Startseite The crystal structure and chemistry of natural giniite and implications for Mars
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The crystal structure and chemistry of natural giniite and implications for Mars

  • Christopher T. Adcock , Elisabeth M. Hausrath , Elizabeth B. Rampe , Hexiong Yang und Robert T. Downs
Veröffentlicht/Copyright: 2. März 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Investigations of planetary processes using phosphate minerals often focus on igneous, recrystallized, or potentially metasomatized minerals, likely as a result of the minerals commonly available for study within meteorites and lunar samples. However, Mars is a relatively phosphorus-rich planet and possesses abundant evidence of past aqueous surface interactions. Therefore, secondary phosphate phases may be important on the martian surface. Giniite [ Fe2+Fe43+(PO4)4(OH)22H2O ] is a secondary phosphate mineral that has been suggested as a potentially significant phase at locations in Gusev Crater and Meridiani Planum on Mars. Although relatively rare as a natural mineral on Earth, giniite has gained attention as an important mineral in industry and technology, especially the lithium battery industry, and the ferrian version of the mineral is often synthesized. This suggests giniite may be important as an in situ resource utilization (ISRU) target for future extended human missions to Mars. Despite this, there are few data available on the natural mineral and the last characterization of the structure was over 40 years ago. There has also been confusion in the literature as to whether giniite is orthorhombic or monoclinic. In this work we revisit and document the chemistry and crystal structure of natural giniite from the type locality at the Sandamab pegmatite in Namibia using updated techniques. Our results refine and update what was previously known regarding the structure and chemistry of giniite and support the potential of the mineral as a possible martian scientific and resource target for further study to aid future missions.


† Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.


Acknowledgments

We acknowledge the RRUFF project for data and sample access to the giniite used in this study.

References cited

Aatiq, A., Tigha, M.R., Fakhreddine, R., Bregiroux, D., and Wallez, G. (2016) Structure, infrared and Raman spectroscopic studies of newly synthetic AII (SbV0.50FeIII 0.50)(PO4)2 (A = Ba, Sr, Pb) phosphates with yavapaiite structure. Solid State Sciences, 58, 44–54, https://doi.org/10.1016/j.solidstatesciences.2016.05.009Suche in Google Scholar

Adams, P.M., Wise, W.S., and Kampf, A.R. (2015) The Silver Coin Mine. The Mineralogical Record, 45, 702–728.Suche in Google Scholar

Adcock, C.T. and Hausrath, E.M. (2015) Weathering profiles in phosphorus-rich rocks at Gusev Crater, Mars, suggest dissolution of phosphate minerals into potentially habitable near-neutral waters. Astrobiology, 15, 1060–1075, https://doi.org/10.1089/ast.2015.1291Suche in Google Scholar

Adcock, C.T., Hausrath, E.M., and Forster, P.M. (2013) Readily available phosphate from minerals in early aqueous environments on Mars. Nature Geoscience, 6, 824–827, https://doi.org/10.1038/ngeo1923Suche in Google Scholar

Adcock, C.T., Tschauner, O., Hausrath, E.M., Udry, A., Luo, S.N., Cai, Y., Ren, M., Lanzirotti, A., Newville, M., Kunz, M., and others. (2017) Shock-transformation of whitlockite to merrillite and the implications for meteoritic phosphate. Nature Communications, 8, 14667, https://doi.org/10.1038/ncomms14667Suche in Google Scholar

Adcock, C., Hausrath, E., Rampe, E., Panduro-Allanson, R., and Steinberg, S. (2021) In situ resources from water-rock interactions for human exploration of Mars. 52nd Lunar and Planetary Science Conference, p. 1665. LPI, Virtual.Suche in Google Scholar

Benner, S.A. and Kim, H.-J. (2015) The case for a martian origin for Earth life. Instruments, Methods, and Missions for Astrobiology XVII, 9606, 96060C, International Society for Optics and Photonics, https://doi.org/10.1117/12.2192890Suche in Google Scholar

Berger, J., Schmidt, M., Izawa, M., Gellert, R., Ming, D., Rampe, E., VanBommel, S., and McAdam, A. (2016) Phosphate stability in diagenetic fluids constrains the acidic alteration model for lower Mt. Sharp sedimentary rocks in Gale crater, Mars. 47th Lunar and Planetary Science Conference, p. 1652. LPI, The Woodlands.Suche in Google Scholar

Berger, J., VanBommel, S., Clark, B., Gellert, R., House, C., King, P., McCraig, M., Ming, D., O’Connell-Cooper, C., and Schmidt, M. (2021) Manganese-and phosphorus-rich nodules in Gale Crater, Mars: APXS results from the Groken Drill Site. 52nd Lunar and Planetary Science Conference, p. 2194. LPI, Virtual.Suche in Google Scholar

