Startseite Step by step towards understanding gold glyconanoparticles as elements of the nanoworld
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Step by step towards understanding gold glyconanoparticles as elements of the nanoworld

  • L. Sihelníková EMAIL logo und I. Tvaroška
Veröffentlicht/Copyright: 1. August 2007
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Gold glyconanoparticles as elements of the nanoworld belong to a group of particles with diameters not exceeding 100 nm. This size scale makes them conformable to common biomolecules. A gold glyconanoparticle consists of three different parts: the gold core, the linkers, and saccharide ligands. The glycocalyx-like surface of these particles mimics the presentation of carbohydrate epitopes of cell surface glycoconjugates. As a consequence, gold glyconanoparticles provide inimitable tools for probing and manipulating the mechanisms of biological processes based on carbohydrate interactions. Each component of the gold glyconanoparticle has a profound effect on the nanoparticle’s properties. Therefore, in this review, elucidation of the overall behavior and properties of gold glyconanoparticles is based on a step by step (component by component) description of the system.

[1] Link, S. and El-Sayed, M. A., Int. Rev. Phys. Chem. 19, 409 (2000). http://dx.doi.org/10.1080/0144235005003418010.1080/01442350050034180Suche in Google Scholar

[2] Daniel, M. C. and Astruc, D., Chem. Rev. 104, 293 (2004). http://dx.doi.org/10.1021/cr030698+10.1021/cr030698+Suche in Google Scholar

[3] Brust, M. and Kiely, C. J., Colloids Surf., A 202, 175 (2002). http://dx.doi.org/10.1016/S0927-7757(01)01087-110.1016/S0927-7757(01)01087-1Suche in Google Scholar

[4] Zanchet, D., Tolentino, H., Alves, M. C. M., Alves, O. L., and Ugarte, D., Chem. Phys. Lett. 323, 167 (2000). http://dx.doi.org/10.1016/S0009-2614(00)00424-310.1016/S0009-2614(00)00424-3Suche in Google Scholar

[5] Penn, S. G., He, L., and Natan, M. J., Curr. Opin. Chem. Biol. 7, 609 (2003). http://dx.doi.org/10.1016/j.cbpa.2003.08.01310.1016/j.cbpa.2003.08.013Suche in Google Scholar

[6] Ozkan, M., Drug Discovery Today 9, 1065 (2004). http://dx.doi.org/10.1016/S1359-6446(04)03291-X10.1016/S1359-6446(04)03291-XSuche in Google Scholar

[7] Tan, W. B. and Zhang, Y., J. Biomed. Mater. Res., Part A 75A, 56 (2005). http://dx.doi.org/10.1002/jbm.a.3041010.1002/jbm.a.30410Suche in Google Scholar

[8] Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A. P., Science 281, 2013 (1998). http://dx.doi.org/10.1126/science.281.5385.201310.1126/science.281.5385.2013Suche in Google Scholar

[9] Chan, W. C. W., Maxwell, D. J., Gao, X. H., Bailey, R. E., Han, M. Y., and Nie, S. M., Curr. Opin. Biotechnol. 13, 40 (2002). http://dx.doi.org/10.1016/S0958-1669(02)00282-310.1016/S0958-1669(02)00282-3Suche in Google Scholar

[10] Norris, D. J. and Bawendi, M. G., Phys. Rev. B 53, 16338 (1996). http://dx.doi.org/10.1103/PhysRevB.53.1633810.1103/PhysRevB.53.16338Suche in Google Scholar

[11] Batlle, X. and Labarta, A., J. Phys. D: Appl. Phys. 35, R15 (2002). http://dx.doi.org/10.1088/0022-3727/35/6/20110.1088/0022-3727/35/6/201Suche in Google Scholar

[12] Tartaj, P., Morales, M. D., Veintemillas-Verdaguer, S., González-Carreño, T., and Serna, C. J., J. Phys. D: Appl. Phys. 36, R182 (2003). http://dx.doi.org/10.1088/0022-3727/36/13/20210.1088/0022-3727/36/13/202Suche in Google Scholar

[13] Hilger, I., Andra, W., Bahring, R., Daum, A., Hergt, R., and Kaiser, W. A., Invest. Radiol. 32, 705 (1997). http://dx.doi.org/10.1097/00004424-199711000-0000910.1097/00004424-199711000-00009Suche in Google Scholar

[14] Andrä, W., d’Ambly, C. G., Hergt, R., Hilger, I., and Kaiser, W. A., J. Magn. Magn. Mater. 194, 197 (1999). http://dx.doi.org/10.1016/S0304-8853(98)00552-610.1016/S0304-8853(98)00552-6Suche in Google Scholar

[15] Hilger, I., Hergt, R., and Kaiser, W. A., Invest. Radiol. 35, 170 (2000). http://dx.doi.org/10.1097/00004424-200003000-0000310.1097/00004424-200003000-00003Suche in Google Scholar

[16] De la Fuente, J. M. and Penadés, S., BBA-Gen. Subjects 1760, 636 (2006). http://dx.doi.org/10.1016/j.bbagen.2005.12.00110.1016/j.bbagen.2005.12.001Suche in Google Scholar

[17] Joubert, J. C., An. Quim. 93, S70 (1997). Suche in Google Scholar

[18] Berry, C. C. and Curtis, A. S. G., J. Phys. D: Appl. Phys. 36, R198 (2003). http://dx.doi.org/10.1088/0022-3727/36/13/20310.1088/0022-3727/36/13/203Suche in Google Scholar

