AID-ADMA1314〉3.0.CO;2-9. http://dx.doi.org/10.1002/1521-4095(20020916)14:18<1314::AID-ADMA1314>3.0.CO;2-910.1002/1521-4095(20020916)14:18<1314::AID-ADMA1314>3.0.CO;2-9Search in Google Scholar
[50] Wu, J., Tang, Q., Li, Q., & Lin, J. (2008). Self-assembly growth of oriented polyaniline arrays: A morphology and structure study. Polymer, 49, 5262–5267. DOI: 10.1016/j.polymer.2008. 09.044. http://dx.doi.org/10.1016/j.polymer.2008.09.04410.1016/j.polymer.2008.09.044Search in Google Scholar
[51] Yang, Y., & Wan, M. (2001). Microtubules of polypyrrole synthesized by an electrochemical template-free method. Journal of Materials Chemistry, 11, 2022–2027. DOI: 10.1039/b102091i. http://dx.doi.org/10.1039/b102091i10.1039/b102091iSearch in Google Scholar
[52] Zhang, L., Peng, H., Hsu, C. F., Kilmartin, P. A., & Travas-Sejdic, J. (2007a). Self-assembled polyaniline nanotubes grown from a polymeric acid solution. Nanotechnology, 18, 115607. DOI: 10.1088/0957-4484/18/11/115607. http://dx.doi.org/10.1088/0957-4484/18/11/11560710.1088/0957-4484/18/11/115607Search in Google Scholar
[53] Zhang, L., Peng, H., Kilmartin, P. A., Soeller, C., & Travas-Sejdic, J. (2007b). Polymeric acid doped polyaniline nanotubes for oligonucleotide sensors. Electroanalysis, 19, 870–875. DOI: 10.1002/elan.200603790. http://dx.doi.org/10.1002/elan.20060379010.1002/elan.200603790Search in Google Scholar
[54] Zhang, L., Peng, H., Zujovic, Z. D., Kilmartin, P. A., & Travas-Sejdic, J. (2007c). Characterization of polyaniline nanotubes formed in the presence of amino acids. Macromolecular Chemistry and Physics, 208, 1210–1217. DOI: 10.1002/macp.200700013. http://dx.doi.org/10.1002/macp.20070001310.1002/macp.200700013Search in Google Scholar
[55] Zhang, L., Wan, M., & Wei, Y. (2006). Nanoscaled polyaniline fibers prepared by ferric chloride as an oxidant. Macromolecular Rapid Communications, 27, 366–371. DOI: 10.1002/marc.200500760. http://dx.doi.org/10.1002/marc.20050076010.1002/marc.200500760Search in Google Scholar
[56] Zhang, Z., Wei, Z., & Wan, M. (2002). Nanostructures of polyaniline doped with inorganic acids. Macromolecules, 35, 5937–5942. DOI: 10.1021/ma020199v. http://dx.doi.org/10.1021/ma020199v10.1021/ma020199vSearch in Google Scholar
[57] Zhang, Z., Wei, Z., Zhang, L., & Wan, M. (2005). Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids. Acta Materialia, 53, 1373–1379. DOI: 10.1016/j.actamat.2004.11.030. http://dx.doi.org/10.1016/j.actamat.2004.11.03010.1016/j.actamat.2004.11.030Search in Google Scholar
[58] Zhou, C., Han, J., Song, G., & Guo, R. (2008). Fabrication of polyaniline with hierarchical structures in alkaline solution. European Polymer Journal, 44, 2850–2858. DOI: 10.1016/j.eurpolymj.2008.01.025. http://dx.doi.org/10.1016/j.eurpolymj.2008.01.02510.1016/j.eurpolymj.2008.01.025Search in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Immobilization of urease in poly(1-vinyl imidazole)/poly(acrylic acid) network
- Anodic reactions of sulphate in molten salts
- Fuels obtained by thermal cracking of individual and mixed polymers
- Synthesis, structure, and solvent-extraction properties of tridentate oxime ligands and their cobalt(II), nickel(II), copper(II), zinc(II) complexes
- Properties of a poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane
- Influence of tungsten sources on the synthesis and properties of ammonium dioxothiotungstate
- A Raman spectroscopy study on differently deposited DLC layers in pulse arc system
- 1,7′-dimethyl-2′-propyl-1H,3′H-2,5′-bibenzo[d]imidazole as a corrosion inhibitor of mild steel in 1 M HCl
- The role of acidity profile in the nanotubular growth of polyaniline
- Direct sulfenylation of acetone with benzothiazolesulfenamides to benzothiazolylthio-substituted alkylaminopropene: synthesis and application
- Substituted pyridopyrimidinones. Part 5. Behavior of 2-hydroxy-4-oxo-4H-pyrido[1,2-α]pyrimidine-3-carbaldehyde in nucleophilic condensation reactions
- Lidocaine hydrochloride preparations with ionic and non-ionic polymers assessed at standard and increased skin surface temperatures
- Phase separation in non-ionic surfactant Triton X-100 solutions in the presence of phenol
- Phase formation in sodium dodecylsulfate solutions in the presence of salicylic acid for preconcentration purposes
- Numerical properties of equations involving high-order derivatives of pressure with respect to volume
- Synthesis and characterization of conducting copolymer of (N 1,N 3-bis(thiophene-3-ylmethylene)benzene-1,3-diamine-co-3,4-ethylenedioxythiophene)
- Intercalation of non-aromatic heterocyclic amines into layered zirconium glycine-N,N-dimethylphosphonate
- Kinetics of catalytic Meerwein-Ponndorf-Verley reduction of aldehydes and ketones using boron triethoxide
Articles in the same Issue
- Immobilization of urease in poly(1-vinyl imidazole)/poly(acrylic acid) network
- Anodic reactions of sulphate in molten salts
- Fuels obtained by thermal cracking of individual and mixed polymers
- Synthesis, structure, and solvent-extraction properties of tridentate oxime ligands and their cobalt(II), nickel(II), copper(II), zinc(II) complexes
- Properties of a poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane
- Influence of tungsten sources on the synthesis and properties of ammonium dioxothiotungstate
- A Raman spectroscopy study on differently deposited DLC layers in pulse arc system
- 1,7′-dimethyl-2′-propyl-1H,3′H-2,5′-bibenzo[d]imidazole as a corrosion inhibitor of mild steel in 1 M HCl
- The role of acidity profile in the nanotubular growth of polyaniline
- Direct sulfenylation of acetone with benzothiazolesulfenamides to benzothiazolylthio-substituted alkylaminopropene: synthesis and application
- Substituted pyridopyrimidinones. Part 5. Behavior of 2-hydroxy-4-oxo-4H-pyrido[1,2-α]pyrimidine-3-carbaldehyde in nucleophilic condensation reactions
- Lidocaine hydrochloride preparations with ionic and non-ionic polymers assessed at standard and increased skin surface temperatures
- Phase separation in non-ionic surfactant Triton X-100 solutions in the presence of phenol
- Phase formation in sodium dodecylsulfate solutions in the presence of salicylic acid for preconcentration purposes
- Numerical properties of equations involving high-order derivatives of pressure with respect to volume
- Synthesis and characterization of conducting copolymer of (N 1,N 3-bis(thiophene-3-ylmethylene)benzene-1,3-diamine-co-3,4-ethylenedioxythiophene)
- Intercalation of non-aromatic heterocyclic amines into layered zirconium glycine-N,N-dimethylphosphonate
- Kinetics of catalytic Meerwein-Ponndorf-Verley reduction of aldehydes and ketones using boron triethoxide