Brearley, A. and Jones, R. (1998) Chondritic meteorites. Reviews in Mineralogy, 3-001–3-398.Suche in Google Scholar

Brese, N. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192–197, https://doi.org/10.1107/S0108768190011041Suche in Google Scholar

Burcar, B., Pasek, M., Gull, M., Cafferty, B.J., Velasco, F., Hud, N.V., and Menor-Salván, C. (2016) Darwin’s warm little pond: A one-pot reaction for prebiotic phosphorylation and the mobilization of phosphate from minerals in a ureabased solvent. Angewandte Chemie International Edition, 55, 13249–13253, https://doi.org/10.1002/anie.201606239Suche in Google Scholar

Carr, M.H. and Head, J.W. III (2003) Oceans on Mars: An assessment of the observational evidence and possible fate. Journal of Geophysical Research, 108 (E5), 5042, https://doi.org/10.1029/2002JE001963Suche in Google Scholar

Chen, Q., Wei, C., Zhang, Y., Pang, H., Lu, Q., and Gao, F. (2014) Single-crystalline hyperbranched nanostructure of iron hydroxyl phosphate Fe5(PO4)4(OH)3·2H2O for highly selective capture of phosphopeptides. Scientific Reports, 4, 3753, https://doi.org/10.1038/srep03753Suche in Google Scholar

Cheng, C.Y., Misra, V.N., Clough, J., and Muni, R. (1999) Dephosphorisation of western Australian iron ore by hydrometallurgical process. Minerals Engineering, 12, 1083–1092, https://doi.org/10.1016/S0892-6875(99)00093-XSuche in Google Scholar

Corbin, D., Whitney, J., Fultz, W., Stucky, G., Eddy, M., and Cheetham, A. (1986) Synthesis of open-framework transition-metal phosphates using organometallic precursors in acidic media. Preparation and structural characterization of Fe5P4O20H10 and NaFe3P3O12. Inorganic Chemistry, 25, 2279–2280, https://doi.org/10.1021/ic00234a001Suche in Google Scholar

Delvasto, P., Valverde, A., Ballester, A., Muñoz, J.A., González, F., Blázquez, M.L., Igual, J.M., and García-Balboa, C. (2008) Diversity and activity of phosphate bioleaching bacteria from a high-phosphorus iron ore. Hydrometallurgy, 92, 124–129, https://doi.org/10.1016/j.hydromet.2008.02.007Suche in Google Scholar

Dill, H.G., Melcher, F., Gerdes, A., and Weber, B. (2008) The origin and zoning of hypogene and supergene Fe-Mn-Mg-Sc-U-REE phosphate mineralization from the newly discovered Trutzhofmühle aplite, Hagendorf pegmatite province, Germany. Canadian Mineralogist, 46, 1131–1157, https://doi.org/10.3749/canmin.46.5.1131Suche in Google Scholar

Dosen, A. and Giese, R.F. (2011) Thermal decomposition of brushite, CaHPO4· 2H2O to monetite CaHPO4 and the formation of an amorphous phase. American Mineralogist, 96, 368–373, https://doi.org/10.2138/am.2011.3544Suche in Google Scholar

Duan, X., Li, D., Zhang, H., Ma, J., and Zheng, W. (2013) Crystal-facet engineering of ferric giniite by using ionic-liquid precursors and their enhanced photocatalytic performances under visible-light irradiation. Chemistry (Weinheim an der Bergstrasse, Germany), 19, 7231–7242, https://doi.org/10.1002/chem.201300385Suche in Google Scholar

Dumitraş, D.-G., Marincea, S., and Fransolet, A.-M. (2004) Brushite in the bat guano deposit from the “dry” Cioclovina Cave (Sureanu Mountains, Romania). Neues Jahrbuch für Mineralogie Abhandlungen, 180, 45–64, https://doi.org/10.1127/0077-7757/2004/0180-0045Suche in Google Scholar

Dyar, M.D., Jawin, E.R., Breves, E., Marchand, G., Nelms, M., Lane, M.D., Mertzman, S.A., Bish, D.L., and Bishop, J.L. (2014) Mössbauer parameters of iron in phosphate minerals: Implications for interpretation of martian data. American Mineralogist, 99, 914–942, https://doi.org/10.2138/am.2014.4701Suche in Google Scholar

Filiberto, J., Gross, J., and McCubbin, F.M. (2016) Constraints on the water, chlorine, and fluorine content of the martian mantle. Meteoritics & Planetary Science, 51, 2023–2035, https://doi.org/10.1111/maps.12624Suche in Google Scholar