[19] Kim, D. K., Zhang, Y., Kehr, J., Klason, T., Bjelke, B., and Muhammed, M., J. Magn. Magn. Mater. 225, 256 (2001). http://dx.doi.org/10.1016/S0304-8853(00)01255-510.1016/S0304-8853(00)01255-5Suche in Google Scholar

[20] Chen, M. S. and Goodman, D. W., Science 306, 252 (2004). http://dx.doi.org/10.1126/science.110242010.1126/science.1102420Suche in Google Scholar PubMed

[21] Campbell, C. T., Science 306, 234 (2004). http://dx.doi.org/10.1126/science.110424610.1126/science.1104246Suche in Google Scholar PubMed

[22] Immunolabeling for Electron Microscopy (Polak, J. M. and Varndell, I. M., Editors). Elsevier, Amsterdam, 1984. Suche in Google Scholar

[23] Chah, S., Hammond, M. R., and Zare, R. N., Chem. Biol. 12, 323 (2005). http://dx.doi.org/10.1016/j.chembiol.2005.01.01310.1016/j.chembiol.2005.01.013Suche in Google Scholar

[24] Nath, N. and Chilkoti, A., Anal. Chem. 74, 504 (2002). http://dx.doi.org/10.1021/ac015657x10.1021/ac015657xSuche in Google Scholar

[25] Luedtke, W. D. and Landman, U., J. Phys. Chem. B 102, 6566 (1998). http://dx.doi.org/10.1021/jp981745i10.1021/jp981745iSuche in Google Scholar

[26] Katz, E. and Willner, I., Angew. Chem., Int. Ed. 43, 6042 (2004). http://dx.doi.org/10.1002/anie.20040065110.1002/anie.200400651Suche in Google Scholar

[27] Rojo, J., Díaz, V., de la Fuente, J. M., Segura, I., Barrientos, A. G., Riese, H. H., Bernade, A., and Penadés, S., Chembiochem. 5, 291 (2004). http://dx.doi.org/10.1002/cbic.20030072610.1002/cbic.200300726Suche in Google Scholar

[28] Fernández, E. M., Soler, J. M., Garzón, I. L., and Balbás, L. C., Phys. Rev. B 70, 165403 (2004). 10.1103/PhysRevB.70.165403Suche in Google Scholar

[29] Pyykkö, P., Angew. Chem., Int. Ed. 43, 4412 (2004). http://dx.doi.org/10.1002/anie.20030062410.1002/anie.200300624Suche in Google Scholar

[30] Agraït, N., Yeyati, A. L., and van Ruitenbeek, J. M., Phys. Rep. 377, 81 (2003). http://dx.doi.org/10.1016/S0370-1573(02)00633-610.1016/S0370-1573(02)00633-6Suche in Google Scholar

[31] Loo, C., Lowery, A., Halas, N., West, J., and Drezek, R., Nano Lett. 5, 709 (2005). http://dx.doi.org/10.1021/nl050127s10.1021/nl050127sSuche in Google Scholar PubMed

[32] Yoon, B., Häkkinen, H., Landman, U., Worz, A. S., Antonietti, J. M., Abbet, S., Judai, K., and Heiz, U., Science 307, 403 (2005). http://dx.doi.org/10.1126/science.110416810.1126/science.1104168Suche in Google Scholar PubMed

[33] Koskinen, P., Häkkinen, H., Seifert, G., Sanna, S., Frauenheim, T., and Moseler, M., New J. Phys. 8, 9 (2006). http://dx.doi.org/10.1088/1367-2630/8/1/00910.1088/1367-2630/8/1/009Suche in Google Scholar

[34] Doye, J. P. K. and Wales, D. J., New J. Chem. 22, 733 (1998). http://dx.doi.org/10.1039/a709249k10.1039/a709249kSuche in Google Scholar

[35] Kronik, L., Fromherz, R., Ko, E., Ganteför, G., and Chelikowsky, J. R., Nat. Mater. 1, 49 (2002). http://dx.doi.org/10.1038/nmat70410.1038/nmat704Suche in Google Scholar

[36] de Heer, W. A., Rev. Mod. Phys. 65, 611 (1993). http://dx.doi.org/10.1103/RevModPhys.65.61110.1103/RevModPhys.65.611Suche in Google Scholar

[37] Herlert, A., Krückeberg, S., Schweikhard, L., Vogel, M., and Walther, C., J. Electron Spectrosc. 106, 179 (2000). http://dx.doi.org/10.1016/S0368-2048(99)00075-410.1016/S0368-2048(99)00075-4Suche in Google Scholar

[38] Li, J., Li, X., Zhai, H. J., and Wang, L. S., Science 299, 864 (2003). http://dx.doi.org/10.1126/science.107987910.1126/science.1079879Suche in Google Scholar PubMed

[39] Koga, K., Phys. Rev. Lett. 96, 115501 (2006). Suche in Google Scholar

[40] Baletto, F. and Ferrando, R., Rev. Mod. Phys. 77, 371 (2005). http://dx.doi.org/10.1103/RevModPhys.77.37110.1103/RevModPhys.77.371Suche in Google Scholar

[41] Chushak, Y. and Bartell, L. S., Eur. Phys. J. D 16, 43 (2001). http://dx.doi.org/10.1007/s10053017005610.1007/s100530170056Suche in Google Scholar

