Home Life Sciences Step by step towards understanding gold glyconanoparticles as elements of the nanoworld
Article
Licensed
Unlicensed Requires Authentication

Step by step towards understanding gold glyconanoparticles as elements of the nanoworld

  • L. Sihelníková EMAIL logo and I. Tvaroška
Published/Copyright: August 1, 2007
Become an author with De Gruyter Brill

Abstract

Gold glyconanoparticles as elements of the nanoworld belong to a group of particles with diameters not exceeding 100 nm. This size scale makes them conformable to common biomolecules. A gold glyconanoparticle consists of three different parts: the gold core, the linkers, and saccharide ligands. The glycocalyx-like surface of these particles mimics the presentation of carbohydrate epitopes of cell surface glycoconjugates. As a consequence, gold glyconanoparticles provide inimitable tools for probing and manipulating the mechanisms of biological processes based on carbohydrate interactions. Each component of the gold glyconanoparticle has a profound effect on the nanoparticle’s properties. Therefore, in this review, elucidation of the overall behavior and properties of gold glyconanoparticles is based on a step by step (component by component) description of the system.

[1] Link, S. and El-Sayed, M. A., Int. Rev. Phys. Chem. 19, 409 (2000). http://dx.doi.org/10.1080/0144235005003418010.1080/01442350050034180Search in Google Scholar

[2] Daniel, M. C. and Astruc, D., Chem. Rev. 104, 293 (2004). http://dx.doi.org/10.1021/cr030698+10.1021/cr030698+Search in Google Scholar

[3] Brust, M. and Kiely, C. J., Colloids Surf., A 202, 175 (2002). http://dx.doi.org/10.1016/S0927-7757(01)01087-110.1016/S0927-7757(01)01087-1Search in Google Scholar

[4] Zanchet, D., Tolentino, H., Alves, M. C. M., Alves, O. L., and Ugarte, D., Chem. Phys. Lett. 323, 167 (2000). http://dx.doi.org/10.1016/S0009-2614(00)00424-310.1016/S0009-2614(00)00424-3Search in Google Scholar

[5] Penn, S. G., He, L., and Natan, M. J., Curr. Opin. Chem. Biol. 7, 609 (2003). http://dx.doi.org/10.1016/j.cbpa.2003.08.01310.1016/j.cbpa.2003.08.013Search in Google Scholar

[6] Ozkan, M., Drug Discovery Today 9, 1065 (2004). http://dx.doi.org/10.1016/S1359-6446(04)03291-X10.1016/S1359-6446(04)03291-XSearch in Google Scholar

[7] Tan, W. B. and Zhang, Y., J. Biomed. Mater. Res., Part A 75A, 56 (2005). http://dx.doi.org/10.1002/jbm.a.3041010.1002/jbm.a.30410Search in Google Scholar

[8] Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A. P., Science 281, 2013 (1998). http://dx.doi.org/10.1126/science.281.5385.201310.1126/science.281.5385.2013Search in Google Scholar

[9] Chan, W. C. W., Maxwell, D. J., Gao, X. H., Bailey, R. E., Han, M. Y., and Nie, S. M., Curr. Opin. Biotechnol. 13, 40 (2002). http://dx.doi.org/10.1016/S0958-1669(02)00282-310.1016/S0958-1669(02)00282-3Search in Google Scholar

[10] Norris, D. J. and Bawendi, M. G., Phys. Rev. B 53, 16338 (1996). http://dx.doi.org/10.1103/PhysRevB.53.1633810.1103/PhysRevB.53.16338Search in Google Scholar

[11] Batlle, X. and Labarta, A., J. Phys. D: Appl. Phys. 35, R15 (2002). http://dx.doi.org/10.1088/0022-3727/35/6/20110.1088/0022-3727/35/6/201Search in Google Scholar

[12] Tartaj, P., Morales, M. D., Veintemillas-Verdaguer, S., González-Carreño, T., and Serna, C. J., J. Phys. D: Appl. Phys. 36, R182 (2003). http://dx.doi.org/10.1088/0022-3727/36/13/20210.1088/0022-3727/36/13/202Search in Google Scholar

[13] Hilger, I., Andra, W., Bahring, R., Daum, A., Hergt, R., and Kaiser, W. A., Invest. Radiol. 32, 705 (1997). http://dx.doi.org/10.1097/00004424-199711000-0000910.1097/00004424-199711000-00009Search in Google Scholar

[14] Andrä, W., d’Ambly, C. G., Hergt, R., Hilger, I., and Kaiser, W. A., J. Magn. Magn. Mater. 194, 197 (1999). http://dx.doi.org/10.1016/S0304-8853(98)00552-610.1016/S0304-8853(98)00552-6Search in Google Scholar

[15] Hilger, I., Hergt, R., and Kaiser, W. A., Invest. Radiol. 35, 170 (2000). http://dx.doi.org/10.1097/00004424-200003000-0000310.1097/00004424-200003000-00003Search in Google Scholar

[16] De la Fuente, J. M. and Penadés, S., BBA-Gen. Subjects 1760, 636 (2006). http://dx.doi.org/10.1016/j.bbagen.2005.12.00110.1016/j.bbagen.2005.12.001Search in Google Scholar