Fleischer, M., Cabri, L., Chao, G., and Pabst, A. (1980) New mineral names. American Mineralogist, 65, 1065–1070.Suche in Google Scholar

Frost, R.L. and Palmer, S.J. (2011) Thermal stability of the ‘cave’ mineral brushite CaHPO4·2H2O–Mechanism of formation and decomposition. Thermochimica Acta, 521, 14–17, https://doi.org/10.1016/j.tca.2011.03.035Suche in Google Scholar

Frost, R.L., Wills, R.-A., and Martens, W.N. (2007) A Raman spectroscopic study of synthetic giniite. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 66, 42–47, https://doi.org/10.1016/j.saa.2006.02.018Suche in Google Scholar

Frost, R.L., Bahfenne, S., Čejka, J., Sejkora, J., Plášil, J., Palmer, S.J., Keeffe, E.C., and Němec, I. (2011) Dussertite BaFe 3 3+ ( AsO 4 ) 2 ( OH ) 5 —A Raman spectroscopic study of a hydroxy-arsenate mineral. Journal of Raman Spectroscopy: JRS, 42, 56–61, https://doi.org/10.1002/jrs.2612Suche in Google Scholar

Frost, R.L., Xi, Y., López, A., Scholz, R., Lana, C.C., and Souza, B.F. (2013a) Vibrational spectroscopic characterization of the phosphate mineral barbosalite Fe2+Fe23+(PO4)2(OH)2—Implications for the molecular structure. Journal of Molecular Structure, 1051, 292–298, https://doi.org/10.1016/j. molstruc.2013.07.058Suche in Google Scholar

Frost, R.L., Xi, Y., Millar, G., Tan, K., and Palmer, S.J. (2013b) Vibrational spectroscopy of natural cave mineral monetite CaHPO4 and the synthetic analog. Spectroscopy Letters, 46, 54–59, https://doi.org/10.1080/00387010. 2012.663852Suche in Google Scholar

Frost, R.L., Xi, Y., Scholz, R., and Belotti, F.M. (2013c) Vibrational spectroscopic characterization of the phosphate mineral ludlamite (Fe,Mn,Mg)3(PO4)2·4H2O— A mineral found in lithium bearing pegmatites. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 103, 143–150, https://doi.org/10.1016/j.saa.2012.11.023Suche in Google Scholar

Gagné, O.C. and Hawthorne, F.C. (2018) Bond-length distributions for ions bonded to oxygen: Results for the non-metals and discussion of lone-pair stereoactivity and the polymerization of PO4. Acta Crystallographica, B74, 79–96, https://doi.org/10.1107/S2052520617017541Suche in Google Scholar

Gellert, R., Rieder, R., Brückner, J., Clark, B., Dreibus, G., Klingelhöfer, G., Lugmair, G., Ming, D., Wänke, H., and Yen, A. (2006) Alpha Particle X-ray Spectrometer (APXS): Results from Gusev crater and calibration report. Journal of Geophysical Research. Planets, 111, E02S05.Suche in Google Scholar

Goetz, W., Bertelsen, P., Binau, C.S., Gunnlaugsson, H.P., Hviid, S.F., Kinch, K.M., Madsen, D.E., Madsen, M.B., Olsen, M., Gellert, R., and others. (2005) Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust. Nature, 436, 62–65, https://doi.org/10.1038/nature03807Suche in Google Scholar

Gonçalves, R., Martins, R., Costa, C.M., Ferdov, S., and Lanceros-Méndez, S. (2017) Crystal morphology control of synthetic giniite by alkaline cations and pH variations. Crystal Growth & Design, 17, 4710–4714, https://doi.org/10.1021/acs.cgd.7b00590Suche in Google Scholar

Grotzinger, J.P., Sumner, D.Y., Kah, L.C., Stack, K., Gupta, S., Edgar, L., Rubin, D., Lewis, K., Schieber, J., Mangold, N., and others, and the MSL Science Team. (2014) A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars. Science, 343, 1242777, https://doi.org/10.1126/science.1242777Suche in Google Scholar

Han, C., Zhoumin, Ye., Ye, Q., Yao, L., and Xu, Z. (2017) Controllable synthesis of sphere-and star-like Fe5(PO4)4(OH)3·2H2O microcrystals for effective photo-Fenton-like degradation of rhodamine B. Inorganic and Nano-Metal Chemistry, 47, 806–809, https://doi.org/10.1080/15533174.2016.1218512Suche in Google Scholar

Hausrath, E.M. and Tschauner, O. (2013) Natural fumarolic alteration of fluorapatite, olivine, and basaltic glass, and implications for habitable environments on Mars. Astrobiology, 13, 1049–1064, https://doi.org/10.1089/ast.2013.0985Suche in Google Scholar

