Startseite The role of acidity profile in the nanotubular growth of polyaniline
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The role of acidity profile in the nanotubular growth of polyaniline

  • Elena Konyushenko EMAIL logo , Miroslava Trchová , Jaroslav Stejskal und Irina Sapurina
Veröffentlicht/Copyright: 28. November 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Conditions of polyaniline (PANI) nanotubes preparation were analyzed. Aniline was oxidized with ammonium peroxydisulfate in 0.4 M acetic acid. There are two subsequent oxidation steps and the products were collected after each of them. At pH > 3, neutral aniline molecules are oxidized to non-conducting aniline oligomers. These produce templates for the subsequent growth of PANI nanotubes, which takes place preferably at pH 2–3. At pH < 2, granular morphology of the conducting PANI is obtained. High final acidity of the medium should be avoided in the preparation of nanotubes, e.g., by reducing the amount of sulfuric acid which is a by-product. Reduction of the peroxydisulfate-to-aniline mole ratio was tested for this purpose in the present study. Lowering of the reaction temperature from 20°C to −4°C had a positive effect on the formation of nanotubes.

[1] Ayad, M. M., & Shenashin, M. A. (2004). Polyaniline film deposition from the oxidative polymerization of aniline using K2Cr2O7. European Polymer Journal, 40, 197–202. DOI: 10.1016/j.eurpolymj.2003.09.002. http://dx.doi.org/10.1016/j.eurpolymj.2003.09.00210.1016/j.eurpolymj.2003.09.002Suche in Google Scholar

[2] Cai, Z., & Martin, C. R. (1989). Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities. Journal of the American Chemical Society, 111, 4138–4139. DOI: 10.1021/ja00193a077. http://dx.doi.org/10.1021/ja00193a07710.1021/ja00193a077Suche in Google Scholar

[3] Chattopadhyay, D., Banerjee, S., Chakravorty, D., & Mandal, B. M. (1998). Ethyl(hydroxyethyl)cellulose stabilized polyaniline dispersions and destabilized nanoparticles therefrom. Langmuir, 14, 1544–1547. DOI: 10.1021/la970936u. http://dx.doi.org/10.1021/la970936u10.1021/la970936uSuche in Google Scholar

[4] Chiou, N.-R., & Epstein, A. J. (2005). Polyaniline nanofibers prepared by dilute polymerization. Advanced Materials, 17, 1679–1683. DOI: 10.1002/adma.200401000. http://dx.doi.org/10.1002/adma.20040100010.1002/adma.200401000Suche in Google Scholar

[5] Chiou, N.-R., Lee, L. J., & Epstein, A. J. (2007). Self-assembled polyaniline nanofibers/nanotubes. Chemistry of Materials, 19, 3589–3591. DOI: 10.1021/cm070847v. http://dx.doi.org/10.1021/cm070847v10.1021/cm070847vSuche in Google Scholar

[6] Ćirić-Marjanović, G., Dragičević, L., Milojević, M., Mojović, M., Mentus, S., Dojčinović, B., Marjanović, B., & Stejskal, J. (2009). Synthesis and characterization of self-assembled polyaniline nanotubes/silica nanocomposites. Journal of Physical Chemistry B, 113, 7116–7127. DOI: 10.1021/jp900096b. http://dx.doi.org/10.1021/jp900096b10.1021/jp900096bSuche in Google Scholar PubMed

[7] Cruz-Silva, R., Ruiz-Flores, C., Arizmendi, L., Romero-García, J., Arias-Marin, E., Moggio, I., Castillon, F. F., & Farias, M. H. (2006). Enzymatic synthesis of colloidal polyaniline particles. Polymer, 47, 1563–1568. DOI: 10.1016/j.polymer.2005.12.082. http://dx.doi.org/10.1016/j.polymer.2005.12.08210.1016/j.polymer.2005.12.082Suche in Google Scholar

[8] Dauginet-De Pra, L., & Demoustier-Champagne, S. (2005). A comparative study of the electronic structure and spectroelectrochemical properties of electrosynthesized polyaniline films and nanotubes. Thin Solid Films, 479, 321–328. DOI: 10.1016/j.tsf.2004.12.007. http://dx.doi.org/10.1016/j.tsf.2004.12.00710.1016/j.tsf.2004.12.007Suche in Google Scholar