[17] Joubert, J. C., An. Quim. 93, S70 (1997). Search in Google Scholar

[18] Berry, C. C. and Curtis, A. S. G., J. Phys. D: Appl. Phys. 36, R198 (2003). http://dx.doi.org/10.1088/0022-3727/36/13/20310.1088/0022-3727/36/13/203Search in Google Scholar

[19] Kim, D. K., Zhang, Y., Kehr, J., Klason, T., Bjelke, B., and Muhammed, M., J. Magn. Magn. Mater. 225, 256 (2001). http://dx.doi.org/10.1016/S0304-8853(00)01255-510.1016/S0304-8853(00)01255-5Search in Google Scholar

[20] Chen, M. S. and Goodman, D. W., Science 306, 252 (2004). http://dx.doi.org/10.1126/science.110242010.1126/science.1102420Search in Google Scholar PubMed

[21] Campbell, C. T., Science 306, 234 (2004). http://dx.doi.org/10.1126/science.110424610.1126/science.1104246Search in Google Scholar PubMed

[22] Immunolabeling for Electron Microscopy (Polak, J. M. and Varndell, I. M., Editors). Elsevier, Amsterdam, 1984. Search in Google Scholar

[23] Chah, S., Hammond, M. R., and Zare, R. N., Chem. Biol. 12, 323 (2005). http://dx.doi.org/10.1016/j.chembiol.2005.01.01310.1016/j.chembiol.2005.01.013Search in Google Scholar

[24] Nath, N. and Chilkoti, A., Anal. Chem. 74, 504 (2002). http://dx.doi.org/10.1021/ac015657x10.1021/ac015657xSearch in Google Scholar

[25] Luedtke, W. D. and Landman, U., J. Phys. Chem. B 102, 6566 (1998). http://dx.doi.org/10.1021/jp981745i10.1021/jp981745iSearch in Google Scholar

[26] Katz, E. and Willner, I., Angew. Chem., Int. Ed. 43, 6042 (2004). http://dx.doi.org/10.1002/anie.20040065110.1002/anie.200400651Search in Google Scholar

[27] Rojo, J., Díaz, V., de la Fuente, J. M., Segura, I., Barrientos, A. G., Riese, H. H., Bernade, A., and Penadés, S., Chembiochem. 5, 291 (2004). http://dx.doi.org/10.1002/cbic.20030072610.1002/cbic.200300726Search in Google Scholar

[28] Fernández, E. M., Soler, J. M., Garzón, I. L., and Balbás, L. C., Phys. Rev. B 70, 165403 (2004). 10.1103/PhysRevB.70.165403Search in Google Scholar

[29] Pyykkö, P., Angew. Chem., Int. Ed. 43, 4412 (2004). http://dx.doi.org/10.1002/anie.20030062410.1002/anie.200300624Search in Google Scholar

[30] Agraït, N., Yeyati, A. L., and van Ruitenbeek, J. M., Phys. Rep. 377, 81 (2003). http://dx.doi.org/10.1016/S0370-1573(02)00633-610.1016/S0370-1573(02)00633-6Search in Google Scholar

[31] Loo, C., Lowery, A., Halas, N., West, J., and Drezek, R., Nano Lett. 5, 709 (2005). http://dx.doi.org/10.1021/nl050127s10.1021/nl050127sSearch in Google Scholar PubMed

[32] Yoon, B., Häkkinen, H., Landman, U., Worz, A. S., Antonietti, J. M., Abbet, S., Judai, K., and Heiz, U., Science 307, 403 (2005). http://dx.doi.org/10.1126/science.110416810.1126/science.1104168Search in Google Scholar PubMed

[33] Koskinen, P., Häkkinen, H., Seifert, G., Sanna, S., Frauenheim, T., and Moseler, M., New J. Phys. 8, 9 (2006). http://dx.doi.org/10.1088/1367-2630/8/1/00910.1088/1367-2630/8/1/009Search in Google Scholar

[34] Doye, J. P. K. and Wales, D. J., New J. Chem. 22, 733 (1998). http://dx.doi.org/10.1039/a709249k10.1039/a709249kSearch in Google Scholar

[35] Kronik, L., Fromherz, R., Ko, E., Ganteför, G., and Chelikowsky, J. R., Nat. Mater. 1, 49 (2002). http://dx.doi.org/10.1038/nmat70410.1038/nmat704Search in Google Scholar

[36] de Heer, W. A., Rev. Mod. Phys. 65, 611 (1993). http://dx.doi.org/10.1103/RevModPhys.65.61110.1103/RevModPhys.65.611Search in Google Scholar

[37] Herlert, A., Krückeberg, S., Schweikhard, L., Vogel, M., and Walther, C., J. Electron Spectrosc. 106, 179 (2000). http://dx.doi.org/10.1016/S0368-2048(99)00075-410.1016/S0368-2048(99)00075-4Search in Google Scholar

[38] Li, J., Li, X., Zhai, H. J., and Wang, L. S., Science 299, 864 (2003). http://dx.doi.org/10.1126/science.107987910.1126/science.1079879Search in Google Scholar PubMed

[39] Koga, K., Phys. Rev. Lett. 96, 115501 (2006). Search in Google Scholar

[40] Baletto, F. and Ferrando, R., Rev. Mod. Phys. 77, 371 (2005). http://dx.doi.org/10.1103/RevModPhys.77.37110.1103/RevModPhys.77.371Search in Google Scholar