Hausrath, E., Golden, D., Morris, R., Agresti, D., and Ming, D. (2013) Acid sulfate alteration of fluorapatite, basaltic glass and olivine by hydrothermal vapors and fluids: Implications for fumarolic activity and secondary phosphate phases in sulfate-rich Paso Robles soil at Gusev Crater, Mars. Journal of Geophysical Research Planets, 118, 1–13, https://doi.org/10.1029/2012JE004246Suche in Google Scholar

Hausrath, E.M., Ming, D.W., Peretyazhko, T., and Rampe, E.B. (2018) Reactive transport and mass balance modeling of the Stimson sedimentary formation and altered fracture zones constrain diagenetic conditions at Gale crater, Mars. Earth and Planetary Science Letters, 491, 1–10, https://doi.org/10.1016/j.epsl.2018.02.037Suche in Google Scholar

Hawthorne, F.C. (1998) Structure and chemistry of phosphate minerals. Mineralogical Magazine, 62, 141–164, https://doi.org/10.1180/002646198547512Suche in Google Scholar

Hong, Y.S., Ryu, K.S., and Chang, S.H. (2003) New iron-containing electrode materials for lithium secondary batteries. ETRI Journal, 25, 412–417, https://doi.org/10.4218/etrij.03.0102.0015Suche in Google Scholar

Hurowitz, J.A., McLennan, S., Tosca, N., Arvidson, R., Michalski, J.R., Ming, D.W., Schroder, C., and Squyres, S.W. (2006) In situ and experimental evidence for acidic weathering of rocks and soils on Mars. Journal of Geophysical Research, 111, E02S19, https://doi.org/10.1029/2005JE002515Suche in Google Scholar

Jambor, J. and Dutrizac, J. (1988) Synthesis of the ferric analog of the ferrous-ferric phosphate, giniite. Neues Jahrbuch für Mineralogie Abhandlungen, 159, 51–58.Suche in Google Scholar

Jones, R.H., McCubbin, F.M., Dreeland, L., Guan, Y., Burger, P.V., and Shearer, C.K. (2014) Phosphate minerals in LL chondrites: A record of the action of fluids during metamorphism on ordinary chondrite parent bodies. Geochimica et Cosmochimica Acta, 132, 120–140, https://doi.org/10.1016/j.gca.2014.01.027Suche in Google Scholar

Kanowitz, S.M. and Palenik, G.J. (1998) Bond valence sums in coordination chemistry using oxidation-state-independent R0 values. A simple method for calculating the oxidation state of iron in Fe-O complexes. Inorganic Chemistry, 37, 2086–2088, https://doi.org/10.1021/ic971342hSuche in Google Scholar

Keller, P. (1980a) GINIIT, Fe2+Fe43+((H2O)2(OH)2(PO4)4) Ein Neues Mineral Aus Dem Pegmatit von Sandamab Bei Usakos, Namibia. Neues Jahrbuch für Mineralogie Monatshefte, 2, 49–56.Suche in Google Scholar

Keller, P. (1980b) GINIT, Fe2+ Fe43+ ((H2O)2(OH)2(PO4)4): Neue Kristallographische Daten. Neues Jahrbuch für Mineralogie Monatshefte, 12, 561–563.Suche in Google Scholar

Keller, P. and Knorring, O. (1989) Pegmatites at the Okatjimukuju farm, Karibib, Namibia Part I: Phosphate mineral associations of the Clementine II pegmatite. European Journal of Mineralogy, 1, 567–594, https://doi.org/10.1127/ejm/1/4/0567Suche in Google Scholar

Klingelhöfer, G., Morris, R.V., Bernhardt, B., Schröder, C., Rodionov, D.S., de Souza, P.A. Jr., Yen, A., Gellert, R., Evlanov, E.N., Zubkov, B., and others. (2004) Jarosite and hematite at Meridiani Planum from Opportunity’s Mossbauer Spectrometer. Science, 306, 1740–1745, https://doi.org/10.1126/science. 1104653Suche in Google Scholar

Kolesov, B. (2006) Raman investigation of H2O molecule and hydroxyl groups in the channels of hemimorphite. American Mineralogist, 91, 1355–1362, https://doi.org/10.2138/am.2006.2179Suche in Google Scholar

Lafuente, B., Downs, R. T., Yang, H., and Stone, N. (2016) The power of databases: The RRUFF project. In T. Armbruster and R.M. Danisi, Eds., Highlights in Mineralogical Crystallography, p. 1–29. de GruyterSuche in Google Scholar

