Abstract
Dielectric relaxation measurements of butyl acrylate—alcohol mixtures at different concentrations and temperatures within the frequency range of 10 MHz to 10 GHz have been carried out using time domain reflectometry. Parameters such as the static permittivity, dielectric relaxation time, the Kirkwood correlation factor, the excess inverse relaxation time, and thermodynamic functions were determined and discussed to yield information on the molecular structure and dynamics of the mixture. The value of the dielectric properties decreases with increasing butyl acrylate concentration in alcohol and systematically varies with the length of alcohol alkyl chain. Negative values of the excess inverse relaxation time found for all concentrations and at all temperatures studied may indicate that the effective dipoles rotate slowly.
[1] Ediger, M. D., Angell, C. A., and Nagel, S. R., J. Chem. Phys. 100, 13200 (1996). Search in Google Scholar
[2] De Francesco, L., Cutroni, M., and Mandanici, A., Philos. Mag. B 82, 625 (2002). http://dx.doi.org/10.1080/1364281011008527110.1080/13642810110085271Search in Google Scholar
[3] Sengwa, R. J., Chaudhary, R., and Mehrotra, S. C., Mol. Phys. 99, 1805 (2001). http://dx.doi.org/10.1080/0026897011007278210.1080/00268970110072782Search in Google Scholar
[4] Iglesias, T. P., Fornies-Marquina, J. M., and De Cominges, B., Mol. Phys. 103, 2639 (2005). http://dx.doi.org/10.1080/0022293050019038410.1080/00222930500190384Search in Google Scholar
[5] Schildknecht, C. E., Vinyl and Related Polymers. Wiley, New York, 1977. Search in Google Scholar
[6] Savage, P. E., Chem. Rev. 99, 603 (1999). http://dx.doi.org/10.1021/cr970098910.1021/cr9700989Search in Google Scholar
[7] Shirke, R. M., Chaudhari, A., More, N. M., and Patil, P. B., J. Chem. Eng. Data 45, 917 (2000). http://dx.doi.org/10.1021/je000066+10.1021/je000066+Search in Google Scholar
[8] Shirke, R. M., Chaudhari, A., More, N. M., and Patil, P. B., J. Mol. Liq. 94, 27 (2001). http://dx.doi.org/10.1016/S0167-7322(01)00239-210.1016/S0167-7322(01)00239-2Search in Google Scholar
[9] Patil, S. P., Chaudhari, A. S., Lokhande, M. P., Lande, M. K., Shankarwar, A. G., Helambe, S. N., Arbad, B. R., and Mehrotra, S. C., J. Chem. Eng. Data 44, 875 (1999). http://dx.doi.org/10.1021/je980250j10.1021/je980250jSearch in Google Scholar
[10] Khirade, P. W., Chaudhari, A., Shinde, J. B., Helambe, S. N., and Mehrotra, S. C., J. Chem. Eng. Data 44, 879 (1999). http://dx.doi.org/10.1021/je980118j10.1021/je980118jSearch in Google Scholar
[11] Khirade, P. W., Chaudhari, A., Shinde, J. B., Helambe, S. N., and Mehrotra, S. C., J. Solution Chem. 28, 1031 (1999). http://dx.doi.org/10.1023/A:102266612816610.1023/A:1022666128166Search in Google Scholar
[12] Chaudhari, A. and Mehrotra, S. C., Mol. Phys. 100, 3907 (2002). http://dx.doi.org/10.1080/002689702100002366810.1080/0026897021000023668Search in Google Scholar
[13] Sivagurunathan, P., Dharmalingam, K., and Ramachandran, K., Z. Phys. Chem. 219, 1635 (2005). Search in Google Scholar
[14] Sivagurunathan, P., Dharmalingam, K., and Ramachandran, K., Spectrochim. Acta, Part A 64, 127 (2006). http://dx.doi.org/10.1016/j.saa.2005.07.00510.1016/j.saa.2005.07.005Search in Google Scholar PubMed
[15] Sivagurunathan, P., Dharmalingam, K., and Ramachandran, K., Indian J. Pure Appl. Phys. 43, 905 (2005). Search in Google Scholar
[16] Dharmalingam, K., Ramachandran, K., and Sivagurunathan, P., Main Group Chem. 4, 241 (2005). http://dx.doi.org/10.1080/1024122060064974510.1080/10241220600649745Search in Google Scholar
[17] Dharmalingam, K. and Ramachandran, K., Phys. Chem. Liq. 44, 77 (2006). http://dx.doi.org/10.1080/0031910050033722910.1080/00319100500337229Search in Google Scholar
[18] Sivagurunathan, P., Dharmalingam, K., and Ramachandran, K., Indian J. Phys. 79, 1403 (2005). Search in Google Scholar
[19] Dharmalingam, K., Ramachandran, K., and Sivagurunathan, P., Spectrochim. Acta, Part A 66, 48 (2007). http://dx.doi.org/10.1016/j.saa.2006.02.01910.1016/j.saa.2006.02.019Search in Google Scholar PubMed
[20] Sivagurunathan, P., Dharmalingam, K., and Ramachandran, K., Z. Phys. Chem. 219, 1385 (2005). Search in Google Scholar
[21] Sivagurunathan, P., Dharmalingam, K., Ramachandran, K., and Kalamse, G. M., Main Group Chem. 4, 227 (2005). http://dx.doi.org/10.1080/1024122060060163910.1080/10241220600601639Search in Google Scholar
[22] Vogel, A. I., Text Book of Practical Organic Chemistry, 3rd Edition. Longman, London, 1957. Search in Google Scholar
[23] Samulon, H. A., Proc. IRE 39, 175 (1951). 10.1109/JRPROC.1951.231438Search in Google Scholar
[24] Shannon, C. E., Proc. IRE 37, 10 (1949). 10.1109/JRPROC.1949.232969Search in Google Scholar