[42] Gardea-Torresdey, J. L., Tiemann, K. J., Gamez, G., Dokken, K., Tehuacanero, S., and José-Yacamán, M., J. Nanopart. Res. 1, 397 (1999). http://dx.doi.org/10.1023/A:101000891546510.1023/A:1010008915465Suche in Google Scholar

[43] Häkkinen, H., Moseler, M., Kostko, O., Morgner, N., Hoffmann, M. A., and von Issendorff, B., Phys. Rev. Lett. 93, 093401 (2004). Suche in Google Scholar

[44] Taylor, K. J., Pettiette-Hall, C. L., Cheshnovsky, O., and Smalley, R. E., J. Chem. Phys. 96, 3319 (1992). http://dx.doi.org/10.1063/1.46192710.1063/1.461927Suche in Google Scholar

[45] Jansen, M., Solid State Sci. 7, 1464 (2005). http://dx.doi.org/10.1016/j.solidstatesciences.2005.06.01510.1016/j.solidstatesciences.2005.06.015Suche in Google Scholar

[46] Schwerdtfeger, P., Heteroatom Chem. 13, 578 (2002). http://dx.doi.org/10.1002/hc.1009310.1002/hc.10093Suche in Google Scholar

[47] Pyykkö, P., Chem. Rev. 88, 563 (1988). http://dx.doi.org/10.1021/cr00085a00610.1021/cr00085a006Suche in Google Scholar

[48] Reiher, M. and Heß, B., in Modern Methods and Algorithms of Quantum Chemistry, Vol. 1. (Grotendorst, J., Editor.) p. 451. John von Neuman Institute for Computing, Jülich, 2000. Suche in Google Scholar

[49] Schmidbaur, H., Cronje, S., Djordjevic, B., and Schuster, O., Chem. Phys. 311, 151 (2005). http://dx.doi.org/10.1016/j.chemphys.2004.09.02310.1016/j.chemphys.2004.09.023Suche in Google Scholar

[50] Gu, X., Ji, M., Wei, S. H., and Gong, X. G., Phys. Rev. B 70, 205401 (2004). 10.1103/PhysRevB.70.205401Suche in Google Scholar

[51] Alamanova, D., Dong, Y., ur Rehman, H., Springborg, M., and Grigoryan, V. G., Comput. Lett. 1, 319 (2005). http://dx.doi.org/10.1163/15740400577661139410.1163/157404005776611394Suche in Google Scholar

[52] Bravo-Pérez, G., Garzón, I. L., and Novaro, O., THEOCHEM 493, 225 (1999). http://dx.doi.org/10.1016/S0166-1280(99)00243-210.1016/S0166-1280(99)00243-2Suche in Google Scholar

[53] Häkkinen, H. and Moseler, M., Comput. Mater. Sci. 35, 332 (2006). http://dx.doi.org/10.1016/j.commatsci.2004.08.01710.1016/j.commatsci.2004.08.017Suche in Google Scholar

[54] Ji, M., Gu, X., Li, X., Gong, X. G., Li, J., and Wang, L. S., Angew. Chem., Int. Ed. Engl. 44, 7119 (2005). http://dx.doi.org/10.1002/anie.20050279510.1002/anie.200502795Suche in Google Scholar PubMed

[55] Soler, J. M., Beltrán, M. R., Michaelian, K., Garzón, I. L., Ordejón, P., Sánchez-Portal, D., and Artacho, E., Phys. Rev. B 61, 5771 (2000). http://dx.doi.org/10.1103/PhysRevB.61.577110.1103/PhysRevB.61.5771Suche in Google Scholar

[56] Wolf, M. D. and Landman, U., J. Phys. Chem. A 102, 6129 (1998). http://dx.doi.org/10.1021/jp981459710.1021/jp9814597Suche in Google Scholar

[57] Garzón, I. L., Michaelian, K., Beltrán, M. R., Posada-Amarillas, A., Ordejón, P., Artacho, E., Sánchez-Portal, D., and Soler, J. M., Phys. Rev. Lett. 81, 1600 (1998). http://dx.doi.org/10.1103/PhysRevLett.81.160010.1103/PhysRevLett.81.1600Suche in Google Scholar

[58] Martin, T. P., Phys. Rep. 273, 199 (1996). http://dx.doi.org/10.1016/0370-1573(95)00083-610.1016/0370-1573(95)00083-6Suche in Google Scholar

[59] Koga, K., Ikeshoji, T., and Sugawara, K., Phys. Rev. Lett. 92, 115507 (2004). Suche in Google Scholar

[60] Liu, H. H., Jiang, E. Y., Bai, H. L., Wu, P., Li, Z. Q., and Sun, C. Q., THEOCHEM 728, 203 (2005). http://dx.doi.org/10.1016/j.theochem.2005.05.02510.1016/j.theochem.2005.05.025Suche in Google Scholar

[61] Doye, J. P. K. and Wales, D. J., Chem. Phys. Lett. 247, 339 (1995). Suche in Google Scholar

[62] Häkkinen, H., Yoon, B., Landman, U., Li, X., Zhai, H. J., and Wang, L. S., J. Phys. Chem. A 107, 6168 (2003). http://dx.doi.org/10.1021/jp035437i10.1021/jp035437iSuche in Google Scholar