Liu, A., Ma, F., and Chen, Y. (2017) Synthesis of shape-controlled Fe5(PO4)4(OH)3·2H2O microcrystal via one-step hydrothermal method. Micro & Nano Letters, 12, 325–328, https://doi.org/10.1049/mnl.2016.0412Suche in Google Scholar

Lv, C., Duan, X., Deng, J., and Wang, T. (2017) LiFePO4 mesocrystals coated with N-doped carbon from an ionic liquid for Li-ion batteries. CrystEngComm, 19, 1253–1257, https://doi.org/10.1039/C6CE02512ASuche in Google Scholar

Martins, P.M., Salazar, H., Aoudjit, L., Gonçalves, R., Zioui, D., Fidalgo-Marijuan, A., Costa, C.M., Ferdov, S., and Lanceros-Mendez, S. (2021) Crystal morphology control of synthetic giniite for enhanced photo-Fenton activity against the emerging pollutant metronidazole. Chemosphere, 262, 128300, https://doi.org/10.1016/j.chemosphere.2020.128300Suche in Google Scholar

McCollom, T.M., Donaldson, C., Moskowitz, B., Berquó, T. S., and Hynek, B. (2018) Phosphorous immobility during formation of the layered sulfate deposits of the Burns formation at Meridiani Planum. Journal of Geophysical Research. Planets, 123, 1230–1254, https://doi.org/10.1029/2017JE005493Suche in Google Scholar

McCubbin, F.M. and Jones, R.H. (2015) Extraterrestrial apatite: Planetary geochemistry to astrobiology. Elements (Quebec), 11, 183–188, https://doi.org/10.2113/gselements.11.3.183Suche in Google Scholar

McCubbin, F.M., Jolliff, B.L., Nekvasil, H., Carpenter, P.K., Zeigler, R.A., Steele, A., Elardo, S.M., and Lindsley, D.H. (2011) Fluorine and chlorine abundances in lunar apatite: Implications for heterogeneous distributions of magmatic volatiles in the lunar interior. Geochimica et Cosmochimica Acta, 75, 5073–5093, https://doi.org/10.1016/j.gca.2011.06.017Suche in Google Scholar

McCubbin, F.M., Shearer, C.K., Burger, P.V., Hauri, E.H., Wang, J., Elardo, S.M., and Papike, J.J. (2014) Volatile abundances of coexisting merrillite and apatite in the martian meteorite Shergotty: Implications for merrillite in hydrous magmas. American Mineralogist, 99, 1347–1354, https://doi.org/10.2138/am.2014.4782Suche in Google Scholar

McGowan, G. I and Prangnell, J. (2006) The significance of vivianite in archaeological settings. Geoarchaeology, 21, 93–111, https://doi.org/10.1002/gea.20090Suche in Google Scholar

McSween, H. and Treiman, A. (1998) martian meteorites. In J.J. Papike, Ed., Planetary Materials, 36, p. 953–1006. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia.Suche in Google Scholar

Miller, H.M., Mayhew, L.E., Ellison, E. T., Kelemen, P., Kubo, M., and Templeton, A. S. (2017) Low temperature hydrogen production during experimental hydration of partially-serpentinized dunite. Geochimica et Cosmochimica Acta, 209, 161–183, https://doi.org/10.1016/j.gca.2017.04.022Suche in Google Scholar

Ming, D.W., Mittlefehldt, D.W., Morris, R.V., Golden, D., Gellert, R., Yen, A., Clark, B.C., Squyres, S.W., Farrand, W.H., and Ruff, S.W. (2006) Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars. Journal of Geophysical Research Planets, 111, E02S12.Suche in Google Scholar

Mojzsis, S.J. and Arrhenius, G. (1998) Phosphates and carbon on Mars: Exobiological implications and sample return considerations. Journal of Geophysical Research, 103 (E12), 28495–28511, https://doi.org/10.1029/98JE02141Suche in Google Scholar

Mojzsis, S.J., Arrhenius, G., McKeegan, K.D., Harrison, T.M., Nutman, A.P., and Friend, C.R. (1996) Evidence for life on Earth before 3,800 million years ago. Nature, 384, 55–59, https://doi.org/10.1038/384055a0Suche in Google Scholar

Moore, P. (1973) Pegmatite phosphates: Descriptive mineralogy and crystal chemistry. The Mineralogical Record, 4, 103–130.Suche in Google Scholar

Morris, R.V., Klingelhoefer, G., Schröder, C., Rodionov, D.S., Yen, A., Ming, D.W., De Souza, P., Wdowiak, T., Fleischer, I., and Gellert, R. (2006) Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. Journal of Geophysical Research. Planets, 111, E12.Suche in Google Scholar