[41] Chushak, Y. and Bartell, L. S., Eur. Phys. J. D 16, 43 (2001). http://dx.doi.org/10.1007/s10053017005610.1007/s100530170056Search in Google Scholar

[42] Gardea-Torresdey, J. L., Tiemann, K. J., Gamez, G., Dokken, K., Tehuacanero, S., and José-Yacamán, M., J. Nanopart. Res. 1, 397 (1999). http://dx.doi.org/10.1023/A:101000891546510.1023/A:1010008915465Search in Google Scholar

[43] Häkkinen, H., Moseler, M., Kostko, O., Morgner, N., Hoffmann, M. A., and von Issendorff, B., Phys. Rev. Lett. 93, 093401 (2004). Search in Google Scholar

[44] Taylor, K. J., Pettiette-Hall, C. L., Cheshnovsky, O., and Smalley, R. E., J. Chem. Phys. 96, 3319 (1992). http://dx.doi.org/10.1063/1.46192710.1063/1.461927Search in Google Scholar

[45] Jansen, M., Solid State Sci. 7, 1464 (2005). http://dx.doi.org/10.1016/j.solidstatesciences.2005.06.01510.1016/j.solidstatesciences.2005.06.015Search in Google Scholar

[46] Schwerdtfeger, P., Heteroatom Chem. 13, 578 (2002). http://dx.doi.org/10.1002/hc.1009310.1002/hc.10093Search in Google Scholar

[47] Pyykkö, P., Chem. Rev. 88, 563 (1988). http://dx.doi.org/10.1021/cr00085a00610.1021/cr00085a006Search in Google Scholar

[48] Reiher, M. and Heß, B., in Modern Methods and Algorithms of Quantum Chemistry, Vol. 1. (Grotendorst, J., Editor.) p. 451. John von Neuman Institute for Computing, Jülich, 2000. Search in Google Scholar

[49] Schmidbaur, H., Cronje, S., Djordjevic, B., and Schuster, O., Chem. Phys. 311, 151 (2005). http://dx.doi.org/10.1016/j.chemphys.2004.09.02310.1016/j.chemphys.2004.09.023Search in Google Scholar

[50] Gu, X., Ji, M., Wei, S. H., and Gong, X. G., Phys. Rev. B 70, 205401 (2004). 10.1103/PhysRevB.70.205401Search in Google Scholar

[51] Alamanova, D., Dong, Y., ur Rehman, H., Springborg, M., and Grigoryan, V. G., Comput. Lett. 1, 319 (2005). http://dx.doi.org/10.1163/15740400577661139410.1163/157404005776611394Search in Google Scholar

[52] Bravo-Pérez, G., Garzón, I. L., and Novaro, O., THEOCHEM 493, 225 (1999). http://dx.doi.org/10.1016/S0166-1280(99)00243-210.1016/S0166-1280(99)00243-2Search in Google Scholar

[53] Häkkinen, H. and Moseler, M., Comput. Mater. Sci. 35, 332 (2006). http://dx.doi.org/10.1016/j.commatsci.2004.08.01710.1016/j.commatsci.2004.08.017Search in Google Scholar

[54] Ji, M., Gu, X., Li, X., Gong, X. G., Li, J., and Wang, L. S., Angew. Chem., Int. Ed. Engl. 44, 7119 (2005). http://dx.doi.org/10.1002/anie.20050279510.1002/anie.200502795Search in Google Scholar PubMed

[55] Soler, J. M., Beltrán, M. R., Michaelian, K., Garzón, I. L., Ordejón, P., Sánchez-Portal, D., and Artacho, E., Phys. Rev. B 61, 5771 (2000). http://dx.doi.org/10.1103/PhysRevB.61.577110.1103/PhysRevB.61.5771Search in Google Scholar

[56] Wolf, M. D. and Landman, U., J. Phys. Chem. A 102, 6129 (1998). http://dx.doi.org/10.1021/jp981459710.1021/jp9814597Search in Google Scholar

[57] Garzón, I. L., Michaelian, K., Beltrán, M. R., Posada-Amarillas, A., Ordejón, P., Artacho, E., Sánchez-Portal, D., and Soler, J. M., Phys. Rev. Lett. 81, 1600 (1998). http://dx.doi.org/10.1103/PhysRevLett.81.160010.1103/PhysRevLett.81.1600Search in Google Scholar

[58] Martin, T. P., Phys. Rep. 273, 199 (1996). http://dx.doi.org/10.1016/0370-1573(95)00083-610.1016/0370-1573(95)00083-6Search in Google Scholar

[59] Koga, K., Ikeshoji, T., and Sugawara, K., Phys. Rev. Lett. 92, 115507 (2004). Search in Google Scholar

[60] Liu, H. H., Jiang, E. Y., Bai, H. L., Wu, P., Li, Z. Q., and Sun, C. Q., THEOCHEM 728, 203 (2005). http://dx.doi.org/10.1016/j.theochem.2005.05.02510.1016/j.theochem.2005.05.025Search in Google Scholar

[61] Doye, J. P. K. and Wales, D. J., Chem. Phys. Lett. 247, 339 (1995). Search in Google Scholar

[62] Häkkinen, H., Yoon, B., Landman, U., Li, X., Zhai, H. J., and Wang, L. S., J. Phys. Chem. A 107, 6168 (2003). http://dx.doi.org/10.1021/jp035437i10.1021/jp035437iSearch in Google Scholar