[9] Dispenza, C., Lo Presti, C., Belfiore, C., Spadaro, G., & Piazza, S. (2006). Electrically conductive hydrogel composites made of polyaniline nanoparticles and poly(N-vinyl-2-pyrrolidone). Polymer, 47, 961–971. DOI: 10.1016/j.polymer.2005.12.071. http://dx.doi.org/10.1016/j.polymer.2005.12.07110.1016/j.polymer.2005.12.071Suche in Google Scholar

[10] Frederikse, H. P. R., & Lide, D. R. (1995). (Eds.) CRC Handbook of chemistry and physics (76th ed., pp. 8–49). New York, NY, USA: CRC Press. Suche in Google Scholar

[11] Fu, Y., & Elsenbaumer, R. L. (1994). Thermochemistry and kinetics of chemical polymerization of aniline determined by solution calorimetry. Chemistry of Materials, 6, 671–677. DOI: 10.1021/cm00041a018. http://dx.doi.org/10.1021/cm00041a01810.1021/cm00041a018Suche in Google Scholar

[12] Gospodinova, N., Mokreva, P., & Terlemezyan, L. (1993). Chemical oxidative polymerization of aniline in aqueous medium without added acids. Polymer, 34, 2438–2439. DOI: 10.1016/0032-3861(93)90835-X. http://dx.doi.org/10.1016/0032-3861(93)90835-X10.1016/0032-3861(93)90835-XSuche in Google Scholar

[13] Han, J., Song, G., & Guo, R. (2006). A facile solution route for polymeric hollow spheres with controllable size. Advanced Materials, 18, 3140–3144. DOI: 10.1002/adma.200600282. http://dx.doi.org/10.1002/adma.20060028210.1002/adma.200600282Suche in Google Scholar

[14] Huang, J. (2006). Syntheses and applications of conducting polymer polyaniline nanofibers. Pure and Applied Chemistry, 78, 15–27. DOI: 10.1351/pac200678010015. http://dx.doi.org/10.1351/pac20067801001510.1351/pac200678010015Suche in Google Scholar

[15] Huang, J., & Wan, M. X. (1999). In situ doping polymerization of polyaniline microtubules in the presence of β-naphthalenesulfonic acid. Journal of Polymer Science, Part A: Polymer Chemistry, 37, 151–157. http://dx.doi.org/10.1002/(SICI)1099-0518(19990115)37:2<151::AID-POLA5>3.0.CO;2-R10.1002/(SICI)1099-0518(19990115)37:2<151::AID-POLA5>3.0.CO;2-RSuche in Google Scholar

[16] Huang, K., Meng, X.-H., & Wan, M. (2006). Polyaniline hollow microspheres constructed with their own self-assembled nanofibers. Journal of Applied Polymer Science, 100, 3050–3054. DOI: 10.1002/app.23704. http://dx.doi.org/10.1002/app.2370410.1002/app.23704Suche in Google Scholar

[17] Huang, K., & Wan, M. (2002). Self-assembled polyaniline nanostructures with photoisomerization function. Chemistry of Materials, 14, 3486–3492. DOI: 10.1021/cm020206u. http://dx.doi.org/10.1021/cm020206u10.1021/cm020206uSuche in Google Scholar

[18] Huang, K., Wan, M., Long, Y., Chen, Z., & Wei, Y. (2005). Multi-functional polypyrrole nanofibers via a functional dopant-introduced process. Synthetic Metals, 155, 495–500. DOI: 10.1016/j.synthmet.2005.06.013. http://dx.doi.org/10.1016/j.synthmet.2005.06.01310.1016/j.synthmet.2005.06.013Suche in Google Scholar

[19] Huang, Y. F., & Lin, C. W. (2009). Introduction of methanol in the formation of polyaniline nanotubes in an acid-free aqueous solution throuhg a self-curling process. Polymer, 50, 775–782. DOI: 10.1016/j.polymer.2008.12.016. http://dx.doi.org/10.1016/j.polymer.2008.12.01610.1016/j.polymer.2008.12.016Suche in Google Scholar