[63] Xiao, L., Tollberg, B., Hu, X. K., and Wang, L. C., J. Chem. Phys. 124, 114309 (2006). Suche in Google Scholar

[64] Xiao, L. and Wang, L. C., Chem. Phys. Lett. 392, 452 (2004). http://dx.doi.org/10.1016/j.cplett.2004.05.09510.1016/j.cplett.2004.05.095Suche in Google Scholar

[65] Grönbeck, H. and Broqvist, P., Phys. Rev. B 71, 073408 (2005). 10.1103/PhysRevB.71.073408Suche in Google Scholar

[66] Häkkinen, H., Moseler, M., and Landman, U., Phys. Rev. Lett. 89, 033401 (2002). Suche in Google Scholar

[67] Arratia-Perez, R., Ramos, A. F., and Malli, G. L., Phys. Rev. B 39, 3005 (1989). http://dx.doi.org/10.1103/PhysRevB.39.300510.1103/PhysRevB.39.3005Suche in Google Scholar

[68] Wilson, N. T. and Johnston, R. L., Eur. Phys. J. D 12, 161 (2000). http://dx.doi.org/10.1007/s10053007005310.1007/s100530070053Suche in Google Scholar

[69] Sutton, A. P. and Chen, J., Philos. Mag. Lett. 61, 139 (1990). Suche in Google Scholar

[70] Doye, J. P. K. and Wales, D. J., J. Phys. B: At. Mol. Opt. 29, 4859 (1996). http://dx.doi.org/10.1088/0953-4075/29/21/00210.1088/0953-4075/29/21/002Suche in Google Scholar

[71] Soler, J. M., Garzón, I. L., and Joannopoulos, J. D., Solid State Commun. 117, 621 (2001). http://dx.doi.org/10.1016/S0038-1098(00)00493-210.1016/S0038-1098(00)00493-2Suche in Google Scholar

[72] Garzón, I. L., Beltrán, M. R., González, G., Gutierrez-González, I., Michaelian, K., Reyes-Nava, J. A., and Rodriguez-Hernández, J. I., Eur. Phys. J. D 24, 105 (2003). http://dx.doi.org/10.1140/epjd/e2003-00187-410.1140/epjd/e2003-00187-4Suche in Google Scholar

[73] Schaaff, T. G., Shafigullin, M. N., Khoury, J. T., Vezmar, I., Whetten, R. L., Cullen, W. G., First, P. N., Gutiérrez-Wing, C., Ascensio, J., and Jose-Yacamán, M. J., J. Phys. Chem. B 101, 7885 (1997). http://dx.doi.org/10.1021/jp971438x10.1021/jp971438xSuche in Google Scholar

[74] Johansson, M. P., Sundholm, D., and Vaara, J., Angew. Chem., Int. Ed. Engl. 43, 2678 (2004). http://dx.doi.org/10.1002/anie.20045398610.1002/anie.200453986Suche in Google Scholar PubMed

[75] Kulkarni, G. U., Thomas, R. J., and Rao, C. N. R., Pure Appl. Chem. 74, 1581 (2002). Suche in Google Scholar

[76] Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., and Whitesides, G. M., Chem. Rev. 105, 1103 (2005). http://dx.doi.org/10.1021/cr030078910.1021/cr0300789Suche in Google Scholar PubMed

[77] Sellers, H., Ulman, A., Shnidman, Y., and Eilers, J. E., J. Am. Chem. Soc. 115, 9389 (1993). http://dx.doi.org/10.1021/ja00074a00410.1021/ja00074a004Suche in Google Scholar

[78] Grönbeck, H., Curioni, A., and Andreoni, W., J. Am. Chem. Soc. 122, 3839 (2000). http://dx.doi.org/10.1021/ja993622x10.1021/ja993622xSuche in Google Scholar

[79] Fischer, D., Curioni, A., and Andreoni, W., Langmuir 19, 3567 (2003). http://dx.doi.org/10.1021/la034013c10.1021/la034013cSuche in Google Scholar

[80] Garcia, M. A., de la Venta, J., Crespo, P., Llopis, J., Penadés, S., Fernández, A., and Hernando, A., Phys. Rev. B 72, 241403 (2005). 10.1103/PhysRevB.72.241403Suche in Google Scholar

[81] Mulder, F. M., Stegink, T. A., Theil, R. C., de Jongh, L. J., and Schmid, G., Nature 367, 716 (1994). http://dx.doi.org/10.1038/367716a010.1038/367716a0Suche in Google Scholar

[82] Li, X. M., Huskens, J., and Reinhoudt, D. N., J. Mater. Chem. 14, 2954 (2004). http://dx.doi.org/10.1039/b406037g10.1039/b406037gSuche in Google Scholar

[83] Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., and Whyman, R., J. Chem. Soc., Chem. Commun. 1994, 801. 10.1039/C39940000801Suche in Google Scholar

[84] Brust, M., Fink, J., Bethell, D., Schiffrin, D. J., and Kiely, C., J. Chem. Soc., Chem. Commun. 1995, 1655. 10.1039/c39950001655Suche in Google Scholar

[85] Turkevich, J., Stevenson, P. C., and Hillier, J., Discuss. Faraday Soc. 11, 55 (1951). http://dx.doi.org/10.1039/df951110005510.1039/df9511100055Suche in Google Scholar

