Abstract
Gold glyconanoparticles as elements of the nanoworld belong to a group of particles with diameters not exceeding 100 nm. This size scale makes them conformable to common biomolecules. A gold glyconanoparticle consists of three different parts: the gold core, the linkers, and saccharide ligands. The glycocalyx-like surface of these particles mimics the presentation of carbohydrate epitopes of cell surface glycoconjugates. As a consequence, gold glyconanoparticles provide inimitable tools for probing and manipulating the mechanisms of biological processes based on carbohydrate interactions. Each component of the gold glyconanoparticle has a profound effect on the nanoparticle’s properties. Therefore, in this review, elucidation of the overall behavior and properties of gold glyconanoparticles is based on a step by step (component by component) description of the system.
[1] Link, S. and El-Sayed, M. A., Int. Rev. Phys. Chem. 19, 409 (2000). http://dx.doi.org/10.1080/0144235005003418010.1080/01442350050034180Suche in Google Scholar
[2] Daniel, M. C. and Astruc, D., Chem. Rev. 104, 293 (2004). http://dx.doi.org/10.1021/cr030698+10.1021/cr030698+Suche in Google Scholar
[3] Brust, M. and Kiely, C. J., Colloids Surf., A 202, 175 (2002). http://dx.doi.org/10.1016/S0927-7757(01)01087-110.1016/S0927-7757(01)01087-1Suche in Google Scholar
[4] Zanchet, D., Tolentino, H., Alves, M. C. M., Alves, O. L., and Ugarte, D., Chem. Phys. Lett. 323, 167 (2000). http://dx.doi.org/10.1016/S0009-2614(00)00424-310.1016/S0009-2614(00)00424-3Suche in Google Scholar
[5] Penn, S. G., He, L., and Natan, M. J., Curr. Opin. Chem. Biol. 7, 609 (2003). http://dx.doi.org/10.1016/j.cbpa.2003.08.01310.1016/j.cbpa.2003.08.013Suche in Google Scholar
[6] Ozkan, M., Drug Discovery Today 9, 1065 (2004). http://dx.doi.org/10.1016/S1359-6446(04)03291-X10.1016/S1359-6446(04)03291-XSuche in Google Scholar
[7] Tan, W. B. and Zhang, Y., J. Biomed. Mater. Res., Part A 75A, 56 (2005). http://dx.doi.org/10.1002/jbm.a.3041010.1002/jbm.a.30410Suche in Google Scholar
[8] Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A. P., Science 281, 2013 (1998). http://dx.doi.org/10.1126/science.281.5385.201310.1126/science.281.5385.2013Suche in Google Scholar
[9] Chan, W. C. W., Maxwell, D. J., Gao, X. H., Bailey, R. E., Han, M. Y., and Nie, S. M., Curr. Opin. Biotechnol. 13, 40 (2002). http://dx.doi.org/10.1016/S0958-1669(02)00282-310.1016/S0958-1669(02)00282-3Suche in Google Scholar
[10] Norris, D. J. and Bawendi, M. G., Phys. Rev. B 53, 16338 (1996). http://dx.doi.org/10.1103/PhysRevB.53.1633810.1103/PhysRevB.53.16338Suche in Google Scholar
[11] Batlle, X. and Labarta, A., J. Phys. D: Appl. Phys. 35, R15 (2002). http://dx.doi.org/10.1088/0022-3727/35/6/20110.1088/0022-3727/35/6/201Suche in Google Scholar
[12] Tartaj, P., Morales, M. D., Veintemillas-Verdaguer, S., González-Carreño, T., and Serna, C. J., J. Phys. D: Appl. Phys. 36, R182 (2003). http://dx.doi.org/10.1088/0022-3727/36/13/20210.1088/0022-3727/36/13/202Suche in Google Scholar
[13] Hilger, I., Andra, W., Bahring, R., Daum, A., Hergt, R., and Kaiser, W. A., Invest. Radiol. 32, 705 (1997). http://dx.doi.org/10.1097/00004424-199711000-0000910.1097/00004424-199711000-00009Suche in Google Scholar
[14] Andrä, W., d’Ambly, C. G., Hergt, R., Hilger, I., and Kaiser, W. A., J. Magn. Magn. Mater. 194, 197 (1999). http://dx.doi.org/10.1016/S0304-8853(98)00552-610.1016/S0304-8853(98)00552-6Suche in Google Scholar
[15] Hilger, I., Hergt, R., and Kaiser, W. A., Invest. Radiol. 35, 170 (2000). http://dx.doi.org/10.1097/00004424-200003000-0000310.1097/00004424-200003000-00003Suche in Google Scholar
[16] De la Fuente, J. M. and Penadés, S., BBA-Gen. Subjects 1760, 636 (2006). http://dx.doi.org/10.1016/j.bbagen.2005.12.00110.1016/j.bbagen.2005.12.001Suche in Google Scholar
[17] Joubert, J. C., An. Quim. 93, S70 (1997). Suche in Google Scholar
[18] Berry, C. C. and Curtis, A. S. G., J. Phys. D: Appl. Phys. 36, R198 (2003). http://dx.doi.org/10.1088/0022-3727/36/13/20310.1088/0022-3727/36/13/203Suche in Google Scholar