[20] Jing, X., Wang, Y., Wu, D., She, L., & Guo, Y. (2006). Polyaniline nanofibers prepared with ultrasonic irradiation. Journal of Polymer Science, Part A: Polymer Chemistry, 44, 1014–1019. DOI: 10.1002/pola.21217. http://dx.doi.org/10.1002/pola.2121710.1002/pola.21217Suche in Google Scholar

[21] Kan, J., Zhang, S., & Jing, G. (2006). Effect of ethanol on chemically synthesized polyaniline nanothread. Journal of Applied Polymer Science, 99, 1848–1853. DOI: 10.1002/app.22345. http://dx.doi.org/10.1002/app.2234510.1002/app.22345Suche in Google Scholar

[22] Konyushenko, E. N., Stejskal, J., Šeděnková, M., Sapurina, I., Cieslar, M., & Prokeš, J. (2006). Polyaniline nanotubes: conditions of formation. Polymer International, 55, 31–39. DOI: 10.1002/pi.1899. http://dx.doi.org/10.1002/pi.189910.1002/pi.1899Suche in Google Scholar

[23] Laslau, C., Zujovic, Z. D., Zhang, L., Bowmaker, G. A., & Travas-Sejdic, J. (2009). Morphological evolution of selfassembled polyaniline nanostructures obtained by pH-stat chemical oxidation. Chemistry of Materials, 21, 954–962. DOI: 10.1021/cm803447a. http://dx.doi.org/10.1021/cm803447a10.1021/cm803447aSuche in Google Scholar

[24] Li, D., & Kaner, R. B. (2006). Shape and aggregation control of nanoparticles: Not shaken, not stirred. Journal of the American Chemical Society, 128, 968–975. DOI: 10.1021/ja056609n. http://dx.doi.org/10.1021/ja056609n10.1021/ja056609nSuche in Google Scholar

[25] Li, J. S., Shen, L. J., Gu, D. W., Yuan, P. F., Cui, X. B., & Yang, N. R. (2006). Optimum conditions for the preparation of polyaniline films under very high pressure. Reactive and Functional Polymers, 66, 1319–1326. DOI: 10.1016/j.reactfunctpolym.2006.03.014. http://dx.doi.org/10.1016/j.reactfunctpolym.2006.03.01410.1016/j.reactfunctpolym.2006.03.014Suche in Google Scholar

[26] Long, Y., Zhang, L., Ma, Y., Chen, Z., Wang, N., Zhang, Z., & Wan, M. (2003). Electrical conductivity of an individual polyaniline nanotube synthesized by a self-assembly method. Macromolecular Rapid Communications, 24, 938–942. DOI: 10.1002/marc.200300039. http://dx.doi.org/10.1002/marc.20030003910.1002/marc.200300039Suche in Google Scholar

[27] Lu, X., Mao, H., Chao, D., Zhang, W., & Wei, Y. (2006). Fabrication of polyaniline nanostructures under ultrasonic irradiation: From nanotubes to nanofibers. Macromolecular Chemistry and Physics, 207, 2142–2152. DOI: 10.1002/macp.200 600424. http://dx.doi.org/10.1002/macp.200600424Suche in Google Scholar

[28] Mazur, M., Tagowska, M., Pałys, B., & Jackowska, K. (2003). Template synthesis of polyaniline and poly(2-methoxyanil ine) nanotubes: comparison of the formation mechanisms. Electrochemistry Communications, 5, 403–407. DOI: 10.1016 /s1388-2481(03)00078-X. http://dx.doi.org/10.1016/S1388-2481(03)00078-X10.1016/S1388-2481(03)00078-XSuche in Google Scholar

[29] McCarthy, P. A., Huang, J., Yang, S.-C., & Wang, H.-L. (2002). Synthesis and characterization of water-soluble chiral conducting polymer nanocomposites. Langmuir, 18, 259–263. DOI: 10.1021/la0111093. http://dx.doi.org/10.1021/la011109310.1021/la0111093Suche in Google Scholar

[30] Park, M.-C., Sun, Q., & Deng, Y. (2007). Polyaniline microspheres consisting of highly crystallized nanorods. Macromolecular Rapid Communications, 28, 1237–1242. DOI: 10.1002/marc.200700066. http://dx.doi.org/10.1002/marc.20070006610.1002/marc.200700066Suche in Google Scholar