[86] Hostetler, M. J., Templeton, A. C., and Murray, R. W., Langmuir 15, 3782 (1999). http://dx.doi.org/10.1021/la981598f10.1021/la981598fSuche in Google Scholar

[87] Fenter, P., Schreiber, F., Berman, L., Scoles, G., Eisenberger, P., and Bedzyk, M. J., Surf. Sci. 413, 213 (1998). http://dx.doi.org/10.1016/S0039-6028(98)00428-210.1016/S0039-6028(98)00428-2Suche in Google Scholar

[88] Masens, C., Ford, M. J., and Cortie, M. B., Surf. Sci. 580, 19 (2005). http://dx.doi.org/10.1016/j.susc.2005.01.04710.1016/j.susc.2005.01.047Suche in Google Scholar

[89] Giersig, M. and Mulvaney, P., Langmuir 9, 3408 (1993). http://dx.doi.org/10.1021/la00036a01410.1021/la00036a014Suche in Google Scholar

[90] Templeton, A. C., Wuelfing, W. P., and Murray, R. W., Acc. Chem. Res. 33, 27 (2000). http://dx.doi.org/10.1021/ar960266410.1021/ar9602664Suche in Google Scholar PubMed

[91] Cleveland, C. L., Landman, U., Shafigullin, M. N., Stephens, P. W., and Whetten, R. L., Z. Phys. D: At. Mol. Clusters 40, 503 (1997). http://dx.doi.org/10.1007/s00460005026310.1007/s004600050263Suche in Google Scholar

[92] Hudgins, R. R., Imai, M., Jarrold, M. F., and Dugourd, P., J. Chem. Phys. 111, 7865 (1999). http://dx.doi.org/10.1063/1.48016410.1063/1.480164Suche in Google Scholar

[93] Fischer, D., Andreoni, W., Curioni, A., Grönbeck, H., Burkart, S., and Ganteför, G., Chem. Phys. Lett. 361, 389 (2002). http://dx.doi.org/10.1016/S0009-2614(02)00972-710.1016/S0009-2614(02)00972-7Suche in Google Scholar

[94] de Dios, A. C. and Abraham, A. E., J. Mol. Struct. 602, 209 (2002). http://dx.doi.org/10.1016/S0022-2860(01)00735-910.1016/S0022-2860(01)00735-9Suche in Google Scholar

[95] López-Cartes, C., Rojas, T. C., Litrán, R., Martínez-Martínez, D., de la Fuente, J. M., Penadés, S., and Fernández, A., J. Phys. Chem. B 109, 8761 (2005). http://dx.doi.org/10.1021/jp050184+10.1021/jp050184+Suche in Google Scholar

[96] Frenkel, A. I., Nemzer, S., Pister, I., Soussan, L., Harris, T., Sun, Y., and Rafailovich, M. H., J. Chem. Phys. 123, 184701 (2005). Suche in Google Scholar

[97] Garzón, I. L., Reyes-Nava, J. A., Rodríguez-Hernández, J. I., Sigal, I., Beltrán, M. R., and Michaelian, K., Phys. Rev. B 66, 073403 (2002). 10.1103/PhysRevB.66.073403Suche in Google Scholar

[98] Büttner, M., Kröger, H., Gerhards, I., Mathys, D., and Oelhafen, P., Thin Solid Films 495, 180 (2006). http://dx.doi.org/10.1016/j.tsf.2005.08.21110.1016/j.tsf.2005.08.211Suche in Google Scholar

[99] Andreoni, W., Curioni, A., and Grönbeck, H., Int. J. Quantum Chem. 80, 598 (2000). http://dx.doi.org/10.1002/1097-461X(2000)80:4/5<598::AID-QUA9>3.0.CO;2-W10.1002/1097-461X(2000)80:4/5<598::AID-QUA9>3.0.CO;2-WSuche in Google Scholar

[100] Yourdshahyan, Y., Zhang, H. K., and Rappe, A. M., Phys. Rev. B 63, 081405 (2001). 10.1103/PhysRevB.63.081405Suche in Google Scholar

[101] Morikawa, Y., Hayashi, T., Liew, C. C., and Nozoye, H., Surf. Sci. 507, 46 (2002). http://dx.doi.org/10.1016/S0039-6028(02)01173-110.1016/S0039-6028(02)01173-1Suche in Google Scholar

[102] Grönbeck, H., Walter, M., and Häkkinen, H., J. Am. Chem. Soc. 128, 10268 (2006). Suche in Google Scholar

[103] Bravo-Pérez, G. and Garzón, I. L., THEOCHEM 619, 79 (2002). http://dx.doi.org/10.1016/S0166-1280(02)00548-110.1016/S0166-1280(02)00548-1Suche in Google Scholar

[104] Häkkinen, H., Walter, M., and Grönbeck, H., J. Phys. Chem. B 110, 9927 (2006). http://dx.doi.org/10.1021/jp061978710.1021/jp0619787Suche in Google Scholar

[105] Cleveland, C. L., Landman, U., Schaaff, T. G., Shafigullin, M. N., Stephens, P. W., and Whetten, R. L., Phys. Rev. Lett. 79, 1873 (1997). http://dx.doi.org/10.1103/PhysRevLett.79.187310.1103/PhysRevLett.79.1873Suche in Google Scholar

[106] Häkkinen, H., Barnett, R. N., and Landman, U., Phys. Rev. Lett. 82, 3264 (1999). http://dx.doi.org/10.1103/PhysRevLett.82.326410.1103/PhysRevLett.82.3264Suche in Google Scholar

