Dielectric relaxation of butyl acrylate—alcohol mixtures using time domain reflectometry
-
K. Dharmalingam
, K. Ramachandran
, P. Sivagurunathan , B. Prabhakar Undre , P. Khirade und S. Mehrotra
Abstract
Dielectric relaxation measurements of butyl acrylate—alcohol mixtures at different concentrations and temperatures within the frequency range of 10 MHz to 10 GHz have been carried out using time domain reflectometry. Parameters such as the static permittivity, dielectric relaxation time, the Kirkwood correlation factor, the excess inverse relaxation time, and thermodynamic functions were determined and discussed to yield information on the molecular structure and dynamics of the mixture. The value of the dielectric properties decreases with increasing butyl acrylate concentration in alcohol and systematically varies with the length of alcohol alkyl chain. Negative values of the excess inverse relaxation time found for all concentrations and at all temperatures studied may indicate that the effective dipoles rotate slowly.
[1] Ediger, M. D., Angell, C. A., and Nagel, S. R., J. Chem. Phys. 100, 13200 (1996). Suche in Google Scholar
[2] De Francesco, L., Cutroni, M., and Mandanici, A., Philos. Mag. B 82, 625 (2002). http://dx.doi.org/10.1080/1364281011008527110.1080/13642810110085271Suche in Google Scholar
[3] Sengwa, R. J., Chaudhary, R., and Mehrotra, S. C., Mol. Phys. 99, 1805 (2001). http://dx.doi.org/10.1080/0026897011007278210.1080/00268970110072782Suche in Google Scholar
[4] Iglesias, T. P., Fornies-Marquina, J. M., and De Cominges, B., Mol. Phys. 103, 2639 (2005). http://dx.doi.org/10.1080/0022293050019038410.1080/00222930500190384Suche in Google Scholar
[5] Schildknecht, C. E., Vinyl and Related Polymers. Wiley, New York, 1977. Suche in Google Scholar
[6] Savage, P. E., Chem. Rev. 99, 603 (1999). http://dx.doi.org/10.1021/cr970098910.1021/cr9700989Suche in Google Scholar
[7] Shirke, R. M., Chaudhari, A., More, N. M., and Patil, P. B., J. Chem. Eng. Data 45, 917 (2000). http://dx.doi.org/10.1021/je000066+10.1021/je000066+Suche in Google Scholar
[8] Shirke, R. M., Chaudhari, A., More, N. M., and Patil, P. B., J. Mol. Liq. 94, 27 (2001). http://dx.doi.org/10.1016/S0167-7322(01)00239-210.1016/S0167-7322(01)00239-2Suche in Google Scholar
[9] Patil, S. P., Chaudhari, A. S., Lokhande, M. P., Lande, M. K., Shankarwar, A. G., Helambe, S. N., Arbad, B. R., and Mehrotra, S. C., J. Chem. Eng. Data 44, 875 (1999). http://dx.doi.org/10.1021/je980250j10.1021/je980250jSuche in Google Scholar
[10] Khirade, P. W., Chaudhari, A., Shinde, J. B., Helambe, S. N., and Mehrotra, S. C., J. Chem. Eng. Data 44, 879 (1999). http://dx.doi.org/10.1021/je980118j10.1021/je980118jSuche in Google Scholar
[11] Khirade, P. W., Chaudhari, A., Shinde, J. B., Helambe, S. N., and Mehrotra, S. C., J. Solution Chem. 28, 1031 (1999). http://dx.doi.org/10.1023/A:102266612816610.1023/A:1022666128166Suche in Google Scholar
[12] Chaudhari, A. and Mehrotra, S. C., Mol. Phys. 100, 3907 (2002). http://dx.doi.org/10.1080/002689702100002366810.1080/0026897021000023668Suche in Google Scholar
[13] Sivagurunathan, P., Dharmalingam, K., and Ramachandran, K., Z. Phys. Chem. 219, 1635 (2005). Suche in Google Scholar
[14] Sivagurunathan, P., Dharmalingam, K., and Ramachandran, K., Spectrochim. Acta, Part A 64, 127 (2006). http://dx.doi.org/10.1016/j.saa.2005.07.00510.1016/j.saa.2005.07.005Suche in Google Scholar PubMed
[15] Sivagurunathan, P., Dharmalingam, K., and Ramachandran, K., Indian J. Pure Appl. Phys. 43, 905 (2005). Suche in Google Scholar
[16] Dharmalingam, K., Ramachandran, K., and Sivagurunathan, P., Main Group Chem. 4, 241 (2005). http://dx.doi.org/10.1080/1024122060064974510.1080/10241220600649745Suche in Google Scholar
[17] Dharmalingam, K. and Ramachandran, K., Phys. Chem. Liq. 44, 77 (2006). http://dx.doi.org/10.1080/0031910050033722910.1080/00319100500337229Suche in Google Scholar
[18] Sivagurunathan, P., Dharmalingam, K., and Ramachandran, K., Indian J. Phys. 79, 1403 (2005). Suche in Google Scholar
[19] Dharmalingam, K., Ramachandran, K., and Sivagurunathan, P., Spectrochim. Acta, Part A 66, 48 (2007). http://dx.doi.org/10.1016/j.saa.2006.02.01910.1016/j.saa.2006.02.019Suche in Google Scholar PubMed
[20] Sivagurunathan, P., Dharmalingam, K., and Ramachandran, K., Z. Phys. Chem. 219, 1385 (2005). Suche in Google Scholar
[21] Sivagurunathan, P., Dharmalingam, K., Ramachandran, K., and Kalamse, G. M., Main Group Chem. 4, 227 (2005). http://dx.doi.org/10.1080/1024122060060163910.1080/10241220600601639Suche in Google Scholar
[22] Vogel, A. I., Text Book of Practical Organic Chemistry, 3rd Edition. Longman, London, 1957. Suche in Google Scholar
[23] Samulon, H. A., Proc. IRE 39, 175 (1951). 10.1109/JRPROC.1951.231438Suche in Google Scholar