[31] Qiu, H., Wan, M., Matthews, B., & Dai, L. (2001). Conducting polyaniline nanotubes by template-free polymerization. Macromolecules, 34, 675–677. DOI: 10.1021/ma001525e. http://dx.doi.org/10.1021/ma001525e10.1021/ma001525eSuche in Google Scholar

[32] Sapurina, I., & Stejskal, J. (2008). The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International, 57, 1295–1325. DOI: 10.1002/pi.2476. http://dx.doi.org/10.1002/pi.247610.1002/pi.2476Suche in Google Scholar

[33] Šeděnková, I., Trchová, M., Blinova, N. V., & Stejskal, J. (2006). In-situ polymerized polyaniline films. Preparation in solutions of hydrochloric, sulfuric, or phosphoric acid. Thin Solid Films, 515, 1640–1646. DOI: 10.1016/j.tsf.2006.05.038. http://dx.doi.org/10.1016/j.tsf.2006.05.03810.1016/j.tsf.2006.05.038Suche in Google Scholar

[34] Song, G., Han, J., & Guo, R. (2007). Synthesis of polyaniline/NiO nanobelts by a self-assembly process. Synthetic Metals, 157, 170–175. DOI: 10.1016/j.synthmet.2006.12.007. http://dx.doi.org/10.1016/j.synthmet.2006.12.00710.1016/j.synthmet.2006.12.007Suche in Google Scholar

[35] Stejskal, J. (2001). Colloidal dispersions of conducting polymers. Journal of Polymer Materials, 18, 225–258. Suche in Google Scholar

[36] Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and Applied Chemistry, 74, 857–867. DOI: 0.1351/pac200274050857. http://dx.doi.org/10.1351/pac20027405085710.1351/pac200274050857Suche in Google Scholar

[37] Stejskal, J., Sapurina, I., Prokeš, J., & Zemek, J. (1999a). In-situ polymerized polyaniline films. Synthetic Metals, 105, 195–202. DOI: 10.1016/S0379-6779(99)00105-8. http://dx.doi.org/10.1016/S0379-6779(99)00105-810.1016/S0379-6779(99)00105-8Suche in Google Scholar

[38] Stejskal, J., Sapurina, I., Trchová, M., & Konyushenko, E. N. (2008). Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules, 41, 3530–3536. DOI: 10.1021/ma702601q. http://dx.doi.org/10.1021/ma702601q10.1021/ma702601qSuche in Google Scholar

[39] Stejskal, J., Sapurina, I., Trchová, M., Konyushenko, E. N., & Holler, P. (2006). The genesis of polyaniline nanotubes. Polymer, 47, 8253–8262. DOI: 10.1016/j.polymer.2006.10.007. http://dx.doi.org/10.1016/j.polymer.2006.10.00710.1016/j.polymer.2006.10.007Suche in Google Scholar

[40] Stejskal, J., Špírková, M., Riede, A., Helmstedt, M., Mokreva, P., & Prokeš, J. (1999b). Polyaniline dispersions 8. The control of particle morphology. Polymer, 40, 2487–2492. DOI: 10.1016/S0032-3861(98)00478-9. http://dx.doi.org/10.1016/S0032-3861(98)00478-910.1016/S0032-3861(98)00478-9Suche in Google Scholar

[41] Sun, Q., & Deng, Y. (2008). The unique role of DL-tartaric acid in determining the morphology of polyaniline nanostructures during an interfacial oxidation polymerization. Materials Letters, 62, 1831–1834. DOI: 10.1016/j.matlet.2007.10.038. http://dx.doi.org/10.1016/j.matlet.2007.10.03810.1016/j.matlet.2007.10.038Suche in Google Scholar

[42] Surwade, S. P., Dua, V., Manohar, N., Manohar, S. K., Beck, E., & Ferraris, J. P. (2009). Oligoaniline intermediates in the aniline-peroxydisulfate system. Synthetic Metals, 159, 445–455. DOI: 10.1016/j.synthmet.2008.11.002. http://dx.doi.org/10.1016/j.synthmet.2008.11.00210.1016/j.synthmet.2008.11.002Suche in Google Scholar