[19] Kim, D. K., Zhang, Y., Kehr, J., Klason, T., Bjelke, B., and Muhammed, M., J. Magn. Magn. Mater. 225, 256 (2001). http://dx.doi.org/10.1016/S0304-8853(00)01255-510.1016/S0304-8853(00)01255-5Suche in Google Scholar
[20] Chen, M. S. and Goodman, D. W., Science 306, 252 (2004). http://dx.doi.org/10.1126/science.110242010.1126/science.1102420Suche in Google Scholar PubMed
[21] Campbell, C. T., Science 306, 234 (2004). http://dx.doi.org/10.1126/science.110424610.1126/science.1104246Suche in Google Scholar PubMed
[22] Immunolabeling for Electron Microscopy (Polak, J. M. and Varndell, I. M., Editors). Elsevier, Amsterdam, 1984. Suche in Google Scholar
[23] Chah, S., Hammond, M. R., and Zare, R. N., Chem. Biol. 12, 323 (2005). http://dx.doi.org/10.1016/j.chembiol.2005.01.01310.1016/j.chembiol.2005.01.013Suche in Google Scholar
[24] Nath, N. and Chilkoti, A., Anal. Chem. 74, 504 (2002). http://dx.doi.org/10.1021/ac015657x10.1021/ac015657xSuche in Google Scholar
[25] Luedtke, W. D. and Landman, U., J. Phys. Chem. B 102, 6566 (1998). http://dx.doi.org/10.1021/jp981745i10.1021/jp981745iSuche in Google Scholar
[26] Katz, E. and Willner, I., Angew. Chem., Int. Ed. 43, 6042 (2004). http://dx.doi.org/10.1002/anie.20040065110.1002/anie.200400651Suche in Google Scholar
[27] Rojo, J., Díaz, V., de la Fuente, J. M., Segura, I., Barrientos, A. G., Riese, H. H., Bernade, A., and Penadés, S., Chembiochem. 5, 291 (2004). http://dx.doi.org/10.1002/cbic.20030072610.1002/cbic.200300726Suche in Google Scholar
[28] Fernández, E. M., Soler, J. M., Garzón, I. L., and Balbás, L. C., Phys. Rev. B 70, 165403 (2004). 10.1103/PhysRevB.70.165403Suche in Google Scholar
[29] Pyykkö, P., Angew. Chem., Int. Ed. 43, 4412 (2004). http://dx.doi.org/10.1002/anie.20030062410.1002/anie.200300624Suche in Google Scholar
[30] Agraït, N., Yeyati, A. L., and van Ruitenbeek, J. M., Phys. Rep. 377, 81 (2003). http://dx.doi.org/10.1016/S0370-1573(02)00633-610.1016/S0370-1573(02)00633-6Suche in Google Scholar
[31] Loo, C., Lowery, A., Halas, N., West, J., and Drezek, R., Nano Lett. 5, 709 (2005). http://dx.doi.org/10.1021/nl050127s10.1021/nl050127sSuche in Google Scholar PubMed
[32] Yoon, B., Häkkinen, H., Landman, U., Worz, A. S., Antonietti, J. M., Abbet, S., Judai, K., and Heiz, U., Science 307, 403 (2005). http://dx.doi.org/10.1126/science.110416810.1126/science.1104168Suche in Google Scholar PubMed
[33] Koskinen, P., Häkkinen, H., Seifert, G., Sanna, S., Frauenheim, T., and Moseler, M., New J. Phys. 8, 9 (2006). http://dx.doi.org/10.1088/1367-2630/8/1/00910.1088/1367-2630/8/1/009Suche in Google Scholar
[34] Doye, J. P. K. and Wales, D. J., New J. Chem. 22, 733 (1998). http://dx.doi.org/10.1039/a709249k10.1039/a709249kSuche in Google Scholar
[35] Kronik, L., Fromherz, R., Ko, E., Ganteför, G., and Chelikowsky, J. R., Nat. Mater. 1, 49 (2002). http://dx.doi.org/10.1038/nmat70410.1038/nmat704Suche in Google Scholar
[36] de Heer, W. A., Rev. Mod. Phys. 65, 611 (1993). http://dx.doi.org/10.1103/RevModPhys.65.61110.1103/RevModPhys.65.611Suche in Google Scholar
[37] Herlert, A., Krückeberg, S., Schweikhard, L., Vogel, M., and Walther, C., J. Electron Spectrosc. 106, 179 (2000). http://dx.doi.org/10.1016/S0368-2048(99)00075-410.1016/S0368-2048(99)00075-4Suche in Google Scholar
[38] Li, J., Li, X., Zhai, H. J., and Wang, L. S., Science 299, 864 (2003). http://dx.doi.org/10.1126/science.107987910.1126/science.1079879Suche in Google Scholar PubMed
[39] Koga, K., Phys. Rev. Lett. 96, 115501 (2006). Suche in Google Scholar
[40] Baletto, F. and Ferrando, R., Rev. Mod. Phys. 77, 371 (2005). http://dx.doi.org/10.1103/RevModPhys.77.37110.1103/RevModPhys.77.371Suche in Google Scholar
[41] Chushak, Y. and Bartell, L. S., Eur. Phys. J. D 16, 43 (2001). http://dx.doi.org/10.1007/s10053017005610.1007/s100530170056Suche in Google Scholar
[42] Gardea-Torresdey, J. L., Tiemann, K. J., Gamez, G., Dokken, K., Tehuacanero, S., and José-Yacamán, M., J. Nanopart. Res. 1, 397 (1999). http://dx.doi.org/10.1023/A:101000891546510.1023/A:1010008915465Suche in Google Scholar
