Home Mechanism of thermal decomposition of cobalt acetate tetrahydrate
Article
Licensed
Unlicensed Requires Authentication

Mechanism of thermal decomposition of cobalt acetate tetrahydrate

  • T. Wanjun EMAIL logo and C. Donghua
Published/Copyright: August 1, 2007
Become an author with De Gruyter Brill

Abstract

The thermal decomposition of cobalt acetate tetrahydrate (Co(CH3COO)2 · 4H2O) has been studied via thermogravimetric (TG) analysis, in situ X-ray powder diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The results of TG and XRD showed that the parent salt melted and then the dissolved crystalline water was vaporized in two steps. The dehydration process was followed by a major step concerning the decomposition of the acetate group, leading to basic acetate as an intermediate, which then produced CoO and Co in N2 and H2 atmosphere, respectively. Three decomposition intermediates Co(CH3COO)2 · 0.5H2O, Co(CH3COO)2, and Co(OH)(CH3COO) were presumed. In situ XRD experiments revealed that the intermediate basic acetate was poorly crystallized or even amorphous. Evolved gases analysis indicated that the volatile products of acetate decomposition were water vapor, acetic acid, ethylenone, acetone, and CO2. A detailed thermal decomposition mechanism of Co(CH3COO)2 · 4H2O was discussed.

[1] Bowker, M. and Cassidy, T. J., J. Catal. 174, 65 (1998). http://dx.doi.org/10.1006/jcat.1997.195810.1006/jcat.1997.1958Search in Google Scholar

[2] Sarellas, A., Niakolas, D., Bourikas, K., Vakros, J., and Kordulis, C., J. Colloid Interface Sci. 295, 165 (2006). http://dx.doi.org/10.1016/j.jcis.2005.08.02010.1016/j.jcis.2005.08.020Search in Google Scholar

[3] Raróg-Pilecka, W., Miskiewicz, E., Matyszek, M., Kaszkur, Z., Kepinski, L., and Kowalczyk, Z., J. Catal. 237, 207 (2006). http://dx.doi.org/10.1016/j.jcat.2005.10.02910.1016/j.jcat.2005.10.029Search in Google Scholar

[4] Zhou, L., Xu, J., Miao, H., Wang, F., and Li, X., Appl. Catal., A 292, 223 (2005). http://dx.doi.org/10.1016/j.apcata.2005.06.01810.1016/j.apcata.2005.06.018Search in Google Scholar

[5] Storsæter, S., Borg, Ø., Blekkan, E. A., and Holmen, A., J. Catal. 231, 405 (2005). http://dx.doi.org/10.1016/j.jcat.2005.01.03610.1016/j.jcat.2005.01.036Search in Google Scholar

[6] Hussein, G. A. M., Powder Technol. 118, 285 (2001). http://dx.doi.org/10.1016/S0032-5910(00)00384-310.1016/S0032-5910(00)00384-3Search in Google Scholar

[7] Hussein, G. A. M. and Balboul, B. A. A., Powder Technol. 103, 156 (1999). http://dx.doi.org/10.1016/S0032-5910(98)00226-510.1016/S0032-5910(98)00226-5Search in Google Scholar

[8] Syukri, Ban, T., Ohya, Y., and Takahashi, Y., Mater. Chem. Phys. 78, 645 (2003). http://dx.doi.org/10.1016/S0254-0584(02)00185-210.1016/S0254-0584(02)00185-2Search in Google Scholar

[9] Girardon, J. S., Lermontov, A. S., Gengembre, L., Chernavskii, P. A., Griboval-Constant, A., and Khodakov, A. Y., J. Catal. 230, 339 (2005). http://dx.doi.org/10.1016/j.jcat.2004.12.01410.1016/j.jcat.2004.12.014Search in Google Scholar

[10] Alshehri, S. M., Monshi, M. A. S., Abd El-Salam, N. M., and Mahfouz, R. M., Thermochim. Acta 363, 61 (2000). http://dx.doi.org/10.1016/S0040-6031(00)00602-X10.1016/S0040-6031(00)00602-XSearch in Google Scholar

[11] Ingier-Stocka, E. and Grabowska, A., J. Therm. Anal. 54, 115 (1998). http://dx.doi.org/10.1023/A:101011690241210.1023/A:1010116902412Search in Google Scholar

[12] De Jesus, J. C., Gonzalez, I., Quevedo, A., and Puerta, T., J. Mol. Catal. A: Chem. 228, 283 (2005). http://dx.doi.org/10.1016/j.molcata.2004.09.06510.1016/j.molcata.2004.09.065Search in Google Scholar

[13] Nickolov, Z., Georgiev, G., Stoilova, D., and Ivanov, I., J. Mol. Struct. 354, 119 (1995). http://dx.doi.org/10.1016/0022-2860(95)08877-X10.1016/0022-2860(95)08877-XSearch in Google Scholar

[14] Hussein, G. A. M., Mekhemer, G. A. H., and Balboul, B. A. A., Phys. Chem. Chem. Phys. 2, 2033 (2000). http://dx.doi.org/10.1039/b000220h10.1039/b000220hSearch in Google Scholar

Published Online: 2007-8-1
Published in Print: 2007-8-1

© 2007 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Step by step towards understanding gold glyconanoparticles as elements of the nanoworld
  2. Structure—activity relationships for in vitro oxime reactivation of chlorpyrifos-inhibited acetylcholinesterase
  3. Separation and characterization of products from thermal cracking of individual and mixed polyalkenes
  4. Mobility of important toxic analytes in urban dust and simulated air filters determined by sequential extraction and GFAAS/ICP-OES methods
  5. Effect of addition of ameliorative materials on the distribution of As, Cd, Pb, and Zn in extractable soil fractions
  6. Effect of gamma irradiation on trichromatic values of spices
  7. Homo- and heteronuclear complexes of a new, vicinal dioxime ligand
  8. Synthesis of new triphenodithiazine- and indolocarbazolediones of biological interest
  9. Dielectric relaxation of butyl acrylate—alcohol mixtures using time domain reflectometry
  10. Ab initio study of small coinage metal telluride clusters AunTem (n, m = 1, 2)
  11. Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules
  12. Comparison of spectrophotometric and HPLC methods for determination of lipid peroxidation products in rat brain tissues
  13. Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors
  14. Mechanism of thermal decomposition of cobalt acetate tetrahydrate
  15. Three-component, one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones catalyzed by bromodimethylsulfonium bromide
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-007-0042-3/html
Scroll to top button