Home Synthesis and characterization of diaminomaleonitrile-functionalized polystyrene grafts for application in pervaporation separation
Article
Licensed
Unlicensed Requires Authentication

Synthesis and characterization of diaminomaleonitrile-functionalized polystyrene grafts for application in pervaporation separation

  • Hamada Abdel-Razik EMAIL logo
Published/Copyright: June 30, 2008
Become an author with De Gruyter Brill

Abstract

Synthesis, characterization and application of diaminomaleonitrile (DAMN)-functionalized polystyrene grafts were studied. Dibenzoyle peroxide (BP) was used as an initiator. Optimum conditions for grafting were found to be c(DAMN) = 0.5 M, c(BP) = 0.016 M, θ = 85 °C and t = 4 h. Water uptake of the polystyrene graft membranes was found to increase with the increase of the grafting yield. The chemical structure, thermal characteristics and thermal stability of the obtained membranes were investigated by means of FTIR spectroscopy, differential scanning calorimetry, and thermal gravimetric analysis. Polystyrene graft membrane with the degree of grafting of up to 96 % was found to be useful for the pervaporation separation of phenol/water mixtures.

[1] Abdel-Bary, E. M., Sarhan, A. A., & Abdel-Razik, H. H. (1988). Effect of graft copolymerization of 2-hydroxyethyl methacrylate on the properties of polyester fibers and fabric. Journal of Applied Polymer Science, 35, 439–448. DOI: 10.1002/app.1988.070350211. http://dx.doi.org/10.1002/app.1988.07035021110.1002/app.1988.070350211Search in Google Scholar

[2] Dong, J. Y., Manias, E., & Chung, T. C. (2002). Functionalized syndiotactic polystyrene polymers prepared by the combination of metallocene catalyst and borane comonomer. Macromolecules, 35, 3439–3447. DOI: 10.1021/ma012215e. http://dx.doi.org/10.1021/ma012215e10.1021/ma012215eSearch in Google Scholar

[3] Khayet, M., Nasef, M. M., & Mengual, J. I. (2005). Radiation grafted poly(ethylene terphthalate)-grafted-polystyrene pervaporation membranes for organic/organic separation. Journal of Membrane Science, 263, 77–95. DOI: 10.1016/j.memsci.2005.04.006. http://dx.doi.org/10.1016/j.memsci.2005.04.00610.1016/j.memsci.2005.04.006Search in Google Scholar

[4] McKeown, N. B., Budd, P. M., Msayib, K. J., Ghanem, B. S., Kingston, H. J., Tattershall, C. E., Makhseed, S., Reynolds, K. J., & Fritsch, D. (2005). Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials. European Journal of Chemistry, 11, 2610–2620. DOI: 10. 1002/chem.200400860. http://dx.doi.org/10.1002/chem.20040086010.1002/chem.200400860Search in Google Scholar

[5] Musyanovych, A., & Hans-Jürgen, P. A. (2005). Grafting of amino functional monomer onto initiator-modified polystyrene particles. Langmuir, 21, 2209–2217. DOI: 10.1021/la047960+. http://dx.doi.org/10.1021/la047960+10.1021/la047960+Search in Google Scholar

[6] Pinnau, I., & Toy, L. G. (1996). Gas and vapor transport properties of amorphous perfluorinated copolymer membranes based on 2,2-bistrifluoromethyl-4,5-difluoro-1,3-dioxole/tetrafluoroethylene. Journal of Membrane Science, 109, 125–134. http://dx.doi.org/10.1016/0376-7388(95)00193-X10.1016/0376-7388(95)00193-XSearch in Google Scholar

[7] Schth, F., Sing, K., & Weitkamp, J. (2002). In Handbook of porous solids (Vol. 1–5). Berlin: Wiley-VCH. 10.1002/9783527618286Search in Google Scholar

[8] Shah, T. N., Goodwin, J. C., & Ritchie, S. M. C. (2005). Development and characterization of a microfiltration membrane catalyst containing sulfonated polystyrene grafts. Journal of Membrane Science, 251, 81–89. DOI: 10.1016/j.memsci.2004.10.037. http://dx.doi.org/10.1016/j.memsci.2004.10.03710.1016/j.memsci.2004.10.037Search in Google Scholar