[43] Häkkinen, H., Moseler, M., Kostko, O., Morgner, N., Hoffmann, M. A., and von Issendorff, B., Phys. Rev. Lett. 93, 093401 (2004). Suche in Google Scholar
[44] Taylor, K. J., Pettiette-Hall, C. L., Cheshnovsky, O., and Smalley, R. E., J. Chem. Phys. 96, 3319 (1992). http://dx.doi.org/10.1063/1.46192710.1063/1.461927Suche in Google Scholar
[45] Jansen, M., Solid State Sci. 7, 1464 (2005). http://dx.doi.org/10.1016/j.solidstatesciences.2005.06.01510.1016/j.solidstatesciences.2005.06.015Suche in Google Scholar
[46] Schwerdtfeger, P., Heteroatom Chem. 13, 578 (2002). http://dx.doi.org/10.1002/hc.1009310.1002/hc.10093Suche in Google Scholar
[47] Pyykkö, P., Chem. Rev. 88, 563 (1988). http://dx.doi.org/10.1021/cr00085a00610.1021/cr00085a006Suche in Google Scholar
[48] Reiher, M. and Heß, B., in Modern Methods and Algorithms of Quantum Chemistry, Vol. 1. (Grotendorst, J., Editor.) p. 451. John von Neuman Institute for Computing, Jülich, 2000. Suche in Google Scholar
[49] Schmidbaur, H., Cronje, S., Djordjevic, B., and Schuster, O., Chem. Phys. 311, 151 (2005). http://dx.doi.org/10.1016/j.chemphys.2004.09.02310.1016/j.chemphys.2004.09.023Suche in Google Scholar
[50] Gu, X., Ji, M., Wei, S. H., and Gong, X. G., Phys. Rev. B 70, 205401 (2004). 10.1103/PhysRevB.70.205401Suche in Google Scholar
[51] Alamanova, D., Dong, Y., ur Rehman, H., Springborg, M., and Grigoryan, V. G., Comput. Lett. 1, 319 (2005). http://dx.doi.org/10.1163/15740400577661139410.1163/157404005776611394Suche in Google Scholar
[52] Bravo-Pérez, G., Garzón, I. L., and Novaro, O., THEOCHEM 493, 225 (1999). http://dx.doi.org/10.1016/S0166-1280(99)00243-210.1016/S0166-1280(99)00243-2Suche in Google Scholar
[53] Häkkinen, H. and Moseler, M., Comput. Mater. Sci. 35, 332 (2006). http://dx.doi.org/10.1016/j.commatsci.2004.08.01710.1016/j.commatsci.2004.08.017Suche in Google Scholar
[54] Ji, M., Gu, X., Li, X., Gong, X. G., Li, J., and Wang, L. S., Angew. Chem., Int. Ed. Engl. 44, 7119 (2005). http://dx.doi.org/10.1002/anie.20050279510.1002/anie.200502795Suche in Google Scholar PubMed
[55] Soler, J. M., Beltrán, M. R., Michaelian, K., Garzón, I. L., Ordejón, P., Sánchez-Portal, D., and Artacho, E., Phys. Rev. B 61, 5771 (2000). http://dx.doi.org/10.1103/PhysRevB.61.577110.1103/PhysRevB.61.5771Suche in Google Scholar
[56] Wolf, M. D. and Landman, U., J. Phys. Chem. A 102, 6129 (1998). http://dx.doi.org/10.1021/jp981459710.1021/jp9814597Suche in Google Scholar
[57] Garzón, I. L., Michaelian, K., Beltrán, M. R., Posada-Amarillas, A., Ordejón, P., Artacho, E., Sánchez-Portal, D., and Soler, J. M., Phys. Rev. Lett. 81, 1600 (1998). http://dx.doi.org/10.1103/PhysRevLett.81.160010.1103/PhysRevLett.81.1600Suche in Google Scholar
[58] Martin, T. P., Phys. Rep. 273, 199 (1996). http://dx.doi.org/10.1016/0370-1573(95)00083-610.1016/0370-1573(95)00083-6Suche in Google Scholar
[59] Koga, K., Ikeshoji, T., and Sugawara, K., Phys. Rev. Lett. 92, 115507 (2004). Suche in Google Scholar
[60] Liu, H. H., Jiang, E. Y., Bai, H. L., Wu, P., Li, Z. Q., and Sun, C. Q., THEOCHEM 728, 203 (2005). http://dx.doi.org/10.1016/j.theochem.2005.05.02510.1016/j.theochem.2005.05.025Suche in Google Scholar
[61] Doye, J. P. K. and Wales, D. J., Chem. Phys. Lett. 247, 339 (1995). Suche in Google Scholar
[62] Häkkinen, H., Yoon, B., Landman, U., Li, X., Zhai, H. J., and Wang, L. S., J. Phys. Chem. A 107, 6168 (2003). http://dx.doi.org/10.1021/jp035437i10.1021/jp035437iSuche in Google Scholar
[63] Xiao, L., Tollberg, B., Hu, X. K., and Wang, L. C., J. Chem. Phys. 124, 114309 (2006). Suche in Google Scholar
[64] Xiao, L. and Wang, L. C., Chem. Phys. Lett. 392, 452 (2004). http://dx.doi.org/10.1016/j.cplett.2004.05.09510.1016/j.cplett.2004.05.095Suche in Google Scholar
[65] Grönbeck, H. and Broqvist, P., Phys. Rev. B 71, 073408 (2005). 10.1103/PhysRevB.71.073408Suche in Google Scholar
[66] Häkkinen, H., Moseler, M., and Landman, U., Phys. Rev. Lett. 89, 033401 (2002). Suche in Google Scholar
[67] Arratia-Perez, R., Ramos, A. F., and Malli, G. L., Phys. Rev. B 39, 3005 (1989). http://dx.doi.org/10.1103/PhysRevB.39.300510.1103/PhysRevB.39.3005Suche in Google Scholar