[25] Cole, R. H., Berbarian, J. G., Mashimo, S., Chryssikos, G., Burns, A., and Tombari, E., J. Appl. Phys. 66, 793 (1989). http://dx.doi.org/10.1063/1.34349910.1063/1.343499Search in Google Scholar
[26] Cole, K. S. and Cole, R. H., J. Chem. Phys. 9, 341 (1941). http://dx.doi.org/10.1063/1.175090610.1063/1.1750906Search in Google Scholar
[27] Davidson, D. W. and Cole, R. H., J. Chem. Phys. 18, 1417 (1950). http://dx.doi.org/10.1063/1.174749610.1063/1.1747496Search in Google Scholar
[28] Havriliak, S. and Negami, S., J. Polym. Sci., Part C Polym. Symp. 1966, 99. Search in Google Scholar
[29] Bevington, P. R., Data Reduction and Error Analysis for the Physical Sciences. Mc Graw-Hill, New York, 1969. Search in Google Scholar
[30] Abd-El-Messieh, S. L., Mohamed, M. G., Mazrouaa, A. M., and Soliman, A., J. Appl. Polym. Sci. 85, 271 (2002). http://dx.doi.org/10.1002/app.1057210.1002/app.10572Search in Google Scholar
[31] Singh, P. J. and Sharma, K. S., Indian J. Pure Appl. Phys. 31, 721 (1993). Search in Google Scholar
[32] Prakash, J. and Rai, B., Indian J. Pure Appl. Phys. 24, 187 (1986). Search in Google Scholar
[33] Kirkwood, J. G., J. Chem. Phys. 7, 911 (1939). http://dx.doi.org/10.1063/1.175034310.1063/1.1750343Search in Google Scholar
[34] Puranik, S. M., Kumbharkhane, A. C., and Mehrotra, S. C., J. Mol. Liq. 50, 143 (1991). http://dx.doi.org/10.1016/0167-7322(91)80042-310.1016/0167-7322(91)80042-3Search in Google Scholar
[35] Kauzmann, W., Rev. Mod. Phys. 14, 12 (1942). http://dx.doi.org/10.1103/RevModPhys.14.1210.1103/RevModPhys.14.12Search in Google Scholar
[36] Singh, A., Misra, R., Shukla, J. P., and Saxena, M. C., J. Mol. Liq. 26, 29 (1983). http://dx.doi.org/10.1016/0167-7322(83)80026-910.1016/0167-7322(83)80026-9Search in Google Scholar
© 2007 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Step by step towards understanding gold glyconanoparticles as elements of the nanoworld
- Structure—activity relationships for in vitro oxime reactivation of chlorpyrifos-inhibited acetylcholinesterase
- Separation and characterization of products from thermal cracking of individual and mixed polyalkenes
- Mobility of important toxic analytes in urban dust and simulated air filters determined by sequential extraction and GFAAS/ICP-OES methods
- Effect of addition of ameliorative materials on the distribution of As, Cd, Pb, and Zn in extractable soil fractions
- Effect of gamma irradiation on trichromatic values of spices
- Homo- and heteronuclear complexes of a new, vicinal dioxime ligand
- Synthesis of new triphenodithiazine- and indolocarbazolediones of biological interest
- Dielectric relaxation of butyl acrylate—alcohol mixtures using time domain reflectometry
- Ab initio study of small coinage metal telluride clusters AunTem (n, m = 1, 2)
- Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules
- Comparison of spectrophotometric and HPLC methods for determination of lipid peroxidation products in rat brain tissues
- Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors
- Mechanism of thermal decomposition of cobalt acetate tetrahydrate
- Three-component, one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones catalyzed by bromodimethylsulfonium bromide
Articles in the same Issue
- Step by step towards understanding gold glyconanoparticles as elements of the nanoworld
- Structure—activity relationships for in vitro oxime reactivation of chlorpyrifos-inhibited acetylcholinesterase
- Separation and characterization of products from thermal cracking of individual and mixed polyalkenes
- Mobility of important toxic analytes in urban dust and simulated air filters determined by sequential extraction and GFAAS/ICP-OES methods
- Effect of addition of ameliorative materials on the distribution of As, Cd, Pb, and Zn in extractable soil fractions
- Effect of gamma irradiation on trichromatic values of spices
- Homo- and heteronuclear complexes of a new, vicinal dioxime ligand
- Synthesis of new triphenodithiazine- and indolocarbazolediones of biological interest
- Dielectric relaxation of butyl acrylate—alcohol mixtures using time domain reflectometry
- Ab initio study of small coinage metal telluride clusters AunTem (n, m = 1, 2)
- Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules
- Comparison of spectrophotometric and HPLC methods for determination of lipid peroxidation products in rat brain tissues
- Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors
- Mechanism of thermal decomposition of cobalt acetate tetrahydrate
- Three-component, one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones catalyzed by bromodimethylsulfonium bromide