[63] Xiao, L., Tollberg, B., Hu, X. K., and Wang, L. C., J. Chem. Phys. 124, 114309 (2006). Search in Google Scholar

[64] Xiao, L. and Wang, L. C., Chem. Phys. Lett. 392, 452 (2004). http://dx.doi.org/10.1016/j.cplett.2004.05.09510.1016/j.cplett.2004.05.095Search in Google Scholar

[65] Grönbeck, H. and Broqvist, P., Phys. Rev. B 71, 073408 (2005). 10.1103/PhysRevB.71.073408Search in Google Scholar

[66] Häkkinen, H., Moseler, M., and Landman, U., Phys. Rev. Lett. 89, 033401 (2002). Search in Google Scholar

[67] Arratia-Perez, R., Ramos, A. F., and Malli, G. L., Phys. Rev. B 39, 3005 (1989). http://dx.doi.org/10.1103/PhysRevB.39.300510.1103/PhysRevB.39.3005Search in Google Scholar

[68] Wilson, N. T. and Johnston, R. L., Eur. Phys. J. D 12, 161 (2000). http://dx.doi.org/10.1007/s10053007005310.1007/s100530070053Search in Google Scholar

[69] Sutton, A. P. and Chen, J., Philos. Mag. Lett. 61, 139 (1990). Search in Google Scholar

[70] Doye, J. P. K. and Wales, D. J., J. Phys. B: At. Mol. Opt. 29, 4859 (1996). http://dx.doi.org/10.1088/0953-4075/29/21/00210.1088/0953-4075/29/21/002Search in Google Scholar

[71] Soler, J. M., Garzón, I. L., and Joannopoulos, J. D., Solid State Commun. 117, 621 (2001). http://dx.doi.org/10.1016/S0038-1098(00)00493-210.1016/S0038-1098(00)00493-2Search in Google Scholar

[72] Garzón, I. L., Beltrán, M. R., González, G., Gutierrez-González, I., Michaelian, K., Reyes-Nava, J. A., and Rodriguez-Hernández, J. I., Eur. Phys. J. D 24, 105 (2003). http://dx.doi.org/10.1140/epjd/e2003-00187-410.1140/epjd/e2003-00187-4Search in Google Scholar

[73] Schaaff, T. G., Shafigullin, M. N., Khoury, J. T., Vezmar, I., Whetten, R. L., Cullen, W. G., First, P. N., Gutiérrez-Wing, C., Ascensio, J., and Jose-Yacamán, M. J., J. Phys. Chem. B 101, 7885 (1997). http://dx.doi.org/10.1021/jp971438x10.1021/jp971438xSearch in Google Scholar

[74] Johansson, M. P., Sundholm, D., and Vaara, J., Angew. Chem., Int. Ed. Engl. 43, 2678 (2004). http://dx.doi.org/10.1002/anie.20045398610.1002/anie.200453986Search in Google Scholar PubMed

[75] Kulkarni, G. U., Thomas, R. J., and Rao, C. N. R., Pure Appl. Chem. 74, 1581 (2002). Search in Google Scholar

[76] Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., and Whitesides, G. M., Chem. Rev. 105, 1103 (2005). http://dx.doi.org/10.1021/cr030078910.1021/cr0300789Search in Google Scholar PubMed

[77] Sellers, H., Ulman, A., Shnidman, Y., and Eilers, J. E., J. Am. Chem. Soc. 115, 9389 (1993). http://dx.doi.org/10.1021/ja00074a00410.1021/ja00074a004Search in Google Scholar

[78] Grönbeck, H., Curioni, A., and Andreoni, W., J. Am. Chem. Soc. 122, 3839 (2000). http://dx.doi.org/10.1021/ja993622x10.1021/ja993622xSearch in Google Scholar

[79] Fischer, D., Curioni, A., and Andreoni, W., Langmuir 19, 3567 (2003). http://dx.doi.org/10.1021/la034013c10.1021/la034013cSearch in Google Scholar

[80] Garcia, M. A., de la Venta, J., Crespo, P., Llopis, J., Penadés, S., Fernández, A., and Hernando, A., Phys. Rev. B 72, 241403 (2005). 10.1103/PhysRevB.72.241403Search in Google Scholar

[81] Mulder, F. M., Stegink, T. A., Theil, R. C., de Jongh, L. J., and Schmid, G., Nature 367, 716 (1994). http://dx.doi.org/10.1038/367716a010.1038/367716a0Search in Google Scholar

[82] Li, X. M., Huskens, J., and Reinhoudt, D. N., J. Mater. Chem. 14, 2954 (2004). http://dx.doi.org/10.1039/b406037g10.1039/b406037gSearch in Google Scholar

[83] Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., and Whyman, R., J. Chem. Soc., Chem. Commun. 1994, 801. 10.1039/C39940000801Search in Google Scholar

[84] Brust, M., Fink, J., Bethell, D., Schiffrin, D. J., and Kiely, C., J. Chem. Soc., Chem. Commun. 1995, 1655. 10.1039/c39950001655Search in Google Scholar

[85] Turkevich, J., Stevenson, P. C., and Hillier, J., Discuss. Faraday Soc. 11, 55 (1951). http://dx.doi.org/10.1039/df951110005510.1039/df9511100055Search in Google Scholar