Morris, R.V., Ming, D., Blake, D., Vaniman, D., Bish, D., Chipera, S., Downs, R., Gellert, R., Treiman, A., Yen, A., and others and the MSL Science Team (2013) The amorphous component in martian basaltic soil in global perspective from MSL and MER missions. 44th Lunar and Planetary Science conference, p. 1653. LPI, The Woodlands, Texas.Suche in Google Scholar

Nedkov, I., Groudeva, V., Angelova, R., Iliev, M., and Slavov, L. (2016) New Iron Oxides/Hydroxides Biomaterials for Application in Electronics and Medicine. Machines. Technologies. Materials (Basel), 10, 48–51.Suche in Google Scholar

Nunes, A.P.L., de Araujo, A.C., de Magalhães, P.R., and Viana, A.B.H. (2009) Occurrence of phosphorus-bearing minerals in Brazilian iron ores. Proceedings of the GEOMIN 2009 Conference, First International Seminar on Geology for the Mining Industry, p. 10–12, Antofagasta, Chile.Suche in Google Scholar

Ofoegbu, S.U. (2019) Technological challenges of phosphorus removal in high-phosphorus ores: Sustainability implications and possibilities for greener ore processing. Sustainability (Basel), 11, 6787, https://doi.org/10.3390/su11236787Suche in Google Scholar

Pasek, M.A. and Kee, T.P. (2011) On the origin of phosphorylated biomolecules. In R. Egel, D. Lankenau, and A.Y. Mulkidjanian, Eds., Origins of Life: The Primal Self-Organization, 57–84. Springer.Suche in Google Scholar

Patiño Douce, A.E., Roden, M.F., Chaumba, J., Fleisher, C., and Yogodzinski, G. (2011) Compositional variability of terrestrial mantle apatites, thermodynamic modeling of apatite volatile contents, and the halogen and water budgets of planetary mantles. Chemical Geology, 288, 14–31, https://doi.org/10.1016/j.chemgeo.2011.05.018Suche in Google Scholar

Poienar, M., Damay, F., Rouquette, J., Ranieri, V., Malo, S., Maignan, A., Elkaïm, E., Haines, J., and Martin, C. (2020) Structural and magnetic characterization of barbosalite Fe3(PO4)2(OH)2. Journal of Solid State Chemistry, 287, 121357, https://doi.org/10.1016/j.jssc.2020.121357Suche in Google Scholar

Powner, M.W., Gerland, B., and Sutherland, J.D. (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature, 459, 239–242, https://doi.org/10.1038/nature08013Suche in Google Scholar

Priambodo, R., Tan, Y.-L., Shih, Y.-J., and Huang, Y.-H. (2017) Fluidized-bed crystallization of iron phosphate from solution containing phosphorus. Journal of the Taiwan Institute of Chemical Engineers, 80, 247–254, https://doi.org/10.1016/j.jtice.2017.07.004Suche in Google Scholar

Rampe, E.B., Morris, R.V., Archer, P.D. Jr., Agresti, D.G., and Ming, D.W. (2016) Recognizing sulfate and phosphate complexes chemisorbed onto nanophase weathering products on Mars using in-situ and remote observations. American Mineralogist, 101, 678–689, https://doi.org/10.2138/am-2016-5408CCBYNCNDSuche in Google Scholar

Rampe, E., Ming, D., Blake, D., Bristow, T., Chipera, S., Grotzinger, J., Morris, R., Morrison, S., Vaniman, D., Yen, A., and others. (2017) Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars. Earth and Planetary Science Letters, 471, 172–185, https://doi.org/10.1016/j.epsl.2017.04.021Suche in Google Scholar

Rampe, E.B., Blake, D.F., Bristow, T., Ming, D.W., Vaniman, D., Morris, R., Achilles, C., Chipera, S., Morrison, S., Tu, V., and others. (2020) Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: A review after six Earth years of exploration with Curiosity. Chemie der Erde, 80, 125605, https://doi.org/10.1016/j.chemer.2020.125605Suche in Google Scholar

Redhammer, G., Tippelt, G., Roth, G., Lottermoser, W., and Amthauer, G. (2000) Structure and Mössbauer spectroscopy of barbosalite Fe2+Fe23+(PO4)2(OH)2 between 80 K and 300 K. Physics and Chemistry of Minerals, 27, 419–429, https://doi.org/10.1007/s002699900078Suche in Google Scholar

Roncal-Herrero, T., Rodríguez-Blanco, J.D., Benning, L.G., and Oelkers, E.H. (2009) Precipitation of iron and aluminum phosphates directly from aqueous solution as a function of temperature from 50 to 200 °C. Crystal Growth & Design, 9, 5197–5205, https://doi.org/10.1021/cg900654mSuche in Google Scholar

