Abstract
The occurrence of surfactant-rich phases in aqueous sodium dodecylsulfate solutions in the presence of salicylic acid was investigated. The effect of acidity, electrolyte and salicylic acid concentrations on the parameters of phase formation were studied. Optimal conditions for microcomponent preconcentration were found. The features of solubilization efficiency changes of organic substances depending on their charge and hydrophobicity were established. High efficacy of preconcentration of strongly hydrophobic, positively charged substrates by low-temperature surfactant-rich phases obtained in the sodium dodecylsulfate-salicylic acid-sodium chloride ternary system is shown.
[1] Alam, Md. S., & Kabir-ud-Din (2008). Investigation of the role of electrolytes and non-electrolytes on the cloud point and dye solubilization in antidepressant drug imipramine hydrochloride solutions. Colloids and Surfaces B: Biointerfaces, 65, 74–79. DOI: 10.1016/j.colsurfb.2008.02.021. http://dx.doi.org/10.1016/j.colsurfb.2008.02.02110.1016/j.colsurfb.2008.02.021Search in Google Scholar
[2] Aranda, P. R., Gil, R. A., Moyano, S., De Vito, I. E., & Martinez, L. D. (2008). Cloud point extraction of mercury with PONPE 7.5 prior to its determination in biological samples by ETAAS. Talanta, 75, 307–311. DOI: 10.1016/j.talanta.2007.11.012. http://dx.doi.org/10.1016/j.talanta.2007.11.01210.1016/j.talanta.2007.11.012Search in Google Scholar
[3] Benrraou, M., Bales, B. L., & Zana, R. (2003). Effect of the nature of the counterion on the properties of anionic surfactants. 1. Cmc, ionization degree at the cmc and aggregation number of micelles of sodium, cesium, tetramethylammonium, tetraethylammonium, tetrapropylammonium, and tetrabutylammonium dodecyl sulfates. Journal of Physical Chemistry B, 107, 13432–13440. DOI: 10.1021/jp021714u. http://dx.doi.org/10.1021/jp021714u10.1021/jp021714uSearch in Google Scholar
[4] Casero, I., Sicilia, D., Rubio, S., & Pérez-Bendito, D. (1999). An acid-induced phase cloud point separation approach using anionic surfactants for the extraction and preconcentration of organic compounds. Analytical Chemistry, 71, 4519–4526. DOI: 10.1021/ac990106g. http://dx.doi.org/10.1021/ac990106g10.1021/ac990106gSearch in Google Scholar
[5] Dan, A., Ghosh, S., & Moulik, S. P. (2008). The solution behavior of poly(vinylpyrrolidone): its clouding in salt solution, solvation by water and isopropanol, and interaction with sodium dodecyl sulfate. The Journal of Physical Chemistry B, 112, 3617–3624. DOI:10.1021/jp077733r. http://dx.doi.org/10.1021/jp077733r10.1021/jp077733rSearch in Google Scholar
[6] Donbrow, M., & Azaz, E. (1976). Solubilization of phenolic compounds in nonionic surface-active agents. II. Cloud point and phase changes in solubilization of phenol, cresols, xylenols and benzoic acid. Journal of Colloid and Interface Science, 57, 20–27. DOI: 10.1016/0021-9797(76)90170-3. http://dx.doi.org/10.1016/0021-9797(76)90170-310.1016/0021-9797(76)90170-3Search in Google Scholar
[7] Doroschuk, V. O., Kulichenko, S. A., & Lelyushok, S. O. (2005). The influence of substrate charge and molecular structure on interphase transfer in cloud point extraction systems. Journal of Colloid and Interface Science, 291, 251–255. DOI: 10.1016/j.jcis.2005.04.107. http://dx.doi.org/10.1016/j.jcis.2005.04.10710.1016/j.jcis.2005.04.107Search in Google Scholar PubMed
[8] Garrido, M., Di Nezio, M. S., Lista, A. G., Palomeque, M., & Fernández Band, B. S. (2004). Cloud — point extraction/preconcentration on-line flow injection method for mercury determination. Analytica Chimica Acta, 502, 173–177. DOI: 10.1016/j.aca.2003.09.070. http://dx.doi.org/10.1016/j.aca.2003.09.07010.1016/j.aca.2003.09.070Search in Google Scholar