[86] Hostetler, M. J., Templeton, A. C., and Murray, R. W., Langmuir 15, 3782 (1999). http://dx.doi.org/10.1021/la981598f10.1021/la981598fSearch in Google Scholar

[87] Fenter, P., Schreiber, F., Berman, L., Scoles, G., Eisenberger, P., and Bedzyk, M. J., Surf. Sci. 413, 213 (1998). http://dx.doi.org/10.1016/S0039-6028(98)00428-210.1016/S0039-6028(98)00428-2Search in Google Scholar

[88] Masens, C., Ford, M. J., and Cortie, M. B., Surf. Sci. 580, 19 (2005). http://dx.doi.org/10.1016/j.susc.2005.01.04710.1016/j.susc.2005.01.047Search in Google Scholar

[89] Giersig, M. and Mulvaney, P., Langmuir 9, 3408 (1993). http://dx.doi.org/10.1021/la00036a01410.1021/la00036a014Search in Google Scholar

[90] Templeton, A. C., Wuelfing, W. P., and Murray, R. W., Acc. Chem. Res. 33, 27 (2000). http://dx.doi.org/10.1021/ar960266410.1021/ar9602664Search in Google Scholar PubMed

[91] Cleveland, C. L., Landman, U., Shafigullin, M. N., Stephens, P. W., and Whetten, R. L., Z. Phys. D: At. Mol. Clusters 40, 503 (1997). http://dx.doi.org/10.1007/s00460005026310.1007/s004600050263Search in Google Scholar

[92] Hudgins, R. R., Imai, M., Jarrold, M. F., and Dugourd, P., J. Chem. Phys. 111, 7865 (1999). http://dx.doi.org/10.1063/1.48016410.1063/1.480164Search in Google Scholar

[93] Fischer, D., Andreoni, W., Curioni, A., Grönbeck, H., Burkart, S., and Ganteför, G., Chem. Phys. Lett. 361, 389 (2002). http://dx.doi.org/10.1016/S0009-2614(02)00972-710.1016/S0009-2614(02)00972-7Search in Google Scholar

[94] de Dios, A. C. and Abraham, A. E., J. Mol. Struct. 602, 209 (2002). http://dx.doi.org/10.1016/S0022-2860(01)00735-910.1016/S0022-2860(01)00735-9Search in Google Scholar

[95] López-Cartes, C., Rojas, T. C., Litrán, R., Martínez-Martínez, D., de la Fuente, J. M., Penadés, S., and Fernández, A., J. Phys. Chem. B 109, 8761 (2005). http://dx.doi.org/10.1021/jp050184+10.1021/jp050184+Search in Google Scholar

[96] Frenkel, A. I., Nemzer, S., Pister, I., Soussan, L., Harris, T., Sun, Y., and Rafailovich, M. H., J. Chem. Phys. 123, 184701 (2005). Search in Google Scholar

[97] Garzón, I. L., Reyes-Nava, J. A., Rodríguez-Hernández, J. I., Sigal, I., Beltrán, M. R., and Michaelian, K., Phys. Rev. B 66, 073403 (2002). 10.1103/PhysRevB.66.073403Search in Google Scholar

[98] Büttner, M., Kröger, H., Gerhards, I., Mathys, D., and Oelhafen, P., Thin Solid Films 495, 180 (2006). http://dx.doi.org/10.1016/j.tsf.2005.08.21110.1016/j.tsf.2005.08.211Search in Google Scholar

[99] Andreoni, W., Curioni, A., and Grönbeck, H., Int. J. Quantum Chem. 80, 598 (2000). http://dx.doi.org/10.1002/1097-461X(2000)80:4/5<598::AID-QUA9>3.0.CO;2-W10.1002/1097-461X(2000)80:4/5<598::AID-QUA9>3.0.CO;2-WSearch in Google Scholar

[100] Yourdshahyan, Y., Zhang, H. K., and Rappe, A. M., Phys. Rev. B 63, 081405 (2001). 10.1103/PhysRevB.63.081405Search in Google Scholar

[101] Morikawa, Y., Hayashi, T., Liew, C. C., and Nozoye, H., Surf. Sci. 507, 46 (2002). http://dx.doi.org/10.1016/S0039-6028(02)01173-110.1016/S0039-6028(02)01173-1Search in Google Scholar

[102] Grönbeck, H., Walter, M., and Häkkinen, H., J. Am. Chem. Soc. 128, 10268 (2006). Search in Google Scholar

[103] Bravo-Pérez, G. and Garzón, I. L., THEOCHEM 619, 79 (2002). http://dx.doi.org/10.1016/S0166-1280(02)00548-110.1016/S0166-1280(02)00548-1Search in Google Scholar

[104] Häkkinen, H., Walter, M., and Grönbeck, H., J. Phys. Chem. B 110, 9927 (2006). http://dx.doi.org/10.1021/jp061978710.1021/jp0619787Search in Google Scholar

[105] Cleveland, C. L., Landman, U., Schaaff, T. G., Shafigullin, M. N., Stephens, P. W., and Whetten, R. L., Phys. Rev. Lett. 79, 1873 (1997). http://dx.doi.org/10.1103/PhysRevLett.79.187310.1103/PhysRevLett.79.1873Search in Google Scholar

[106] Häkkinen, H., Barnett, R. N., and Landman, U., Phys. Rev. Lett. 82, 3264 (1999). http://dx.doi.org/10.1103/PhysRevLett.82.326410.1103/PhysRevLett.82.3264Search in Google Scholar