[107] Garzón, I. L., Rovira, C., Michaelian, K., Beltrán, M. R., Ordejón, P., Junquera, J., Sánchez-Portal, D., Artacho, E., and Soler, J. M., Phys. Rev. Lett. 85, 5250 (2000). http://dx.doi.org/10.1103/PhysRevLett.85.525010.1103/PhysRevLett.85.5250Suche in Google Scholar

[108] Crespo, P., Litrán, R., Rojas, T. C., Multigner, M., de la Fuente, J. M., Sánchez-López, J. C., García, M. A., Hernando, A., Penadés, S., and Fernández, A., Phys. Rev. Lett. 93, 087204 (2004). Suche in Google Scholar

[109] Hövel, H., Fritz, S., Hilger, A., Kreibig, U., and Vollmer, M., Phys. Rev. B 48, 18178 (1993). 10.1103/PhysRevB.48.18178Suche in Google Scholar

[110] Yamamoto, Y. and Hori, H., Rev. Adv. Mater. Sci. 12, 23 (2006). http://dx.doi.org/10.4028/www.scientific.net/AMR.11-12.2310.4028/www.scientific.net/AMR.11-12.23Suche in Google Scholar

[111] Simard, J., Briggs, C., Boal, A. K., and Rotello, V. M., Chem. Commun. 2000, 1943. 10.1039/b004162iSuche in Google Scholar

[112] Montalti, M., Prodi, L., Zaccheroni, N., Baxter, R., Teobaldi, G., and Zerbetto, F., Langmuir 19, 5172 (2003). http://dx.doi.org/10.1021/la034581s10.1021/la034581sSuche in Google Scholar

[113] Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R. R., and Sastry, M., Langmuir 21, 10644 (2005). 10.1021/la0513712Suche in Google Scholar

[114] You, C. C., De, M., Han, G., and Rotello, V. M., J. Am. Chem. Soc. 127, 12873 (2005). Suche in Google Scholar

[115] Zhang, C. X., Zhang, Y., Wang, X., Tang, Z. M., and Lu, Z. H., Anal. Biochem. 320, 136 (2003). http://dx.doi.org/10.1016/S0003-2697(03)00353-110.1016/S0003-2697(03)00353-1Suche in Google Scholar

[116] Han, G., You, C. C., Kim, B. J., Turingan, R. S., Forbes, N. S., Martin, C. T., and Rotello, V. M., Angew. Chem., Int. Ed. Engl. 45, 3165 (2006). http://dx.doi.org/10.1002/anie.20060021410.1002/anie.200600214Suche in Google Scholar

[117] Hong, R., Han, G., Fernández, J. M., Kim, B. J., Forbes, N. S., and Rotello, V. M., J. Am. Chem. Soc. 128, 1078 (2006). http://dx.doi.org/10.1021/ja056726i10.1021/ja056726iSuche in Google Scholar

[118] Oishi, M., Nakaogami, J., Ishii, T., and Nagasaki, Y., Chem. Lett. 35, 1046 (2006). http://dx.doi.org/10.1246/cl.2006.104610.1246/cl.2006.1046Suche in Google Scholar

[119] Joshi, H. M., Bhumkar, D. R., Joshi, K., Pokharkar, V., and Sastry, M., Langmuir 22, 300 (2006). http://dx.doi.org/10.1021/la051982u10.1021/la051982uSuche in Google Scholar

[120] Gin, H. and Rigalleau, V., Diabetes Metab. 26, 265 (2000). Suche in Google Scholar

[121] de la Fuente, J. M. and Penadés, S., Glycoconjugate J. 21, 149 (2004). http://dx.doi.org/10.1023/B:GLYC.0000044846.80014.cb10.1023/B:GLYC.0000044846.80014.cbSuche in Google Scholar

[122] de la Fuente, J. M., Barrientos, A. G., Rojas, T. C., Rojo, J., Cañada, J., Fernández, A., and Penadés, S., Angew. Chem., Int. Ed. Engl. 40, 2257 (2001). http://dx.doi.org/10.1002/1521-3773(20010618)40:12<2257::AID-ANIE2257>3.0.CO;2-S10.1002/1521-3773(20010618)40:12<2257::AID-ANIE2257>3.0.CO;2-SSuche in Google Scholar

[123] Mammen, M., Choi, S. K., and Whitesides, G. M., Angew. Chem., Int. Ed. Engl. 37, 2755 (1998). http://dx.doi.org/10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-310.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3Suche in Google Scholar

[124] Houseman, B. T. and Mrksich, M., in Host-Guest Chemistry, Chemistry and Material Science, Vol. 218 p. 1. Springer, Berlin, 2001. 10.1007/3-540-45010-6_1Suche in Google Scholar

[125] Hang, H. C. and Bertozzi, C. R., Acc. Chem. Res. 34, 727 (2001). http://dx.doi.org/10.1021/ar990157010.1021/ar9901570Suche in Google Scholar

[126] Lindhorst, T. K., in Host-Guest Chemistry, Chemistry and Material Science, Vol. 218, p. 201. Springer, Berlin, 2001. 10.1007/3-540-45010-6_7Suche in Google Scholar

[127] Kim, Y. and Zimmerman, S. C., Curr. Opin. Chem. Biol. 2, 733 (1998). http://dx.doi.org/10.1016/S1367-5931(98)80111-710.1016/S1367-5931(98)80111-7Suche in Google Scholar