[9] Goryacheva, I. Yu., Shtykov, S. N., Loginov, A. S., & Panteleeva, I. V. (2005). Preconcentration and fluorimetric determination of polycyclic aromatic hydrocarbons based on the acidinduced cloud-point extraction with sodium dodecylsulfate. Analytical & Bioanalytical Chemistry, 382, 1413–1418. DOI: 10.1007/s00216-005-3287-0. http://dx.doi.org/10.1007/s00216-005-3287-010.1007/s00216-005-3287-0Search in Google Scholar PubMed
[10] Hinze, W. L., & Pramauro, E. A. (1993). Critical review of surfactant-mediated phase separations (cloud point extractions): theory and applications. Critical Reviews in Analytical Chemistry, 24, 133–177. DOI: 10.1080/10408349308048821. http://dx.doi.org/10.1080/1040834930804882110.1080/10408349308048821Search in Google Scholar
[11] Jia, G., Li, L., Qiu, J., Wang, X., Zhu, W., Sun, Y., & Zhou, Z. (2007). Determination of carbaryl and its metabolite 1-naphthol in water samples by fluorescence spectrophotometer after anionic surfactant micelle-mediated extraction with sodium dodecylsulfate. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67, 460–464. DOI: 10.1016/j.saa.2006.08.003. http://dx.doi.org/10.1016/j.saa.2006.08.00310.1016/j.saa.2006.08.003Search in Google Scholar
[12] Kabir-ud-Din, Khatoon, S., & Naqvi, A. Z. (2008a). Nonelectrolyte-induced CP variation of TX-114+TBAB system. Acta Physico-Chimica Sinica, 24, 1180–1184. DOI: 10.1016/S1872-1508(08)60052-2. http://dx.doi.org/10.1016/S1872-1508(08)60052-210.1016/S1872-1508(08)60052-2Search in Google Scholar
[13] Kabir-ud-Din, Kumar, S., & Parveen, N. (2008b). The clouding phenomenon for anionic sodium dodecyl sulfate + quaternary bromides in polar nonaqueous-water-mixed solvents. Journal of Surfactants and Detergents, 11, 335–341. DOI: 10.1007/s11743-008-1087-1. http://dx.doi.org/10.1007/s11743-008-1087-110.1007/s11743-008-1087-1Search in Google Scholar
[14] Kalur, G. C., & Raghavan, S. R. (2005). Anionic wormlike micellar fluids that display cloud points: Rheology and phase behavior. The Journal of Physical Chemistry B, 109, 8599–8604. DOI: 10.1021/jp044102d. http://dx.doi.org/10.1021/jp044102d10.1021/jp044102dSearch in Google Scholar
[15] Kiran, K., Kumar, K. S., Prasad, B., Suvardhan, K., Lekkala, R. B., & Janardhanam, K. (2008). Speciation determination of chromium(III) and (VI) using preconcentration cloud point extraction with flame atomic absorption spectrometry (FAAS). Journal of Hazardous Materials, 150, 582–586. DOI: 10.1016/j.jhazmat.2007.05.007. http://dx.doi.org/10.1016/j.jhazmat.2007.05.00710.1016/j.jhazmat.2007.05.007Search in Google Scholar
[16] Koshy, L., Saiyad, A. H., & Rakshit, A. K. (1996). The effects of various foreign substances on the cloud point of Triton X 100 and Triton X 114. Colloid and Polymer Science, 274, 582–587. DOI: 10.1007/BF00655234. http://dx.doi.org/10.1007/BF0065523410.1007/BF00655234Search in Google Scholar
[17] Kulichenko, S. A., & Fesenko, S. A. (2002). Acidic-basic properties of the sulphophtaleine indicators in the macellar solutions of the sodium dodecylsulphate. Ukrainian Chemical Journal, 68, 100–104. Search in Google Scholar
[18] Kulichenko, S. A., Doroschuk, V. O., & Lelyushok, S. O. (2003). The cloud point extraction of copper(II) with monocarboxylic acids into non-ionic surfactant phase. Talanta, 59, 767–773. DOI: 10.1016/S0039-9140 (02)00617-3. http://dx.doi.org/10.1016/S0039-9140(02)00617-310.1016/S0039-9140(02)00617-3Search in Google Scholar
[19] Kulichenko, S. A., Doroshchuk, V. A., & Starova, V. S. (2008). Micellar phases based on sodium dodecylsulfate for preconcentration. Russian Journal of Applied Chemistry, 81, 1342–1347. DOI: 10.1134/S1070427208080053. http://dx.doi.org/10.1134/S107042720808005310.1134/S1070427208080053Search in Google Scholar
[20] Kumar, S., Naqvi, A. Z., & Kabir-ud-Din (2000). Micellar morphology in the presence of salts and organic additives. Langmuir, 16, 5252–5256. DOI: 10.1021/la991071i. http://dx.doi.org/10.1021/la991071i10.1021/la991071iSearch in Google Scholar