[24] Shannon, C. E., Proc. IRE 37, 10 (1949). 10.1109/JRPROC.1949.232969Suche in Google Scholar
[25] Cole, R. H., Berbarian, J. G., Mashimo, S., Chryssikos, G., Burns, A., and Tombari, E., J. Appl. Phys. 66, 793 (1989). http://dx.doi.org/10.1063/1.34349910.1063/1.343499Suche in Google Scholar
[26] Cole, K. S. and Cole, R. H., J. Chem. Phys. 9, 341 (1941). http://dx.doi.org/10.1063/1.175090610.1063/1.1750906Suche in Google Scholar
[27] Davidson, D. W. and Cole, R. H., J. Chem. Phys. 18, 1417 (1950). http://dx.doi.org/10.1063/1.174749610.1063/1.1747496Suche in Google Scholar
[28] Havriliak, S. and Negami, S., J. Polym. Sci., Part C Polym. Symp. 1966, 99. Suche in Google Scholar
[29] Bevington, P. R., Data Reduction and Error Analysis for the Physical Sciences. Mc Graw-Hill, New York, 1969. Suche in Google Scholar
[30] Abd-El-Messieh, S. L., Mohamed, M. G., Mazrouaa, A. M., and Soliman, A., J. Appl. Polym. Sci. 85, 271 (2002). http://dx.doi.org/10.1002/app.1057210.1002/app.10572Suche in Google Scholar
[31] Singh, P. J. and Sharma, K. S., Indian J. Pure Appl. Phys. 31, 721 (1993). Suche in Google Scholar
[32] Prakash, J. and Rai, B., Indian J. Pure Appl. Phys. 24, 187 (1986). Suche in Google Scholar
[33] Kirkwood, J. G., J. Chem. Phys. 7, 911 (1939). http://dx.doi.org/10.1063/1.175034310.1063/1.1750343Suche in Google Scholar
[34] Puranik, S. M., Kumbharkhane, A. C., and Mehrotra, S. C., J. Mol. Liq. 50, 143 (1991). http://dx.doi.org/10.1016/0167-7322(91)80042-310.1016/0167-7322(91)80042-3Suche in Google Scholar
[35] Kauzmann, W., Rev. Mod. Phys. 14, 12 (1942). http://dx.doi.org/10.1103/RevModPhys.14.1210.1103/RevModPhys.14.12Suche in Google Scholar
[36] Singh, A., Misra, R., Shukla, J. P., and Saxena, M. C., J. Mol. Liq. 26, 29 (1983). http://dx.doi.org/10.1016/0167-7322(83)80026-910.1016/0167-7322(83)80026-9Suche in Google Scholar
© 2007 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Step by step towards understanding gold glyconanoparticles as elements of the nanoworld
- Structure—activity relationships for in vitro oxime reactivation of chlorpyrifos-inhibited acetylcholinesterase
- Separation and characterization of products from thermal cracking of individual and mixed polyalkenes
- Mobility of important toxic analytes in urban dust and simulated air filters determined by sequential extraction and GFAAS/ICP-OES methods
- Effect of addition of ameliorative materials on the distribution of As, Cd, Pb, and Zn in extractable soil fractions
- Effect of gamma irradiation on trichromatic values of spices
- Homo- and heteronuclear complexes of a new, vicinal dioxime ligand
- Synthesis of new triphenodithiazine- and indolocarbazolediones of biological interest
- Dielectric relaxation of butyl acrylate—alcohol mixtures using time domain reflectometry
- Ab initio study of small coinage metal telluride clusters AunTem (n, m = 1, 2)
- Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules
- Comparison of spectrophotometric and HPLC methods for determination of lipid peroxidation products in rat brain tissues
- Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors
- Mechanism of thermal decomposition of cobalt acetate tetrahydrate
- Three-component, one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones catalyzed by bromodimethylsulfonium bromide
Artikel in diesem Heft
- Step by step towards understanding gold glyconanoparticles as elements of the nanoworld
- Structure—activity relationships for in vitro oxime reactivation of chlorpyrifos-inhibited acetylcholinesterase
- Separation and characterization of products from thermal cracking of individual and mixed polyalkenes
- Mobility of important toxic analytes in urban dust and simulated air filters determined by sequential extraction and GFAAS/ICP-OES methods
- Effect of addition of ameliorative materials on the distribution of As, Cd, Pb, and Zn in extractable soil fractions
- Effect of gamma irradiation on trichromatic values of spices
- Homo- and heteronuclear complexes of a new, vicinal dioxime ligand
- Synthesis of new triphenodithiazine- and indolocarbazolediones of biological interest
- Dielectric relaxation of butyl acrylate—alcohol mixtures using time domain reflectometry
- Ab initio study of small coinage metal telluride clusters AunTem (n, m = 1, 2)
- Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules
- Comparison of spectrophotometric and HPLC methods for determination of lipid peroxidation products in rat brain tissues
- Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors
- Mechanism of thermal decomposition of cobalt acetate tetrahydrate
- Three-component, one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones catalyzed by bromodimethylsulfonium bromide