[68] Wilson, N. T. and Johnston, R. L., Eur. Phys. J. D 12, 161 (2000). http://dx.doi.org/10.1007/s10053007005310.1007/s100530070053Suche in Google Scholar
[69] Sutton, A. P. and Chen, J., Philos. Mag. Lett. 61, 139 (1990). Suche in Google Scholar
[70] Doye, J. P. K. and Wales, D. J., J. Phys. B: At. Mol. Opt. 29, 4859 (1996). http://dx.doi.org/10.1088/0953-4075/29/21/00210.1088/0953-4075/29/21/002Suche in Google Scholar
[71] Soler, J. M., Garzón, I. L., and Joannopoulos, J. D., Solid State Commun. 117, 621 (2001). http://dx.doi.org/10.1016/S0038-1098(00)00493-210.1016/S0038-1098(00)00493-2Suche in Google Scholar
[72] Garzón, I. L., Beltrán, M. R., González, G., Gutierrez-González, I., Michaelian, K., Reyes-Nava, J. A., and Rodriguez-Hernández, J. I., Eur. Phys. J. D 24, 105 (2003). http://dx.doi.org/10.1140/epjd/e2003-00187-410.1140/epjd/e2003-00187-4Suche in Google Scholar
[73] Schaaff, T. G., Shafigullin, M. N., Khoury, J. T., Vezmar, I., Whetten, R. L., Cullen, W. G., First, P. N., Gutiérrez-Wing, C., Ascensio, J., and Jose-Yacamán, M. J., J. Phys. Chem. B 101, 7885 (1997). http://dx.doi.org/10.1021/jp971438x10.1021/jp971438xSuche in Google Scholar
[74] Johansson, M. P., Sundholm, D., and Vaara, J., Angew. Chem., Int. Ed. Engl. 43, 2678 (2004). http://dx.doi.org/10.1002/anie.20045398610.1002/anie.200453986Suche in Google Scholar PubMed
[75] Kulkarni, G. U., Thomas, R. J., and Rao, C. N. R., Pure Appl. Chem. 74, 1581 (2002). Suche in Google Scholar
[76] Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., and Whitesides, G. M., Chem. Rev. 105, 1103 (2005). http://dx.doi.org/10.1021/cr030078910.1021/cr0300789Suche in Google Scholar PubMed
[77] Sellers, H., Ulman, A., Shnidman, Y., and Eilers, J. E., J. Am. Chem. Soc. 115, 9389 (1993). http://dx.doi.org/10.1021/ja00074a00410.1021/ja00074a004Suche in Google Scholar
[78] Grönbeck, H., Curioni, A., and Andreoni, W., J. Am. Chem. Soc. 122, 3839 (2000). http://dx.doi.org/10.1021/ja993622x10.1021/ja993622xSuche in Google Scholar
[79] Fischer, D., Curioni, A., and Andreoni, W., Langmuir 19, 3567 (2003). http://dx.doi.org/10.1021/la034013c10.1021/la034013cSuche in Google Scholar
[80] Garcia, M. A., de la Venta, J., Crespo, P., Llopis, J., Penadés, S., Fernández, A., and Hernando, A., Phys. Rev. B 72, 241403 (2005). 10.1103/PhysRevB.72.241403Suche in Google Scholar
[81] Mulder, F. M., Stegink, T. A., Theil, R. C., de Jongh, L. J., and Schmid, G., Nature 367, 716 (1994). http://dx.doi.org/10.1038/367716a010.1038/367716a0Suche in Google Scholar
[82] Li, X. M., Huskens, J., and Reinhoudt, D. N., J. Mater. Chem. 14, 2954 (2004). http://dx.doi.org/10.1039/b406037g10.1039/b406037gSuche in Google Scholar
[83] Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., and Whyman, R., J. Chem. Soc., Chem. Commun. 1994, 801. 10.1039/C39940000801Suche in Google Scholar
[84] Brust, M., Fink, J., Bethell, D., Schiffrin, D. J., and Kiely, C., J. Chem. Soc., Chem. Commun. 1995, 1655. 10.1039/c39950001655Suche in Google Scholar
[85] Turkevich, J., Stevenson, P. C., and Hillier, J., Discuss. Faraday Soc. 11, 55 (1951). http://dx.doi.org/10.1039/df951110005510.1039/df9511100055Suche in Google Scholar
[86] Hostetler, M. J., Templeton, A. C., and Murray, R. W., Langmuir 15, 3782 (1999). http://dx.doi.org/10.1021/la981598f10.1021/la981598fSuche in Google Scholar
[87] Fenter, P., Schreiber, F., Berman, L., Scoles, G., Eisenberger, P., and Bedzyk, M. J., Surf. Sci. 413, 213 (1998). http://dx.doi.org/10.1016/S0039-6028(98)00428-210.1016/S0039-6028(98)00428-2Suche in Google Scholar
[88] Masens, C., Ford, M. J., and Cortie, M. B., Surf. Sci. 580, 19 (2005). http://dx.doi.org/10.1016/j.susc.2005.01.04710.1016/j.susc.2005.01.047Suche in Google Scholar
[89] Giersig, M. and Mulvaney, P., Langmuir 9, 3408 (1993). http://dx.doi.org/10.1021/la00036a01410.1021/la00036a014Suche in Google Scholar
[90] Templeton, A. C., Wuelfing, W. P., and Murray, R. W., Acc. Chem. Res. 33, 27 (2000). http://dx.doi.org/10.1021/ar960266410.1021/ar9602664Suche in Google Scholar PubMed