[21] Kumar, S., Sharma, D., Khan, Z. A., & Kabir-ud-Din (2002). Salt-induced cloud point in anionic surfactant solutions: Role of the headgroup and additives. Langmuir, 18, 4205–4209. DOI: 10.1021/la011343t. http://dx.doi.org/10.1021/la011343t10.1021/la011343tSearch in Google Scholar
[22] Li, J.-L., & Chen, B.-H. (2003). Equilibrium partition of polycyclic aromatic hydrocarbons in a cloud-point extraction process. Journal of Colloid and Interface Science, 263, 625–632. DOI: 10.1016/S0021-9797(03)00403-X. http://dx.doi.org/10.1016/S0021-9797(03)00403-X10.1016/S0021-9797(03)00403-XSearch in Google Scholar
[23] Liu, S., Tobias, R, McClure, S., Styba, G., Shi, Q., & Jackowski, G. (1997). Removal of endotoxin from recombinant protein preparations. Clinical Biochemistry, 30, 455–463. DOI: 10.1016/S0009-9120 (97)00049-0. http://dx.doi.org/10.1016/S0009-9120(97)00049-010.1016/S0009-9120(97)00049-0Search in Google Scholar
[24] Lopes, A. S., Garcia, J. S., Catharino, R. R., Santos, L. S., Eberlin, M. N., & Arruda, M. A. Z. (2007). Cloud point extraction applied to casein proteins of cow milk and their identification by mass spectrometry. Analytica Chimica Acta, 590, 166–172. DOI: 10.1016/j.aca.2007.03.043. http://dx.doi.org/10.1016/j.aca.2007.03.04310.1016/j.aca.2007.03.043Search in Google Scholar
[25] Madej, K. (2009). Microwave-assisted and cloud-point extraction in determination of drugs and other bioactive compounds. TrAC Trends in Analytical Chemistry, 28, 436–446. DOI: 10.1016/j.trac.2009.02.002. http://dx.doi.org/10.1016/j.trac.2009.02.00210.1016/j.trac.2009.02.002Search in Google Scholar
[26] Man, B. K.-W., Lam, M. H.-W., Lam, P. K. S., Wu, R. S. S., & Shaw, G. (2002). Cloud-point extraction and preconcentration of cyanobacterial toxins (microcystins) from natural waters using a cationic surfactant. Environmental Science & Technology, 36, 3985–3990. DOI: 10.1021/es020620v. http://dx.doi.org/10.1021/es020620v10.1021/es020620vSearch in Google Scholar
[27] Mata, J. P., Majhi, P. R., Kubota, O., Khanal, A., Nakashima, K., & Bahadur, P. (2008). Effect of phenol on the aggregation characteristics of an ethylene oxide-propylene oxide triblock copolymer P65 in aqueous solution. Journal of Colloid and Interface Science, 320, 275–282. DOI: 10.1016/j.jcis.2007.12.033. http://dx.doi.org/10.1016/j.jcis.2007.12.03310.1016/j.jcis.2007.12.033Search in Google Scholar
[28] Nakai, T., Murakami, Y., Sasaki, Y., & Tagashira, S. (2005). The ion-pair formation between dodecylsulfate and ammine-complexes of copper(II), nickel(II), zinc(II), palladium(II) and platinum(II), and the extraction behavior of the ammine-complexes by using sodium dodecylsulfate. Talanta, 66, 45–50. DOI: 10.1016/j.talanta.2004.09.023. http://dx.doi.org/10.1016/j.talanta.2004.09.02310.1016/j.talanta.2004.09.023Search in Google Scholar
[29] Nascentes, C. C., & Arruda, M. A. Z. (2003). Cloud point formation based on mixed micelles in the presence of electrolytes for cobalt extraction and preconcentration. Talanta, 61, 759–768. DOI: 10.1016/S0039-9140 (03)00367-9. http://dx.doi.org/10.1016/S0039-9140(03)00367-910.1016/S0039-9140(03)00367-9Search in Google Scholar
[30] Paleologos, E. K., Giannakopoulos, S. S., Zygoura, P. D., & Kontominas, M. G. (2006). Acid-induced phase separation of anionic surfactants for the extraction of 1,4-dichlorobenzene from honey prior to liquid chromatography. Journal of Agricultural and Food Chemistry, 54, 5236–5240. DOI: 10.1021/jf060273z. http://dx.doi.org/10.1021/jf060273z10.1021/jf060273zSearch in Google Scholar PubMed
[31] Quina, F. H., & Hinze, W. L. (1999). Surfactant-mediated cloud point extractions: an environmentally benign alternative separation approach. Industrial & Engineering Chemistry Research, 38, 4150–4168. DOI: 10.1021/ie980389n. http://dx.doi.org/10.1021/ie980389n10.1021/ie980389nSearch in Google Scholar
[32] Raghavan, S. R., Edlund, H., & Kaler, E. W. (2002). Cloudpoint phenomena in wormlike micellar systems containing cationic surfactant ant salt. Langmuir, 18, 1056–1064. DOI: 10.1021/la011148e. http://dx.doi.org/10.1021/la011148e10.1021/la011148eSearch in Google Scholar