[9] Shah, T. N., & Ritchie, S. M. C. (2005). Esterification catalysis using functionalized membranes. Applied Catalysis A: General, 296, 12–20. DOI: 10.1016/j.apcata. 2005.06.034. http://dx.doi.org/10.1016/j.apcata.2005.06.03410.1016/j.apcata.2005.06.034Search in Google Scholar

[10] Shan, J., Nuopponen, M., Jiang, H., Viitala, T., Kauppinen, E., sti Kontturi, K., & Tenhu, H. (2003). Amphiphilic gold nanoparticles grafted with poly(N-isopropylacrylamide) and polystyrene. Macromolecules, 36, 4526–4533. http://dx.doi.org/10.1021/ma034265k10.1021/ma034265kSearch in Google Scholar

[11] Srinivasan, R., Auvil, S. R., & Burban, P. M. (1994). Elucidating the mechanism of gas transport in poly(1-trimethylsilyl)-1-propyne) (PTMSP) membranes. Journal of Membrane Science, 86, 67–71. DOI: 10.1016/0376-7388(93)E0128-7. http://dx.doi.org/10.1016/0376-7388(93)E0128-710.1016/0376-7388(93)E0128-7Search in Google Scholar

[12] Yezi, Y., Chunyan, H., Pinghua, W., Wenping, W., Weiqi, L., & Caiyuan, P. (2004). A novel strategy to synthesize graft copolymers of PS-g-PEGM with controlled branch spacing length and defined grafting sites. Polymer, 45, 4647–4655. DOI: 10.1016/j.polymer.2004.04.047. http://dx.doi.org/10.1016/j.polymer.2004.04.04710.1016/j.polymer.2004.04.047Search in Google Scholar

[13] Zhu, G., & Li, T. (2005). Properties of polyurethane-polystyrene graft copolymer membranes used for separating waterethanol mixtures. European Polymer Journal, 41, 1090–1096. DOI: 10.1016/j.eurpolymj.2004.11.028. http://dx.doi.org/10.1016/j.eurpolymj.2004.11.02810.1016/j.eurpolymj.2004.11.028Search in Google Scholar

Published Online: 2008-6-30
Published in Print: 2008-8-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Square-wave adsorptive stripping voltammetric determination of an antihistamine drug astemizole
  2. Flow injection spectrophotometric determination of iron(III) using diphenylamine-4-sulfonic acid sodium salt
  3. Sensitive determination of nitrogenous hydrochloride drugs via their reaction with ammonium molybdate
  4. Effect of different Fe(III) compounds on photosynthetic electron transport in spinach chloroplasts and on iron accumulation in maize plants
  5. Comparison of different technologies for alginate beads production
  6. Design and economics of industrial production of fructooligosaccharides
  7. Preparation of nanocrystalline anatase TiO2 using basic sol-gel method
  8. 3,5-Bis(2-hydroxyphenyl)-1H-1,2,4-triazole based ligands — protonation and metal complex formation
  9. Synthesis, characterization, fluorescence and redox features of new vic-dioxime ligand bearing pyrene and its metal complexes
  10. Synthesis and characterization of diaminomaleonitrile-functionalized polystyrene grafts for application in pervaporation separation
  11. Synthesis and magnetic properties of polymeric complexes containing ruthenium(II)-ruthenium(III) tetracarboxylato units linked by cyanato, thiocyanato, and selenocyanato ligands
  12. Preparation and modification of collagen-based porous scaffold for tissue engineering
  13. Synthesis, crystal structure, and magnetic properties of a cobalt(II) complex with (3,5-dichloropyridin-4-yl)(pyridin-4-yl)methanol
  14. Synthesis and reactions of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine
  15. Alkalimetric determination of hydrophobic pharmaceuticals using stabilized o/w emulsions
  16. Extraction and analysis of ellagic acid from novel complex sources
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-008-0037-8/pdf?lang=en
Scroll to top button