[91] Cleveland, C. L., Landman, U., Shafigullin, M. N., Stephens, P. W., and Whetten, R. L., Z. Phys. D: At. Mol. Clusters 40, 503 (1997). http://dx.doi.org/10.1007/s00460005026310.1007/s004600050263Suche in Google Scholar
[92] Hudgins, R. R., Imai, M., Jarrold, M. F., and Dugourd, P., J. Chem. Phys. 111, 7865 (1999). http://dx.doi.org/10.1063/1.48016410.1063/1.480164Suche in Google Scholar
[93] Fischer, D., Andreoni, W., Curioni, A., Grönbeck, H., Burkart, S., and Ganteför, G., Chem. Phys. Lett. 361, 389 (2002). http://dx.doi.org/10.1016/S0009-2614(02)00972-710.1016/S0009-2614(02)00972-7Suche in Google Scholar
[94] de Dios, A. C. and Abraham, A. E., J. Mol. Struct. 602, 209 (2002). http://dx.doi.org/10.1016/S0022-2860(01)00735-910.1016/S0022-2860(01)00735-9Suche in Google Scholar
[95] López-Cartes, C., Rojas, T. C., Litrán, R., Martínez-Martínez, D., de la Fuente, J. M., Penadés, S., and Fernández, A., J. Phys. Chem. B 109, 8761 (2005). http://dx.doi.org/10.1021/jp050184+10.1021/jp050184+Suche in Google Scholar
[96] Frenkel, A. I., Nemzer, S., Pister, I., Soussan, L., Harris, T., Sun, Y., and Rafailovich, M. H., J. Chem. Phys. 123, 184701 (2005). Suche in Google Scholar
[97] Garzón, I. L., Reyes-Nava, J. A., Rodríguez-Hernández, J. I., Sigal, I., Beltrán, M. R., and Michaelian, K., Phys. Rev. B 66, 073403 (2002). 10.1103/PhysRevB.66.073403Suche in Google Scholar
[98] Büttner, M., Kröger, H., Gerhards, I., Mathys, D., and Oelhafen, P., Thin Solid Films 495, 180 (2006). http://dx.doi.org/10.1016/j.tsf.2005.08.21110.1016/j.tsf.2005.08.211Suche in Google Scholar
[99] Andreoni, W., Curioni, A., and Grönbeck, H., Int. J. Quantum Chem. 80, 598 (2000). http://dx.doi.org/10.1002/1097-461X(2000)80:4/5<598::AID-QUA9>3.0.CO;2-W10.1002/1097-461X(2000)80:4/5<598::AID-QUA9>3.0.CO;2-WSuche in Google Scholar
[100] Yourdshahyan, Y., Zhang, H. K., and Rappe, A. M., Phys. Rev. B 63, 081405 (2001). 10.1103/PhysRevB.63.081405Suche in Google Scholar
[101] Morikawa, Y., Hayashi, T., Liew, C. C., and Nozoye, H., Surf. Sci. 507, 46 (2002). http://dx.doi.org/10.1016/S0039-6028(02)01173-110.1016/S0039-6028(02)01173-1Suche in Google Scholar
[102] Grönbeck, H., Walter, M., and Häkkinen, H., J. Am. Chem. Soc. 128, 10268 (2006). Suche in Google Scholar
[103] Bravo-Pérez, G. and Garzón, I. L., THEOCHEM 619, 79 (2002). http://dx.doi.org/10.1016/S0166-1280(02)00548-110.1016/S0166-1280(02)00548-1Suche in Google Scholar
[104] Häkkinen, H., Walter, M., and Grönbeck, H., J. Phys. Chem. B 110, 9927 (2006). http://dx.doi.org/10.1021/jp061978710.1021/jp0619787Suche in Google Scholar
[105] Cleveland, C. L., Landman, U., Schaaff, T. G., Shafigullin, M. N., Stephens, P. W., and Whetten, R. L., Phys. Rev. Lett. 79, 1873 (1997). http://dx.doi.org/10.1103/PhysRevLett.79.187310.1103/PhysRevLett.79.1873Suche in Google Scholar
[106] Häkkinen, H., Barnett, R. N., and Landman, U., Phys. Rev. Lett. 82, 3264 (1999). http://dx.doi.org/10.1103/PhysRevLett.82.326410.1103/PhysRevLett.82.3264Suche in Google Scholar
[107] Garzón, I. L., Rovira, C., Michaelian, K., Beltrán, M. R., Ordejón, P., Junquera, J., Sánchez-Portal, D., Artacho, E., and Soler, J. M., Phys. Rev. Lett. 85, 5250 (2000). http://dx.doi.org/10.1103/PhysRevLett.85.525010.1103/PhysRevLett.85.5250Suche in Google Scholar
[108] Crespo, P., Litrán, R., Rojas, T. C., Multigner, M., de la Fuente, J. M., Sánchez-López, J. C., García, M. A., Hernando, A., Penadés, S., and Fernández, A., Phys. Rev. Lett. 93, 087204 (2004). Suche in Google Scholar
[109] Hövel, H., Fritz, S., Hilger, A., Kreibig, U., and Vollmer, M., Phys. Rev. B 48, 18178 (1993). 10.1103/PhysRevB.48.18178Suche in Google Scholar
[110] Yamamoto, Y. and Hori, H., Rev. Adv. Mater. Sci. 12, 23 (2006). http://dx.doi.org/10.4028/www.scientific.net/AMR.11-12.2310.4028/www.scientific.net/AMR.11-12.23Suche in Google Scholar
[111] Simard, J., Briggs, C., Boal, A. K., and Rotello, V. M., Chem. Commun. 2000, 1943. 10.1039/b004162iSuche in Google Scholar