[128] Larsen, K., Thygesen, M. B., Guillaumie, F., Willats, W. G. T., and Jensen, K. J., Carbohydr. Res. 341, 1209 (2006). http://dx.doi.org/10.1016/j.carres.2006.04.04510.1016/j.carres.2006.04.045Suche in Google Scholar

[129] Varki, A., Glycobiology 3, 97 (1993). http://dx.doi.org/10.1093/glycob/3.2.9710.1093/glycob/3.2.97Suche in Google Scholar

[130] Hakomori, S., An. Acad. Bras. Cienc. 76, 553 (2004). Suche in Google Scholar

[131] Geyer, A., Gege, C. and Schmidt, R. R., Angew. Chem., Int. Ed. Engl. 39, 3246 (2000). Suche in Google Scholar

[132] de la Fuente, J. M. and Penadés, S., Tetrahedron: Asymmetry 13, 1879 (2002). http://dx.doi.org/10.1016/S0957-4166(02)00480-910.1016/S0957-4166(02)00480-9Suche in Google Scholar

[133] Kojima, N., Fenderson, B. A., Stroud, M. R., Goldberg, R. I., Habermann, R., Toyokuni, T., and Hakomori, S. I., Glycoconjugate J. 11, 238 (1994). http://dx.doi.org/10.1007/BF0073122410.1007/BF00731224Suche in Google Scholar PubMed

[134] Iwabuchi, K., Yamamura, S., Prinetti, A., Handa, K., and Hakomori, S., J. Biol. Chem. 273, 9130 (1998). http://dx.doi.org/10.1074/jbc.273.15.913010.1074/jbc.273.15.9130Suche in Google Scholar PubMed

[135] Kojima, N. and Hakomori, S., J. Biol. Chem. 264, 20159 (1989). Suche in Google Scholar

[136] Fenderson, B. A., Eddy, E. M., and Hakomori, S., BioEssays 12, 173 (1990). http://dx.doi.org/10.1002/bies.95012040610.1002/bies.950120406Suche in Google Scholar PubMed

[137] de Souza, A. C., Halkes, K. M., Meeldijk, J. D., Verkleij, A. J., Vliegenthart, J. F. G., and Kamerling, J. P., Chembiochem 6, 828 (2005). http://dx.doi.org/10.1002/cbic.20040038010.1002/cbic.200400380Suche in Google Scholar PubMed

[138] Spillmann, D., Hard, K., Thomas-Oates, J., Vliegenthart, J. F. G., Misevic, G., Burger, M. M., and Finne, J., J. Biol. Chem. 268, 13378 (1993). Suche in Google Scholar

[139] Yu, S., Kojima, N., Hakomori, S., Kudo, S., Inoue, S., and Inoue, Y., Proc. Natl. Acad. Sci. U. S. A. 99, 2854 (2002). http://dx.doi.org/10.1073/pnas.05270759910.1073/pnas.052707599Suche in Google Scholar PubMed PubMed Central

[140] Templeton, A. C., Chen, S. W., Gross, S. M., and Murray, R. W., Langmuir 15, 66 (1999). http://dx.doi.org/10.1021/la980842010.1021/la9808420Suche in Google Scholar

[141] de Paz, J. L., Ojeda, R., Barrientos, A. G., Penadés, S., and Martén-Lomas, M., Tetrahedron: Asymmetry 16, 149 (2005). http://dx.doi.org/10.1016/j.tetasy.2004.11.06610.1016/j.tetasy.2004.11.066Suche in Google Scholar

[142] Barrientos, A. G., de la Fuente, J. M., Rojas, T. C., Fernández, A., and Penadés, S., Chem. Eur. J. 9, 1909 (2003). http://dx.doi.org/10.1002/chem.20020454410.1002/chem.200204544Suche in Google Scholar

[143] Rojas, T. C., de la Fuente, J. M., Barrientos, A. G., Penadés, S., Ponsonnet, L., and Fernández, A., Adv. Mater. 14, 585 (2002). http://dx.doi.org/10.1002/1521-4095(20020418)14:8<585::AID-ADMA585>3.0.CO;2-W10.1002/1521-4095(20020418)14:8<585::AID-ADMA585>3.0.CO;2-WSuche in Google Scholar

[144] Ingram, R. S., Hostetler, M. J., and Murray, R. W., J. Am. Chem. Soc. 119, 9175 (1997). http://dx.doi.org/10.1021/ja971734n10.1021/ja971734nSuche in Google Scholar

[145] Rothrock, A. R., Donkers, R. L., and Schoenfisch, M. H., J. Am. Chem. Soc. 127, 9362 (2005). http://dx.doi.org/10.1021/ja052027u10.1021/ja052027uSuche in Google Scholar

[146] Fan, H. Y., Leve, E. W., Scullin, C., Gabaldon, J., Tallant, D., Bunge, S., Boyle, T., Wilson, M. C., and Brinker, C. J., Nano Lett. 5, 645 (2005). http://dx.doi.org/10.1021/nl050017l10.1021/nl050017lSuche in Google Scholar

[147] You, C. C., Verma, A., and Rotello, V. M., Soft Matter 2, 190 (2006). http://dx.doi.org/10.1039/b517354j10.1039/b517354jSuche in Google Scholar