[33] Savvin, S. B., Chernova, R. K., & Shtykov, S. N. (1991). Poverkhnostno-aktivnye veshchestva (Surfactants). Moscow, Russia: Nauka. Search in Google Scholar
[34] Sicilia, D., Rubio, S., & Pérez-Bendito, D. (2002). Evaluation of the factors affecting extraction of organic compounds based on the acid-induced phase cloud point approach. Analytica Chimica Acta, 460, 13–22. DOI: 10.1016/S0003-670 (02)00148-4. http://dx.doi.org/10.1016/S0003-2670(02)00148-410.1016/S0003-2670(02)00148-4Search in Google Scholar
[35] Sicilia, D., Rubio, S., Pérez-Bendito, D., Maniasso, N., & Zagatto, E. A. G. (1999). Anionic surfactants in acid media: a new cloud point extraction approach for the determination of polycyclic aromatic hydrocarbons in environmental samples. Analytica Chimica Acta, 392, 29–38. DOI: 10.1016/S0003-2670 (99)00054-9. http://dx.doi.org/10.1016/S0003-2670(99)00054-910.1016/S0003-2670(99)00054-9Search in Google Scholar
[36] Sirimanne, S. R., Patterson, D. G., Jr., Ma, L., & Justice, J. B., Jr. (1998). Application of cloud-point extraction-reversedphase high-performance liquid chromatography: A preliminary study of the extraction and quantification of vitamins A and E in human serum and whole blood. Journal of Chromatography B: Biomedical Sciences and Applications, 716, 129–137. DOI: 10.1016/S0378-4347 (98)00287-4. http://dx.doi.org/10.1016/S0378-4347(98)00287-410.1016/S0378-4347(98)00287-4Search in Google Scholar
[37] Smith, A. M., Holmes, M. C., Pitt, A., Harrison, W., & Tiddy, G. J. T. (1995). Lamellar phases in contact with the lower consolute loop of ionic surfactant-water systems. Langmuir, 11, 4202–4204. DOI: 10.1021/la00011a006. http://dx.doi.org/10.1021/la00011a00610.1021/la00011a006Search in Google Scholar
[38] Sun, C., & Liu, H. (2008). Application of non-ionic surfactant in the microwave-assisted extraction of alkaloids from Rhizoma Coptidis. Analytica Chimica Acta, 612, 160–164. DOI: 10.1016/j.aca.2008.02.040. http://dx.doi.org/10.1016/j.aca.2008.02.04010.1016/j.aca.2008.02.040Search in Google Scholar PubMed
[39] Tagashira, S., Murakami, Y., Otobe, S., & Sasaki, Y. (1997). Stripping of cadmium (II) xanthato complex from the anionic surfactant phase of sodium dodecylsulfate gel to the aqueous phase. Analytical Sciences, 13, 857–858. DOI: 10.2116/analsci.13.857. http://dx.doi.org/10.2116/analsci.13.85710.2116/analsci.13.857Search in Google Scholar
[40] Tagashira, S., Murakami, Y., Yano, M., & Sasaki, Y. (1998). Extraction and stripping of copper(I) as a neocuproine complex in a surfactant system and determination of copper in steel. Bulletin of the Chemical Society of Japan, 71, 2137–2140. DOI: 10.1246/bcsj.71.2137. http://dx.doi.org/10.1246/bcsj.71.213710.1246/bcsj.71.2137Search in Google Scholar
[41] Tavakoli, L., Yamini, Y., Ebrahimzadeh, H., Nezhadali, A., Shariati, S., & Nourmohammadian, F. (2008). Development of cloud point extraction for simultaneous extraction and determination of gold and palladium using ICPOES. Journal of Hazardous Materials, 152, 737–743. DOI: 10.1016/j.jhazmat.2007.07.039. http://dx.doi.org/10.1016/j.jhazmat.2007.07.03910.1016/j.jhazmat.2007.07.039Search in Google Scholar PubMed
[42] Varade, D., Sharma, R., Aswal, V. K., Goyal, P. S., & Bahadur, P. (2004). Effect of hydrotropes on the solution behavior of PEO/PPO/PEO block copolymer L62 in aqueous solutions. European Polymer Journal, 40, 2457–2464. DOI: 10.1016/j.eurpolymj.2004.06.022. http://dx.doi.org/10.1016/j.eurpolymj.2004.06.02210.1016/j.eurpolymj.2004.06.022Search in Google Scholar
[43] Wang, C. C., Luconi, M. O., Masi, A. N., & Fernández, L. (2007). Determination of terazosin by cloud point extraction-fluorimetric combined methodology. Talanta, 72, 1779–1785. DOI: 10.1016/j.talanta.2007.02.010. http://dx.doi.org/10.1016/j.talanta.2007.02.01010.1016/j.talanta.2007.02.010Search in Google Scholar PubMed