[112] Montalti, M., Prodi, L., Zaccheroni, N., Baxter, R., Teobaldi, G., and Zerbetto, F., Langmuir 19, 5172 (2003). http://dx.doi.org/10.1021/la034581s10.1021/la034581sSuche in Google Scholar
[113] Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R. R., and Sastry, M., Langmuir 21, 10644 (2005). 10.1021/la0513712Suche in Google Scholar
[114] You, C. C., De, M., Han, G., and Rotello, V. M., J. Am. Chem. Soc. 127, 12873 (2005). Suche in Google Scholar
[115] Zhang, C. X., Zhang, Y., Wang, X., Tang, Z. M., and Lu, Z. H., Anal. Biochem. 320, 136 (2003). http://dx.doi.org/10.1016/S0003-2697(03)00353-110.1016/S0003-2697(03)00353-1Suche in Google Scholar
[116] Han, G., You, C. C., Kim, B. J., Turingan, R. S., Forbes, N. S., Martin, C. T., and Rotello, V. M., Angew. Chem., Int. Ed. Engl. 45, 3165 (2006). http://dx.doi.org/10.1002/anie.20060021410.1002/anie.200600214Suche in Google Scholar
[117] Hong, R., Han, G., Fernández, J. M., Kim, B. J., Forbes, N. S., and Rotello, V. M., J. Am. Chem. Soc. 128, 1078 (2006). http://dx.doi.org/10.1021/ja056726i10.1021/ja056726iSuche in Google Scholar
[118] Oishi, M., Nakaogami, J., Ishii, T., and Nagasaki, Y., Chem. Lett. 35, 1046 (2006). http://dx.doi.org/10.1246/cl.2006.104610.1246/cl.2006.1046Suche in Google Scholar
[119] Joshi, H. M., Bhumkar, D. R., Joshi, K., Pokharkar, V., and Sastry, M., Langmuir 22, 300 (2006). http://dx.doi.org/10.1021/la051982u10.1021/la051982uSuche in Google Scholar
[120] Gin, H. and Rigalleau, V., Diabetes Metab. 26, 265 (2000). Suche in Google Scholar
[121] de la Fuente, J. M. and Penadés, S., Glycoconjugate J. 21, 149 (2004). http://dx.doi.org/10.1023/B:GLYC.0000044846.80014.cb10.1023/B:GLYC.0000044846.80014.cbSuche in Google Scholar
[122] de la Fuente, J. M., Barrientos, A. G., Rojas, T. C., Rojo, J., Cañada, J., Fernández, A., and Penadés, S., Angew. Chem., Int. Ed. Engl. 40, 2257 (2001). http://dx.doi.org/10.1002/1521-3773(20010618)40:12<2257::AID-ANIE2257>3.0.CO;2-S10.1002/1521-3773(20010618)40:12<2257::AID-ANIE2257>3.0.CO;2-SSuche in Google Scholar
[123] Mammen, M., Choi, S. K., and Whitesides, G. M., Angew. Chem., Int. Ed. Engl. 37, 2755 (1998). http://dx.doi.org/10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-310.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3Suche in Google Scholar
[124] Houseman, B. T. and Mrksich, M., in Host-Guest Chemistry, Chemistry and Material Science, Vol. 218 p. 1. Springer, Berlin, 2001. 10.1007/3-540-45010-6_1Suche in Google Scholar
[125] Hang, H. C. and Bertozzi, C. R., Acc. Chem. Res. 34, 727 (2001). http://dx.doi.org/10.1021/ar990157010.1021/ar9901570Suche in Google Scholar
[126] Lindhorst, T. K., in Host-Guest Chemistry, Chemistry and Material Science, Vol. 218, p. 201. Springer, Berlin, 2001. 10.1007/3-540-45010-6_7Suche in Google Scholar
[127] Kim, Y. and Zimmerman, S. C., Curr. Opin. Chem. Biol. 2, 733 (1998). http://dx.doi.org/10.1016/S1367-5931(98)80111-710.1016/S1367-5931(98)80111-7Suche in Google Scholar
[128] Larsen, K., Thygesen, M. B., Guillaumie, F., Willats, W. G. T., and Jensen, K. J., Carbohydr. Res. 341, 1209 (2006). http://dx.doi.org/10.1016/j.carres.2006.04.04510.1016/j.carres.2006.04.045Suche in Google Scholar
[129] Varki, A., Glycobiology 3, 97 (1993). http://dx.doi.org/10.1093/glycob/3.2.9710.1093/glycob/3.2.97Suche in Google Scholar
[130] Hakomori, S., An. Acad. Bras. Cienc. 76, 553 (2004). Suche in Google Scholar
[131] Geyer, A., Gege, C. and Schmidt, R. R., Angew. Chem., Int. Ed. Engl. 39, 3246 (2000). Suche in Google Scholar
[132] de la Fuente, J. M. and Penadés, S., Tetrahedron: Asymmetry 13, 1879 (2002). http://dx.doi.org/10.1016/S0957-4166(02)00480-910.1016/S0957-4166(02)00480-9Suche in Google Scholar
[133] Kojima, N., Fenderson, B. A., Stroud, M. R., Goldberg, R. I., Habermann, R., Toyokuni, T., and Hakomori, S. I., Glycoconjugate J. 11, 238 (1994). http://dx.doi.org/10.1007/BF0073122410.1007/BF00731224Suche in Google Scholar PubMed
[134] Iwabuchi, K., Yamamura, S., Prinetti, A., Handa, K., and Hakomori, S., J. Biol. Chem. 273, 9130 (1998). http://dx.doi.org/10.1074/jbc.273.15.913010.1074/jbc.273.15.9130Suche in Google Scholar PubMed