[107] Garzón, I. L., Rovira, C., Michaelian, K., Beltrán, M. R., Ordejón, P., Junquera, J., Sánchez-Portal, D., Artacho, E., and Soler, J. M., Phys. Rev. Lett. 85, 5250 (2000). http://dx.doi.org/10.1103/PhysRevLett.85.525010.1103/PhysRevLett.85.5250Search in Google Scholar

[108] Crespo, P., Litrán, R., Rojas, T. C., Multigner, M., de la Fuente, J. M., Sánchez-López, J. C., García, M. A., Hernando, A., Penadés, S., and Fernández, A., Phys. Rev. Lett. 93, 087204 (2004). Search in Google Scholar

[109] Hövel, H., Fritz, S., Hilger, A., Kreibig, U., and Vollmer, M., Phys. Rev. B 48, 18178 (1993). 10.1103/PhysRevB.48.18178Search in Google Scholar

[110] Yamamoto, Y. and Hori, H., Rev. Adv. Mater. Sci. 12, 23 (2006). http://dx.doi.org/10.4028/www.scientific.net/AMR.11-12.2310.4028/www.scientific.net/AMR.11-12.23Search in Google Scholar

[111] Simard, J., Briggs, C., Boal, A. K., and Rotello, V. M., Chem. Commun. 2000, 1943. 10.1039/b004162iSearch in Google Scholar

[112] Montalti, M., Prodi, L., Zaccheroni, N., Baxter, R., Teobaldi, G., and Zerbetto, F., Langmuir 19, 5172 (2003). http://dx.doi.org/10.1021/la034581s10.1021/la034581sSearch in Google Scholar

[113] Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R. R., and Sastry, M., Langmuir 21, 10644 (2005). 10.1021/la0513712Search in Google Scholar

[114] You, C. C., De, M., Han, G., and Rotello, V. M., J. Am. Chem. Soc. 127, 12873 (2005). Search in Google Scholar

[115] Zhang, C. X., Zhang, Y., Wang, X., Tang, Z. M., and Lu, Z. H., Anal. Biochem. 320, 136 (2003). http://dx.doi.org/10.1016/S0003-2697(03)00353-110.1016/S0003-2697(03)00353-1Search in Google Scholar

[116] Han, G., You, C. C., Kim, B. J., Turingan, R. S., Forbes, N. S., Martin, C. T., and Rotello, V. M., Angew. Chem., Int. Ed. Engl. 45, 3165 (2006). http://dx.doi.org/10.1002/anie.20060021410.1002/anie.200600214Search in Google Scholar

[117] Hong, R., Han, G., Fernández, J. M., Kim, B. J., Forbes, N. S., and Rotello, V. M., J. Am. Chem. Soc. 128, 1078 (2006). http://dx.doi.org/10.1021/ja056726i10.1021/ja056726iSearch in Google Scholar

[118] Oishi, M., Nakaogami, J., Ishii, T., and Nagasaki, Y., Chem. Lett. 35, 1046 (2006). http://dx.doi.org/10.1246/cl.2006.104610.1246/cl.2006.1046Search in Google Scholar

[119] Joshi, H. M., Bhumkar, D. R., Joshi, K., Pokharkar, V., and Sastry, M., Langmuir 22, 300 (2006). http://dx.doi.org/10.1021/la051982u10.1021/la051982uSearch in Google Scholar

[120] Gin, H. and Rigalleau, V., Diabetes Metab. 26, 265 (2000). Search in Google Scholar

[121] de la Fuente, J. M. and Penadés, S., Glycoconjugate J. 21, 149 (2004). http://dx.doi.org/10.1023/B:GLYC.0000044846.80014.cb10.1023/B:GLYC.0000044846.80014.cbSearch in Google Scholar

[122] de la Fuente, J. M., Barrientos, A. G., Rojas, T. C., Rojo, J., Cañada, J., Fernández, A., and Penadés, S., Angew. Chem., Int. Ed. Engl. 40, 2257 (2001). http://dx.doi.org/10.1002/1521-3773(20010618)40:12<2257::AID-ANIE2257>3.0.CO;2-S10.1002/1521-3773(20010618)40:12<2257::AID-ANIE2257>3.0.CO;2-SSearch in Google Scholar

[123] Mammen, M., Choi, S. K., and Whitesides, G. M., Angew. Chem., Int. Ed. Engl. 37, 2755 (1998). http://dx.doi.org/10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-310.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3Search in Google Scholar

[124] Houseman, B. T. and Mrksich, M., in Host-Guest Chemistry, Chemistry and Material Science, Vol. 218 p. 1. Springer, Berlin, 2001. 10.1007/3-540-45010-6_1Search in Google Scholar

[125] Hang, H. C. and Bertozzi, C. R., Acc. Chem. Res. 34, 727 (2001). http://dx.doi.org/10.1021/ar990157010.1021/ar9901570Search in Google Scholar

[126] Lindhorst, T. K., in Host-Guest Chemistry, Chemistry and Material Science, Vol. 218, p. 201. Springer, Berlin, 2001. 10.1007/3-540-45010-6_7Search in Google Scholar

[127] Kim, Y. and Zimmerman, S. C., Curr. Opin. Chem. Biol. 2, 733 (1998). http://dx.doi.org/10.1016/S1367-5931(98)80111-710.1016/S1367-5931(98)80111-7Search in Google Scholar

