Home Life Sciences Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors
Article
Licensed
Unlicensed Requires Authentication

Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors

  • F. Jiao EMAIL logo , X. Chen , W. Hu , F. Ning and K. Huang
Published/Copyright: August 1, 2007
Become an author with De Gruyter Brill

Abstract

A new binary chiral selector system effective for the enantioselective extraction of racemic mandelic acid is presented. While L-dipentyl tartrate and β-cyclodextrin had a very low enantioselectivity as single selectors, a preferential extraction of D-mandelic acid to the organic phase was found in the binary selector system. Using decanol as organic solvent and pH of a phoshate buffer equal to 2.3, the distribution coefficients of D-and L-mandelic acids as high as 14.9 and 7.0, respectively, and the enantioselectivity value of 2.1 were found at optimum concentration of β-cyclodextrin.

[1] Lacour, J., Goujon-Ginglinger, C., Torche-Haldimann, S., and Jodry, J. J., Angew. Chem., Int. Ed. Engl. 39, 3695 (2000). http://dx.doi.org/10.1002/1521-3773(20001016)39:20<3695::AID-ANIE3695>3.3.CO;2-D10.1002/1521-3773(20001016)39:20<3695::AID-ANIE3695>3.0.CO;2-MSearch in Google Scholar

[2] Subramanian, G., Chiral Separation Techniques: A Practical Approach, p. 15. Wiley, New York, 2001. Search in Google Scholar

[3] Zhao, S. L. and Liu, Y. M., Electrophoresis 22, 2769 (2001). http://dx.doi.org/10.1002/1522-2683(200108)22:13<2769::AID-ELPS2769>3.0.CO;2-H10.1002/1522-2683(200108)22:13<2769::AID-ELPS2769>3.0.CO;2-HSearch in Google Scholar

[4] Heldin, E., Lindner, K. J., Pettersson, C., Lindner, W., and Rao, R., Chromatographia 32, 407 (1991). http://dx.doi.org/10.1007/BF0232797010.1007/BF02327970Search in Google Scholar

[5] Keurentjes, J. T. F., Nabuurs, L. J. W. M., and Vegeter, E. A., J. Membr. Sci. 113, 351 (1996). http://dx.doi.org/10.1016/0376-7388(95)00176-X10.1016/0376-7388(95)00176-XSearch in Google Scholar

[6] Tan, B., Luo, G. S., Xuan, Q., and Wang, J. D., Sep. Purif. Technol. 49, 186 (2006). http://dx.doi.org/10.1016/j.seppur.2005.09.01010.1016/j.seppur.2005.09.010Search in Google Scholar

[7] Tan, B., Luo, G. S., and Wang, J. D., Tetrahedron: Asymmetry 17, 883 (2006). http://dx.doi.org/10.1016/j.tetasy.2006.01.03810.1016/j.tetasy.2006.01.038Search in Google Scholar

[8] Li, B. H., Yang, X. M., Wu, X. J., Luo, Z. W., Zhong, C., and Fu, E., Supramol. Chem. 18, 507 (2006). http://dx.doi.org/10.1080/1061027060080814110.1080/10610270600808141Search in Google Scholar

[9] Armstrong, D. W. and Jin, H. L., Anal. Chem. 59, 2237 (1987). http://dx.doi.org/10.1021/ac00145a00510.1021/ac00145a005Search in Google Scholar

[10] Szemán, J. and Ganzler, K., J. Chromatogr., A 668, 509 (1994). http://dx.doi.org/10.1016/0021-9673(94)80147-910.1016/0021-9673(94)80147-9Search in Google Scholar

[11] Jiao, F. P., Huang, K. L., Ning, F. R., Hu, W. G., and Yu, J. G., Sep. Sci. Technol. 41, 1893 (2006). http://dx.doi.org/10.1080/0149639060067488510.1080/01496390600674885Search in Google Scholar

[12] Arai, T., Koike, H., Hirata, K., and Oizumi, H., J. Chromatogr. 448, 439 (1988). http://dx.doi.org/10.1016/S0021-9673(01)84609-410.1016/S0021-9673(01)84609-4Search in Google Scholar

[13] Prelog, V., Stojanac, Z., and Kovacevic, K., Helv. Chim. Acta 65, 377 (1982). http://dx.doi.org/10.1002/hlca.1982065014010.1002/hlca.19820650140Search in Google Scholar

[14] Prelog, V. and Mutak, S., Helv. Chim. Acta 66, 2274 (1983). http://dx.doi.org/10.1002/hlca.1983066073810.1002/hlca.19830660738Search in Google Scholar

[15] Prelog, V., Kovacevic, M., and Egli, M., Angew. Chem., Int. Ed. Engl. 28, 1147 (1989). http://dx.doi.org/10.1002/anie.19891147310.1002/anie.198911473Search in Google Scholar

Published Online: 2007-8-1
Published in Print: 2007-8-1

© 2007 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Step by step towards understanding gold glyconanoparticles as elements of the nanoworld
  2. Structure—activity relationships for in vitro oxime reactivation of chlorpyrifos-inhibited acetylcholinesterase
  3. Separation and characterization of products from thermal cracking of individual and mixed polyalkenes
  4. Mobility of important toxic analytes in urban dust and simulated air filters determined by sequential extraction and GFAAS/ICP-OES methods
  5. Effect of addition of ameliorative materials on the distribution of As, Cd, Pb, and Zn in extractable soil fractions
  6. Effect of gamma irradiation on trichromatic values of spices
  7. Homo- and heteronuclear complexes of a new, vicinal dioxime ligand
  8. Synthesis of new triphenodithiazine- and indolocarbazolediones of biological interest
  9. Dielectric relaxation of butyl acrylate—alcohol mixtures using time domain reflectometry
  10. Ab initio study of small coinage metal telluride clusters AunTem (n, m = 1, 2)
  11. Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules
  12. Comparison of spectrophotometric and HPLC methods for determination of lipid peroxidation products in rat brain tissues
  13. Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors
  14. Mechanism of thermal decomposition of cobalt acetate tetrahydrate
  15. Three-component, one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones catalyzed by bromodimethylsulfonium bromide
Downloaded on 14.1.2026 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-007-0041-4/html
Scroll to top button