[135] Kojima, N. and Hakomori, S., J. Biol. Chem. 264, 20159 (1989). Suche in Google Scholar
[136] Fenderson, B. A., Eddy, E. M., and Hakomori, S., BioEssays 12, 173 (1990). http://dx.doi.org/10.1002/bies.95012040610.1002/bies.950120406Suche in Google Scholar PubMed
[137] de Souza, A. C., Halkes, K. M., Meeldijk, J. D., Verkleij, A. J., Vliegenthart, J. F. G., and Kamerling, J. P., Chembiochem 6, 828 (2005). http://dx.doi.org/10.1002/cbic.20040038010.1002/cbic.200400380Suche in Google Scholar PubMed
[138] Spillmann, D., Hard, K., Thomas-Oates, J., Vliegenthart, J. F. G., Misevic, G., Burger, M. M., and Finne, J., J. Biol. Chem. 268, 13378 (1993). Suche in Google Scholar
[139] Yu, S., Kojima, N., Hakomori, S., Kudo, S., Inoue, S., and Inoue, Y., Proc. Natl. Acad. Sci. U. S. A. 99, 2854 (2002). http://dx.doi.org/10.1073/pnas.05270759910.1073/pnas.052707599Suche in Google Scholar PubMed PubMed Central
[140] Templeton, A. C., Chen, S. W., Gross, S. M., and Murray, R. W., Langmuir 15, 66 (1999). http://dx.doi.org/10.1021/la980842010.1021/la9808420Suche in Google Scholar
[141] de Paz, J. L., Ojeda, R., Barrientos, A. G., Penadés, S., and Martén-Lomas, M., Tetrahedron: Asymmetry 16, 149 (2005). http://dx.doi.org/10.1016/j.tetasy.2004.11.06610.1016/j.tetasy.2004.11.066Suche in Google Scholar
[142] Barrientos, A. G., de la Fuente, J. M., Rojas, T. C., Fernández, A., and Penadés, S., Chem. Eur. J. 9, 1909 (2003). http://dx.doi.org/10.1002/chem.20020454410.1002/chem.200204544Suche in Google Scholar
[143] Rojas, T. C., de la Fuente, J. M., Barrientos, A. G., Penadés, S., Ponsonnet, L., and Fernández, A., Adv. Mater. 14, 585 (2002). http://dx.doi.org/10.1002/1521-4095(20020418)14:8<585::AID-ADMA585>3.0.CO;2-W10.1002/1521-4095(20020418)14:8<585::AID-ADMA585>3.0.CO;2-WSuche in Google Scholar
[144] Ingram, R. S., Hostetler, M. J., and Murray, R. W., J. Am. Chem. Soc. 119, 9175 (1997). http://dx.doi.org/10.1021/ja971734n10.1021/ja971734nSuche in Google Scholar
[145] Rothrock, A. R., Donkers, R. L., and Schoenfisch, M. H., J. Am. Chem. Soc. 127, 9362 (2005). http://dx.doi.org/10.1021/ja052027u10.1021/ja052027uSuche in Google Scholar
[146] Fan, H. Y., Leve, E. W., Scullin, C., Gabaldon, J., Tallant, D., Bunge, S., Boyle, T., Wilson, M. C., and Brinker, C. J., Nano Lett. 5, 645 (2005). http://dx.doi.org/10.1021/nl050017l10.1021/nl050017lSuche in Google Scholar
[147] You, C. C., Verma, A., and Rotello, V. M., Soft Matter 2, 190 (2006). http://dx.doi.org/10.1039/b517354j10.1039/b517354jSuche in Google Scholar
[148] Otsuka, H., Akiyama, Y., Nagasaki, Y., and Kataoka, K., J. Am. Chem. Soc. 123, 8226 (2001). http://dx.doi.org/10.1021/ja010437m10.1021/ja010437mSuche in Google Scholar
[149] Reynolds, A. J., Haines, A. H., and Russell, D. A., Langmuir 22, 1156 (2006). http://dx.doi.org/10.1021/la052261y10.1021/la052261ySuche in Google Scholar
[150] Hone, D. C., Haines, A. H., and Russell, D. A., Langmuir 19, 7141 (2003). http://dx.doi.org/10.1021/la034358v10.1021/la034358vSuche in Google Scholar
[151] Sugunan, A., Thanachayanont, C., Dutta, J., and Hilborn, J. G., Sci. Technol. Adv. Mater. 6, 335 (2005). http://dx.doi.org/10.1016/j.stam.2005.03.00710.1016/j.stam.2005.03.007Suche in Google Scholar
[152] Halkes, K. M., de Souza, A. C., Maljaars, C. E. P., Gerwig, G. J., and Kamerling, J. P., Eur. J. Org. Chem. 2005, 3650. 10.1002/ejoc.200500256Suche in Google Scholar
[153] Aslan, K., Zhang, J., Lakowicz, J. R., and Geddes, C. D., J. Fluorescence 14, 391 (2004). http://dx.doi.org/10.1023/B:JOFL.0000031820.17358.2810.1023/B:JOFL.0000031820.17358.28Suche in Google Scholar
[154] Schellenberger, E. A., Reynolds, F., Weissleder, R., and Josephson, L., Chembiochem 5, 275 (2004). http://dx.doi.org/10.1002/cbic.20030071310.1002/cbic.200300713Suche in Google Scholar
[155] Qi, L. F., Xu, Z. R., Jiang, X., Li, Y., and Wang, M. Q., Bioorg. Med. Chem. Lett. 15, 1397 (2005). http://dx.doi.org/10.1016/j.bmcl.2005.01.01010.1016/j.bmcl.2005.01.010Suche in Google Scholar
[156] Roos, E. and Dingemans, K. P., BBA — Rev. Cancer 560, 135 (1979). 10.1016/0304-419X(79)90005-2Suche in Google Scholar