[43] Tran, H. D., Wang, Y., D’Arcy, J. M., & Kaner, R. B. (2008). Toward an understanding of the formation of conducting polymer nanofibers. ACS Nano, 2, 1841–1848. DOI: 10.1021/nn800272z. http://dx.doi.org/10.1021/nn800272z10.1021/nn800272zSuche in Google Scholar PubMed

[44] Trchová, M., Šeděnková, I., Konyushenko, E. N., Stejskal, J., Holler, P., Ćirić-Marjanović, G. (2006). Evolution of polyaniline nanotubes: The oxidation of aniline in water. Journal of Physical Chemistry B, 110, 9461–9468. DOI: 10.1021/jp057528g. http://dx.doi.org/10.1021/jp057528g10.1021/jp057528gSuche in Google Scholar

[45] Venancio, E. C., Wang, P.-C., Toledo, O. Y., & MacDiarmid, A. G. (2007). First preparation of optical quality films of nano/micro hollow spheres of polymers of aniline. Synthetic Metals, 157, 758–763. DOI: 10.1016/j.synthmet.2007.08.006. http://dx.doi.org/10.1016/j.synthmet.2007.08.00610.1016/j.synthmet.2007.08.006Suche in Google Scholar

[46] Wang, X., Liu, N., Yan, X., Zhang, W., & Wei, Y. (2005). Alkaliguided synthesis of polyaniline hollow microspheres. Chemistry Letters, 34, 42–43. DOI: 10.1246/cl.2005.42. http://dx.doi.org/10.1246/cl.2005.4210.1246/cl.2005.42Suche in Google Scholar

[47] Wang, Y., & Jing, X. (2008). Formation of polyaniline nanofibers: A morphological study. Journal of Physical Chemistry B, 112, 1157–1162. DOI: 10.1021/jp076112v. http://dx.doi.org/10.1021/jp076112v10.1021/jp076112vSuche in Google Scholar

[48] Wang, Y., Jing, X., & Kong, J. (2007). Polyaniline nanofibers prepared with hydrogen peroxide as oxidant. Synthetic Metals, 157, 269–275. DOI: 10.1016/j.synthmet.2007.03.007. http://dx.doi.org/10.1016/j.synthmet.2007.03.00710.1016/j.synthmet.2007.03.007Suche in Google Scholar

[49] Wei, Z., & Wan, M. (2002). Hollow microspheres of polyaniline synthesized with an aniline emulsion template. Advanced Materials, 14, 1314–1317. DOI: 10.1002/1521-4095(20020916) 14:18〈1314::AID-ADMA1314〉3.0.CO;2-9. http://dx.doi.org/10.1002/1521-4095(20020916)14:18<1314::AID-ADMA1314>3.0.CO;2-910.1002/1521-4095(20020916)14:18<1314::AID-ADMA1314>3.0.CO;2-9Suche in Google Scholar

[50] Wu, J., Tang, Q., Li, Q., & Lin, J. (2008). Self-assembly growth of oriented polyaniline arrays: A morphology and structure study. Polymer, 49, 5262–5267. DOI: 10.1016/j.polymer.2008. 09.044. http://dx.doi.org/10.1016/j.polymer.2008.09.04410.1016/j.polymer.2008.09.044Suche in Google Scholar

[51] Yang, Y., & Wan, M. (2001). Microtubules of polypyrrole synthesized by an electrochemical template-free method. Journal of Materials Chemistry, 11, 2022–2027. DOI: 10.1039/b102091i. http://dx.doi.org/10.1039/b102091i10.1039/b102091iSuche in Google Scholar

[52] Zhang, L., Peng, H., Hsu, C. F., Kilmartin, P. A., & Travas-Sejdic, J. (2007a). Self-assembled polyaniline nanotubes grown from a polymeric acid solution. Nanotechnology, 18, 115607. DOI: 10.1088/0957-4484/18/11/115607. http://dx.doi.org/10.1088/0957-4484/18/11/11560710.1088/0957-4484/18/11/115607Suche in Google Scholar

[53] Zhang, L., Peng, H., Kilmartin, P. A., Soeller, C., & Travas-Sejdic, J. (2007b). Polymeric acid doped polyaniline nanotubes for oligonucleotide sensors. Electroanalysis, 19, 870–875. DOI: 10.1002/elan.200603790. http://dx.doi.org/10.1002/elan.20060379010.1002/elan.200603790Suche in Google Scholar