Rouzies, D., Varloud, J., and Millet, J.-M.M. (1994) Thermal behaviour and physico-chemical characterization of synthetic and natural iron hydroxyphosphates. Journal of the Chemical Society, Faraday Transactions, 90, 3335–3339, https://doi.org/10.1039/ft9949003335Suche in Google Scholar

Sanders, G.B. and Larson, W.E. (2011) Integration of in-situ resource utilization into lunar/Mars exploration through field analogs. Advances in Space Research, 47, 20–29, https://doi.org/10.1016/j.asr.2010.08.020Suche in Google Scholar

Shearer, C.K., Hess, P.C., Wieczorek, M.A., Pritchard, M.E., Parmentier, E.M., Borg, L.E., Longhi, J., Elkins-Tanton, L.T., Neal, C.R., and Antonenko, I. (2006) Thermal and magmatic evolution of the Moon. Reviews in Mineralogy and Geochemistry, 60, 365–518, https://doi.org/10.2138/rmg.2006.60.4Suche in Google Scholar

Shearer, C., Burger, P., Papike, J., McCubbin, F., and Bell, A. (2015) Crystal chemistry of merrillite from martian meteorites: Mineralogical recorders of magmatic processes and planetary differentiation. Meteoritics & Planetary Science, 50, 649–673, https://doi.org/10.1111/maps.12355Suche in Google Scholar

Sheldrick, G.M. (2015a) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 3–8, https://doi.org/10.1107/S2053229614024218Suche in Google Scholar

Sheldrick, G.M. (2015b) SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 3–8, https://doi.org/10.1107/S2053273314026370Suche in Google Scholar

Sridhar, K.R., Finn, J.E., and Kliss, M.H. (2000) In-situ resource utilization technologies for Mars life support systems. Advances in Space Research, 25, 249–255, https://doi.org/10.1016/S0273-1177(99)00955-2Suche in Google Scholar

Starr, S.O. and Muscatello, A.C. (2020) Mars in situ resource utilization: A review. Planetary and Space Science, 182, 104824, https://doi.org/10.1016/j.pss.2019.104824Suche in Google Scholar

Taylor, G.J. (2013) The bulk composition of Mars. Chemie der Erde, 73, 401–420, https://doi.org/10.1016/j.chemer.2013.09.006Suche in Google Scholar

Treiman, A., Downs, R., Ming, D., Morris, R., Thorpe, M., Hazen, R., Downs, G., Rampe, E., and the CheMin Team (2021) Possible detection of a Jahnsite-Whiteite Group phosphate mineral by MSL CheMin in Glen Torridon, Gale Crater, Mars. 52nd Lunar and Planetary Science Conference, p. 1200. LPI, Virtual.Suche in Google Scholar

Tu, V.M., Hausrath, E.M., Tschauner, O., Iota, V., and Egeland, G.W. (2014) Dissolution rates of amorphous Al- and Fe-phosphates and their relevance to phosphate mobility on Mars. American Mineralogist, 99, 1206–1215, https://doi.org/10.2138/am.2014.4613Suche in Google Scholar

Ullrich, B. (2018) Zur Mineralogie anthropogen induzierter Alterationsprozesse–Sekundärminerale des historischen Alaunschieferbergbaus von Saalfeld und Schmiedefeld im Thüringischen Schiefergebirge. Geologica Saxonica, 64, 67–79.Suche in Google Scholar

Vaniman, D.T., Bish, D.L., Ming, D.W., Bristow, T.F., Morris, R.V., Blake, D.F., Chipera, S.J., Morrison, S.M., Treiman, A.H., Rampe, E.B., and others. (2014) Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars. Science, 343, 1243480, https://doi.org/10.1126/science.1243480Suche in Google Scholar

Wald, G. (1964) The origins of life. Proceedings of the National Academy of Sciences of the United States of America, 52, 595–611, https://doi.org/10.1073/pnas.52.2.595Suche in Google Scholar

Wänke, H. and Dreibus, G. (1988) Chemical composition and accretion history of terrestrial planets. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 325, 545–557.Suche in Google Scholar

Weber, I., Böttger, U., Pavlov, S.G., Stojic, A., Hübers, H.W., and Jessberger, E.K. (2018) Raman spectra of hydrous minerals investigated under various environmental conditions in preparation for planetary space missions. Journal of Raman Spectroscopy: JRS, 49, 1830–1839, https://doi.org/10.1002/jrs.5463Suche in Google Scholar

Weckwerth, G. and Schidlowski, M. (1995) Phosphorus as a potential guide in the search for extinct life on Mars. Advances in Space Research, 15, 185–191, https://doi.org/10.1016/S0273-1177(99)80082-9Suche in Google Scholar