[157] Hakomori, S. I., Proc. Natl. Acad. Sci. U. S. A. 99, 225 (2002). http://dx.doi.org/10.1073/pnas.01254089910.1073/pnas.012540899Suche in Google Scholar
[158] Hakomori, S. I., Adv. Cancer Res. 52, 257 (1989). http://dx.doi.org/10.1016/S0065-230X(08)60215-810.1016/S0065-230X(08)60215-8Suche in Google Scholar
[159] Chen, Y. J., Chen, S. H., Chien, Y. Y., Chang, Y. W., Liao, H. K., Chang, C. Y., Jan, M. D., Wang, K. T., and Lin, C. C., Chembiochem 6, 1169 (2005). http://dx.doi.org/10.1002/cbic.20050002310.1002/cbic.200500023Suche in Google Scholar PubMed
[160] Takae, S., Akiyama, Y., Otsuka, H., Nakamura, T., Nagasaki, Y., and Kataoka, K., Biomacromolecules 6, 818 (2005). http://dx.doi.org/10.1021/bm049427e10.1021/bm049427eSuche in Google Scholar PubMed
[161] Lin, C. C., Yeh, Y. C., Yang, C. Y., Chen, C. L., Chen, G. F., Chen, C. C., and Wu, Y. C., J. Am. Chem. Soc. 124, 3508 (2002). http://dx.doi.org/10.1021/ja020090310.1021/ja0200903Suche in Google Scholar PubMed
[162] Aslan, K., Lakowicz, J. R., and Geddes, C. D., Anal. Biochem. 330, 145 (2004). http://dx.doi.org/10.1016/j.ab.2004.03.03210.1016/j.ab.2004.03.032Suche in Google Scholar PubMed PubMed Central
© 2007 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Step by step towards understanding gold glyconanoparticles as elements of the nanoworld
- Structure—activity relationships for in vitro oxime reactivation of chlorpyrifos-inhibited acetylcholinesterase
- Separation and characterization of products from thermal cracking of individual and mixed polyalkenes
- Mobility of important toxic analytes in urban dust and simulated air filters determined by sequential extraction and GFAAS/ICP-OES methods
- Effect of addition of ameliorative materials on the distribution of As, Cd, Pb, and Zn in extractable soil fractions
- Effect of gamma irradiation on trichromatic values of spices
- Homo- and heteronuclear complexes of a new, vicinal dioxime ligand
- Synthesis of new triphenodithiazine- and indolocarbazolediones of biological interest
- Dielectric relaxation of butyl acrylate—alcohol mixtures using time domain reflectometry
- Ab initio study of small coinage metal telluride clusters AunTem (n, m = 1, 2)
- Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules
- Comparison of spectrophotometric and HPLC methods for determination of lipid peroxidation products in rat brain tissues
- Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors
- Mechanism of thermal decomposition of cobalt acetate tetrahydrate
- Three-component, one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones catalyzed by bromodimethylsulfonium bromide
Artikel in diesem Heft
- Step by step towards understanding gold glyconanoparticles as elements of the nanoworld
- Structure—activity relationships for in vitro oxime reactivation of chlorpyrifos-inhibited acetylcholinesterase
- Separation and characterization of products from thermal cracking of individual and mixed polyalkenes
- Mobility of important toxic analytes in urban dust and simulated air filters determined by sequential extraction and GFAAS/ICP-OES methods
- Effect of addition of ameliorative materials on the distribution of As, Cd, Pb, and Zn in extractable soil fractions
- Effect of gamma irradiation on trichromatic values of spices
- Homo- and heteronuclear complexes of a new, vicinal dioxime ligand
- Synthesis of new triphenodithiazine- and indolocarbazolediones of biological interest
- Dielectric relaxation of butyl acrylate—alcohol mixtures using time domain reflectometry
- Ab initio study of small coinage metal telluride clusters AunTem (n, m = 1, 2)
- Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules
- Comparison of spectrophotometric and HPLC methods for determination of lipid peroxidation products in rat brain tissues
- Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors
- Mechanism of thermal decomposition of cobalt acetate tetrahydrate
- Three-component, one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones catalyzed by bromodimethylsulfonium bromide