[148] Otsuka, H., Akiyama, Y., Nagasaki, Y., and Kataoka, K., J. Am. Chem. Soc. 123, 8226 (2001). http://dx.doi.org/10.1021/ja010437m10.1021/ja010437mSuche in Google Scholar

[149] Reynolds, A. J., Haines, A. H., and Russell, D. A., Langmuir 22, 1156 (2006). http://dx.doi.org/10.1021/la052261y10.1021/la052261ySuche in Google Scholar

[150] Hone, D. C., Haines, A. H., and Russell, D. A., Langmuir 19, 7141 (2003). http://dx.doi.org/10.1021/la034358v10.1021/la034358vSuche in Google Scholar

[151] Sugunan, A., Thanachayanont, C., Dutta, J., and Hilborn, J. G., Sci. Technol. Adv. Mater. 6, 335 (2005). http://dx.doi.org/10.1016/j.stam.2005.03.00710.1016/j.stam.2005.03.007Suche in Google Scholar

[152] Halkes, K. M., de Souza, A. C., Maljaars, C. E. P., Gerwig, G. J., and Kamerling, J. P., Eur. J. Org. Chem. 2005, 3650. 10.1002/ejoc.200500256Suche in Google Scholar

[153] Aslan, K., Zhang, J., Lakowicz, J. R., and Geddes, C. D., J. Fluorescence 14, 391 (2004). http://dx.doi.org/10.1023/B:JOFL.0000031820.17358.2810.1023/B:JOFL.0000031820.17358.28Suche in Google Scholar

[154] Schellenberger, E. A., Reynolds, F., Weissleder, R., and Josephson, L., Chembiochem 5, 275 (2004). http://dx.doi.org/10.1002/cbic.20030071310.1002/cbic.200300713Suche in Google Scholar

[155] Qi, L. F., Xu, Z. R., Jiang, X., Li, Y., and Wang, M. Q., Bioorg. Med. Chem. Lett. 15, 1397 (2005). http://dx.doi.org/10.1016/j.bmcl.2005.01.01010.1016/j.bmcl.2005.01.010Suche in Google Scholar

[156] Roos, E. and Dingemans, K. P., BBA — Rev. Cancer 560, 135 (1979). 10.1016/0304-419X(79)90005-2Suche in Google Scholar

[157] Hakomori, S. I., Proc. Natl. Acad. Sci. U. S. A. 99, 225 (2002). http://dx.doi.org/10.1073/pnas.01254089910.1073/pnas.012540899Suche in Google Scholar

[158] Hakomori, S. I., Adv. Cancer Res. 52, 257 (1989). http://dx.doi.org/10.1016/S0065-230X(08)60215-810.1016/S0065-230X(08)60215-8Suche in Google Scholar

[159] Chen, Y. J., Chen, S. H., Chien, Y. Y., Chang, Y. W., Liao, H. K., Chang, C. Y., Jan, M. D., Wang, K. T., and Lin, C. C., Chembiochem 6, 1169 (2005). http://dx.doi.org/10.1002/cbic.20050002310.1002/cbic.200500023Suche in Google Scholar PubMed

[160] Takae, S., Akiyama, Y., Otsuka, H., Nakamura, T., Nagasaki, Y., and Kataoka, K., Biomacromolecules 6, 818 (2005). http://dx.doi.org/10.1021/bm049427e10.1021/bm049427eSuche in Google Scholar PubMed

[161] Lin, C. C., Yeh, Y. C., Yang, C. Y., Chen, C. L., Chen, G. F., Chen, C. C., and Wu, Y. C., J. Am. Chem. Soc. 124, 3508 (2002). http://dx.doi.org/10.1021/ja020090310.1021/ja0200903Suche in Google Scholar PubMed

[162] Aslan, K., Lakowicz, J. R., and Geddes, C. D., Anal. Biochem. 330, 145 (2004). http://dx.doi.org/10.1016/j.ab.2004.03.03210.1016/j.ab.2004.03.032Suche in Google Scholar PubMed PubMed Central

Published Online: 2007-8-1
Published in Print: 2007-8-1

© 2007 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Step by step towards understanding gold glyconanoparticles as elements of the nanoworld
  2. Structure—activity relationships for in vitro oxime reactivation of chlorpyrifos-inhibited acetylcholinesterase
  3. Separation and characterization of products from thermal cracking of individual and mixed polyalkenes
  4. Mobility of important toxic analytes in urban dust and simulated air filters determined by sequential extraction and GFAAS/ICP-OES methods
  5. Effect of addition of ameliorative materials on the distribution of As, Cd, Pb, and Zn in extractable soil fractions
  6. Effect of gamma irradiation on trichromatic values of spices
  7. Homo- and heteronuclear complexes of a new, vicinal dioxime ligand
  8. Synthesis of new triphenodithiazine- and indolocarbazolediones of biological interest
  9. Dielectric relaxation of butyl acrylate—alcohol mixtures using time domain reflectometry
  10. Ab initio study of small coinage metal telluride clusters AunTem (n, m = 1, 2)
  11. Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules
  12. Comparison of spectrophotometric and HPLC methods for determination of lipid peroxidation products in rat brain tissues
  13. Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors
  14. Mechanism of thermal decomposition of cobalt acetate tetrahydrate
  15. Three-component, one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones catalyzed by bromodimethylsulfonium bromide
Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-007-0029-0/html
Button zum nach oben scrollen