Westheimer, F.H. (1987) Why nature chose phosphates. Science, 235, 1173–1178, https://doi.org/10.1126/science.2434996Suche in Google Scholar

Whittingham, M.S. (2004) Lithium batteries and cathode materials. Chemical Reviews, 104, 4271–4302, https://doi.org/10.1021/cr020731cSuche in Google Scholar

Wiseman, S.M., Arvidson, R., Andrews-Hanna, J., Clark, R., Lanza, N., Des Marais, D., Marzo, G., Morris, R., Murchie, S., Newsom, H.E., and others. (2008) Phyllosilicate and sulfate-hematite deposits within Miyamoto crater in southern Sinus Meridiani, Mars. Geophysical Research Letters, 35, L19204, https://doi.org/10.1029/2008GL035363Suche in Google Scholar

Yang, X. and Post, W.M. (2011) Phosphorus transformations as a function of pedogenesis: A synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences, 8, 2907–2916, https://doi.org/10.5194/bg-8-2907-2011Suche in Google Scholar

Yang, H., Sun, H.J., and Downs, R.T. (2011) Hazenite, KNaMg2(PO4)2·14H2O, a new biologically related phosphate mineral, from Mono Lake, California, U. S.A. American Mineralogist, 96, 675–681, https://doi.org/10.2138/am.2011.3668Suche in Google Scholar

Yen, A., Ming, D., Vaniman, D., Gellert, R., Blake, D., Morris, R., Morrison, S., Bristow, T., Chipera, S., Edgett, K., and others. (2017) Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale Crater, Mars. Earth and Planetary Science Letters, 471, 186–198, https://doi.org/10.1016/j.epsl.2017.04.033Suche in Google Scholar

Zhang, S.M., Zhang, J.X., Xu, S.J., Yuan, X.J., and Tan, T. (2013) Synthesis, morphological analysis and electrochemical performance of iron hydroxyl phosphate as a cathode material for lithium ion batteries. Journal of Power Sources, 243, 274–279, https://doi.org/10.1016/j.jpowsour.2013.05.154Suche in Google Scholar

Received: 2021-05-13
Accepted: 2022-02-24
Published Online: 2023-03-02
Published in Print: 2023-03-28

© 2023 Mineralogical Society of America

Artikel in diesem Heft

  1. Mineralogy and bulk geochemistry of a fumarole at Hverir, Iceland: Analog for acid-sulfate leaching on Mars
  2. The crystal structure and chemistry of natural giniite and implications for Mars
  3. Solid solution of CaSiO3 and MgSiO3 perovskites in the lower mantle: The role of ferrous iron
  4. Secondary ion mass spectrometer analyses for trace elements in glass standards using variably charged silicon ions for normalization
  5. Raman shifts of c-BN as an ideal P-T sensor for studying water-rock interactions in a diamond-anvil cell
  6. Resetting of the U-Pb and Th-Pb systems in altered bastnäsite: Insight from the behavior of Pb at nanoscale
  7. X-ray diffraction reveals two structural transitions in szomolnokite
  8. Contamination of heterogeneous lower crust in Hannuoba tholeiite: Evidence from in situ trace elements and strontium isotopes of plagioclase
  9. Oxygen fugacity buffering in high-pressure solid media assemblies from IW-6.5 to IW+4.5 and application to the V K-edge oxybarometer
  10. Trace element partitioning between anhydrite, sulfate melt, and silicate melt
  11. Chemical reaction between ferropericlase (Mg,Fe)O and water under high pressure-temperature conditions of the deep lower mantle
  12. Composition-dependent thermal equation of state of B2 Fe-Si alloys at high pressure
  13. Effects of thermal annealing on water content and δ18O in zircon
  14. Tourmaline and zircon trace the nature and timing of magmatic-hydrothermal episodes in granite-related Sn mineralization: Insights from the Libata Sn ore field
  15. Cation ordering, twinning, and pseudo-symmetry in silicate garnet: The study of a birefringent garnet with orthorhombic structure
  16. The occurrence of monoclinic jarosite in natural environments
  17. Niobium speciation in minerals revealed by L2,3-edges XANES spectroscopy
  18. The first occurrence of the carbide anion, C4–, in an oxide mineral: Mikecoxite, ideally (CHg4)OCl2, from the McDermitt open-pit mine, Humboldt County, Nevada, U.S.A
  19. Hydrothermal alteration of Ni-rich sulfides in peridotites of Abu Dahr, Eastern Desert, Egypt: Relationships among minerals in the Fe-Ni-Co-O-S system, fO2 and fS2
  20. New Mineral Names: Arsenic and Lead
Heruntergeladen am 22.11.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2022-8138/html
Button zum nach oben scrollen