[54] Zhang, L., Peng, H., Zujovic, Z. D., Kilmartin, P. A., & Travas-Sejdic, J. (2007c). Characterization of polyaniline nanotubes formed in the presence of amino acids. Macromolecular Chemistry and Physics, 208, 1210–1217. DOI: 10.1002/macp.200700013. http://dx.doi.org/10.1002/macp.20070001310.1002/macp.200700013Suche in Google Scholar

[55] Zhang, L., Wan, M., & Wei, Y. (2006). Nanoscaled polyaniline fibers prepared by ferric chloride as an oxidant. Macromolecular Rapid Communications, 27, 366–371. DOI: 10.1002/marc.200500760. http://dx.doi.org/10.1002/marc.20050076010.1002/marc.200500760Suche in Google Scholar

[56] Zhang, Z., Wei, Z., & Wan, M. (2002). Nanostructures of polyaniline doped with inorganic acids. Macromolecules, 35, 5937–5942. DOI: 10.1021/ma020199v. http://dx.doi.org/10.1021/ma020199v10.1021/ma020199vSuche in Google Scholar

[57] Zhang, Z., Wei, Z., Zhang, L., & Wan, M. (2005). Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids. Acta Materialia, 53, 1373–1379. DOI: 10.1016/j.actamat.2004.11.030. http://dx.doi.org/10.1016/j.actamat.2004.11.03010.1016/j.actamat.2004.11.030Suche in Google Scholar

[58] Zhou, C., Han, J., Song, G., & Guo, R. (2008). Fabrication of polyaniline with hierarchical structures in alkaline solution. European Polymer Journal, 44, 2850–2858. DOI: 10.1016/j.eurpolymj.2008.01.025. http://dx.doi.org/10.1016/j.eurpolymj.2008.01.02510.1016/j.eurpolymj.2008.01.025Suche in Google Scholar

Published Online: 2009-11-28
Published in Print: 2010-2-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Immobilization of urease in poly(1-vinyl imidazole)/poly(acrylic acid) network
  2. Anodic reactions of sulphate in molten salts
  3. Fuels obtained by thermal cracking of individual and mixed polymers
  4. Synthesis, structure, and solvent-extraction properties of tridentate oxime ligands and their cobalt(II), nickel(II), copper(II), zinc(II) complexes
  5. Properties of a poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane
  6. Influence of tungsten sources on the synthesis and properties of ammonium dioxothiotungstate
  7. A Raman spectroscopy study on differently deposited DLC layers in pulse arc system
  8. 1,7′-dimethyl-2′-propyl-1H,3′H-2,5′-bibenzo[d]imidazole as a corrosion inhibitor of mild steel in 1 M HCl
  9. The role of acidity profile in the nanotubular growth of polyaniline
  10. Direct sulfenylation of acetone with benzothiazolesulfenamides to benzothiazolylthio-substituted alkylaminopropene: synthesis and application
  11. Substituted pyridopyrimidinones. Part 5. Behavior of 2-hydroxy-4-oxo-4H-pyrido[1,2-α]pyrimidine-3-carbaldehyde in nucleophilic condensation reactions
  12. Lidocaine hydrochloride preparations with ionic and non-ionic polymers assessed at standard and increased skin surface temperatures
  13. Phase separation in non-ionic surfactant Triton X-100 solutions in the presence of phenol
  14. Phase formation in sodium dodecylsulfate solutions in the presence of salicylic acid for preconcentration purposes
  15. Numerical properties of equations involving high-order derivatives of pressure with respect to volume
  16. Synthesis and characterization of conducting copolymer of (N 1,N 3-bis(thiophene-3-ylmethylene)benzene-1,3-diamine-co-3,4-ethylenedioxythiophene)
  17. Intercalation of non-aromatic heterocyclic amines into layered zirconium glycine-N,N-dimethylphosphonate
  18. Kinetics of catalytic Meerwein-Ponndorf-Verley reduction of aldehydes and ketones using boron triethoxide
Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0101-z/html
Button zum nach oben scrollen