[128] Larsen, K., Thygesen, M. B., Guillaumie, F., Willats, W. G. T., and Jensen, K. J., Carbohydr. Res. 341, 1209 (2006). http://dx.doi.org/10.1016/j.carres.2006.04.04510.1016/j.carres.2006.04.045Search in Google Scholar

[129] Varki, A., Glycobiology 3, 97 (1993). http://dx.doi.org/10.1093/glycob/3.2.9710.1093/glycob/3.2.97Search in Google Scholar

[130] Hakomori, S., An. Acad. Bras. Cienc. 76, 553 (2004). Search in Google Scholar

[131] Geyer, A., Gege, C. and Schmidt, R. R., Angew. Chem., Int. Ed. Engl. 39, 3246 (2000). Search in Google Scholar

[132] de la Fuente, J. M. and Penadés, S., Tetrahedron: Asymmetry 13, 1879 (2002). http://dx.doi.org/10.1016/S0957-4166(02)00480-910.1016/S0957-4166(02)00480-9Search in Google Scholar

[133] Kojima, N., Fenderson, B. A., Stroud, M. R., Goldberg, R. I., Habermann, R., Toyokuni, T., and Hakomori, S. I., Glycoconjugate J. 11, 238 (1994). http://dx.doi.org/10.1007/BF0073122410.1007/BF00731224Search in Google Scholar PubMed

[134] Iwabuchi, K., Yamamura, S., Prinetti, A., Handa, K., and Hakomori, S., J. Biol. Chem. 273, 9130 (1998). http://dx.doi.org/10.1074/jbc.273.15.913010.1074/jbc.273.15.9130Search in Google Scholar PubMed

[135] Kojima, N. and Hakomori, S., J. Biol. Chem. 264, 20159 (1989). Search in Google Scholar

[136] Fenderson, B. A., Eddy, E. M., and Hakomori, S., BioEssays 12, 173 (1990). http://dx.doi.org/10.1002/bies.95012040610.1002/bies.950120406Search in Google Scholar PubMed

[137] de Souza, A. C., Halkes, K. M., Meeldijk, J. D., Verkleij, A. J., Vliegenthart, J. F. G., and Kamerling, J. P., Chembiochem 6, 828 (2005). http://dx.doi.org/10.1002/cbic.20040038010.1002/cbic.200400380Search in Google Scholar PubMed

[138] Spillmann, D., Hard, K., Thomas-Oates, J., Vliegenthart, J. F. G., Misevic, G., Burger, M. M., and Finne, J., J. Biol. Chem. 268, 13378 (1993). Search in Google Scholar

[139] Yu, S., Kojima, N., Hakomori, S., Kudo, S., Inoue, S., and Inoue, Y., Proc. Natl. Acad. Sci. U. S. A. 99, 2854 (2002). http://dx.doi.org/10.1073/pnas.05270759910.1073/pnas.052707599Search in Google Scholar PubMed PubMed Central

[140] Templeton, A. C., Chen, S. W., Gross, S. M., and Murray, R. W., Langmuir 15, 66 (1999). http://dx.doi.org/10.1021/la980842010.1021/la9808420Search in Google Scholar

[141] de Paz, J. L., Ojeda, R., Barrientos, A. G., Penadés, S., and Martén-Lomas, M., Tetrahedron: Asymmetry 16, 149 (2005). http://dx.doi.org/10.1016/j.tetasy.2004.11.06610.1016/j.tetasy.2004.11.066Search in Google Scholar

[142] Barrientos, A. G., de la Fuente, J. M., Rojas, T. C., Fernández, A., and Penadés, S., Chem. Eur. J. 9, 1909 (2003). http://dx.doi.org/10.1002/chem.20020454410.1002/chem.200204544Search in Google Scholar

[143] Rojas, T. C., de la Fuente, J. M., Barrientos, A. G., Penadés, S., Ponsonnet, L., and Fernández, A., Adv. Mater. 14, 585 (2002). http://dx.doi.org/10.1002/1521-4095(20020418)14:8<585::AID-ADMA585>3.0.CO;2-W10.1002/1521-4095(20020418)14:8<585::AID-ADMA585>3.0.CO;2-WSearch in Google Scholar

[144] Ingram, R. S., Hostetler, M. J., and Murray, R. W., J. Am. Chem. Soc. 119, 9175 (1997). http://dx.doi.org/10.1021/ja971734n10.1021/ja971734nSearch in Google Scholar

[145] Rothrock, A. R., Donkers, R. L., and Schoenfisch, M. H., J. Am. Chem. Soc. 127, 9362 (2005). http://dx.doi.org/10.1021/ja052027u10.1021/ja052027uSearch in Google Scholar

[146] Fan, H. Y., Leve, E. W., Scullin, C., Gabaldon, J., Tallant, D., Bunge, S., Boyle, T., Wilson, M. C., and Brinker, C. J., Nano Lett. 5, 645 (2005). http://dx.doi.org/10.1021/nl050017l10.1021/nl050017lSearch in Google Scholar

[147] You, C. C., Verma, A., and Rotello, V. M., Soft Matter 2, 190 (2006). http://dx.doi.org/10.1039/b517354j10.1039/b517354jSearch in Google Scholar