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Immobilization of urease in poly(1-vinyl imidazole)/poly(acrylic acid) network
- Anodic reactions of sulphate in molten salts
- Fuels obtained by thermal cracking of individual and mixed polymers
- Synthesis, structure, and solvent-extraction properties of tridentate oxime ligands and their cobalt(II), nickel(II), copper(II), zinc(II) complexes
- Properties of a poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane
- Influence of tungsten sources on the synthesis and properties of ammonium dioxothiotungstate
- A Raman spectroscopy study on differently deposited DLC layers in pulse arc system
- 1,7′-dimethyl-2′-propyl-1H,3′H-2,5′-bibenzo[d]imidazole as a corrosion inhibitor of mild steel in 1 M HCl
- The role of acidity profile in the nanotubular growth of polyaniline
- Direct sulfenylation of acetone with benzothiazolesulfenamides to benzothiazolylthio-substituted alkylaminopropene: synthesis and application
- Substituted pyridopyrimidinones. Part 5. Behavior of 2-hydroxy-4-oxo-4H-pyrido[1,2-α]pyrimidine-3-carbaldehyde in nucleophilic condensation reactions
- Lidocaine hydrochloride preparations with ionic and non-ionic polymers assessed at standard and increased skin surface temperatures
- Phase separation in non-ionic surfactant Triton X-100 solutions in the presence of phenol
- Phase formation in sodium dodecylsulfate solutions in the presence of salicylic acid for preconcentration purposes
- Numerical properties of equations involving high-order derivatives of pressure with respect to volume
- Synthesis and characterization of conducting copolymer of (N 1,N 3-bis(thiophene-3-ylmethylene)benzene-1,3-diamine-co-3,4-ethylenedioxythiophene)
- Intercalation of non-aromatic heterocyclic amines into layered zirconium glycine-N,N-dimethylphosphonate
- Kinetics of catalytic Meerwein-Ponndorf-Verley reduction of aldehydes and ketones using boron triethoxide
Articles in the same Issue
- Immobilization of urease in poly(1-vinyl imidazole)/poly(acrylic acid) network
- Anodic reactions of sulphate in molten salts
- Fuels obtained by thermal cracking of individual and mixed polymers
- Synthesis, structure, and solvent-extraction properties of tridentate oxime ligands and their cobalt(II), nickel(II), copper(II), zinc(II) complexes
- Properties of a poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane
- Influence of tungsten sources on the synthesis and properties of ammonium dioxothiotungstate
- A Raman spectroscopy study on differently deposited DLC layers in pulse arc system
- 1,7′-dimethyl-2′-propyl-1H,3′H-2,5′-bibenzo[d]imidazole as a corrosion inhibitor of mild steel in 1 M HCl
- The role of acidity profile in the nanotubular growth of polyaniline
- Direct sulfenylation of acetone with benzothiazolesulfenamides to benzothiazolylthio-substituted alkylaminopropene: synthesis and application
- Substituted pyridopyrimidinones. Part 5. Behavior of 2-hydroxy-4-oxo-4H-pyrido[1,2-α]pyrimidine-3-carbaldehyde in nucleophilic condensation reactions
- Lidocaine hydrochloride preparations with ionic and non-ionic polymers assessed at standard and increased skin surface temperatures
- Phase separation in non-ionic surfactant Triton X-100 solutions in the presence of phenol
- Phase formation in sodium dodecylsulfate solutions in the presence of salicylic acid for preconcentration purposes
- Numerical properties of equations involving high-order derivatives of pressure with respect to volume
- Synthesis and characterization of conducting copolymer of (N 1,N 3-bis(thiophene-3-ylmethylene)benzene-1,3-diamine-co-3,4-ethylenedioxythiophene)
- Intercalation of non-aromatic heterocyclic amines into layered zirconium glycine-N,N-dimethylphosphonate
- Kinetics of catalytic Meerwein-Ponndorf-Verley reduction of aldehydes and ketones using boron triethoxide