[148] Otsuka, H., Akiyama, Y., Nagasaki, Y., and Kataoka, K., J. Am. Chem. Soc. 123, 8226 (2001). http://dx.doi.org/10.1021/ja010437m10.1021/ja010437mSearch in Google Scholar

[149] Reynolds, A. J., Haines, A. H., and Russell, D. A., Langmuir 22, 1156 (2006). http://dx.doi.org/10.1021/la052261y10.1021/la052261ySearch in Google Scholar

[150] Hone, D. C., Haines, A. H., and Russell, D. A., Langmuir 19, 7141 (2003). http://dx.doi.org/10.1021/la034358v10.1021/la034358vSearch in Google Scholar

[151] Sugunan, A., Thanachayanont, C., Dutta, J., and Hilborn, J. G., Sci. Technol. Adv. Mater. 6, 335 (2005). http://dx.doi.org/10.1016/j.stam.2005.03.00710.1016/j.stam.2005.03.007Search in Google Scholar

[152] Halkes, K. M., de Souza, A. C., Maljaars, C. E. P., Gerwig, G. J., and Kamerling, J. P., Eur. J. Org. Chem. 2005, 3650. 10.1002/ejoc.200500256Search in Google Scholar

[153] Aslan, K., Zhang, J., Lakowicz, J. R., and Geddes, C. D., J. Fluorescence 14, 391 (2004). http://dx.doi.org/10.1023/B:JOFL.0000031820.17358.2810.1023/B:JOFL.0000031820.17358.28Search in Google Scholar

[154] Schellenberger, E. A., Reynolds, F., Weissleder, R., and Josephson, L., Chembiochem 5, 275 (2004). http://dx.doi.org/10.1002/cbic.20030071310.1002/cbic.200300713Search in Google Scholar

[155] Qi, L. F., Xu, Z. R., Jiang, X., Li, Y., and Wang, M. Q., Bioorg. Med. Chem. Lett. 15, 1397 (2005). http://dx.doi.org/10.1016/j.bmcl.2005.01.01010.1016/j.bmcl.2005.01.010Search in Google Scholar

[156] Roos, E. and Dingemans, K. P., BBA — Rev. Cancer 560, 135 (1979). 10.1016/0304-419X(79)90005-2Search in Google Scholar

[157] Hakomori, S. I., Proc. Natl. Acad. Sci. U. S. A. 99, 225 (2002). http://dx.doi.org/10.1073/pnas.01254089910.1073/pnas.012540899Search in Google Scholar

[158] Hakomori, S. I., Adv. Cancer Res. 52, 257 (1989). http://dx.doi.org/10.1016/S0065-230X(08)60215-810.1016/S0065-230X(08)60215-8Search in Google Scholar

[159] Chen, Y. J., Chen, S. H., Chien, Y. Y., Chang, Y. W., Liao, H. K., Chang, C. Y., Jan, M. D., Wang, K. T., and Lin, C. C., Chembiochem 6, 1169 (2005). http://dx.doi.org/10.1002/cbic.20050002310.1002/cbic.200500023Search in Google Scholar PubMed

[160] Takae, S., Akiyama, Y., Otsuka, H., Nakamura, T., Nagasaki, Y., and Kataoka, K., Biomacromolecules 6, 818 (2005). http://dx.doi.org/10.1021/bm049427e10.1021/bm049427eSearch in Google Scholar PubMed

[161] Lin, C. C., Yeh, Y. C., Yang, C. Y., Chen, C. L., Chen, G. F., Chen, C. C., and Wu, Y. C., J. Am. Chem. Soc. 124, 3508 (2002). http://dx.doi.org/10.1021/ja020090310.1021/ja0200903Search in Google Scholar PubMed

[162] Aslan, K., Lakowicz, J. R., and Geddes, C. D., Anal. Biochem. 330, 145 (2004). http://dx.doi.org/10.1016/j.ab.2004.03.03210.1016/j.ab.2004.03.032Search in Google Scholar PubMed PubMed Central

Published Online: 2007-8-1
Published in Print: 2007-8-1

© 2007 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Step by step towards understanding gold glyconanoparticles as elements of the nanoworld
  2. Structure—activity relationships for in vitro oxime reactivation of chlorpyrifos-inhibited acetylcholinesterase
  3. Separation and characterization of products from thermal cracking of individual and mixed polyalkenes
  4. Mobility of important toxic analytes in urban dust and simulated air filters determined by sequential extraction and GFAAS/ICP-OES methods
  5. Effect of addition of ameliorative materials on the distribution of As, Cd, Pb, and Zn in extractable soil fractions
  6. Effect of gamma irradiation on trichromatic values of spices
  7. Homo- and heteronuclear complexes of a new, vicinal dioxime ligand
  8. Synthesis of new triphenodithiazine- and indolocarbazolediones of biological interest
  9. Dielectric relaxation of butyl acrylate—alcohol mixtures using time domain reflectometry
  10. Ab initio study of small coinage metal telluride clusters AunTem (n, m = 1, 2)
  11. Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules
  12. Comparison of spectrophotometric and HPLC methods for determination of lipid peroxidation products in rat brain tissues
  13. Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors
  14. Mechanism of thermal decomposition of cobalt acetate tetrahydrate
  15. Three-component, one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones catalyzed by bromodimethylsulfonium bromide
Downloaded on 14.1.2026 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-007-0029-0/html
Scroll to top button