The crystal structure and chemistry of natural giniite and implications for Mars
-
Christopher T. Adcock
, Elisabeth M. Hausrath , Elizabeth B. Rampe , Hexiong Yang und Robert T. Downs
Abstract
Investigations of planetary processes using phosphate minerals often focus on igneous, recrystallized, or potentially metasomatized minerals, likely as a result of the minerals commonly available for study within meteorites and lunar samples. However, Mars is a relatively phosphorus-rich planet and possesses abundant evidence of past aqueous surface interactions. Therefore, secondary phosphate phases may be important on the martian surface. Giniite
Acknowledgments
We acknowledge the RRUFF project for data and sample access to the giniite used in this study.
References cited
Aatiq, A., Tigha, M.R., Fakhreddine, R., Bregiroux, D., and Wallez, G. (2016) Structure, infrared and Raman spectroscopic studies of newly synthetic AII (SbV0.50FeIII 0.50)(PO4)2 (A = Ba, Sr, Pb) phosphates with yavapaiite structure. Solid State Sciences, 58, 44–54, https://doi.org/10.1016/j.solidstatesciences.2016.05.009Suche in Google Scholar
Adams, P.M., Wise, W.S., and Kampf, A.R. (2015) The Silver Coin Mine. The Mineralogical Record, 45, 702–728.Suche in Google Scholar
Adcock, C.T. and Hausrath, E.M. (2015) Weathering profiles in phosphorus-rich rocks at Gusev Crater, Mars, suggest dissolution of phosphate minerals into potentially habitable near-neutral waters. Astrobiology, 15, 1060–1075, https://doi.org/10.1089/ast.2015.1291Suche in Google Scholar
Adcock, C.T., Hausrath, E.M., and Forster, P.M. (2013) Readily available phosphate from minerals in early aqueous environments on Mars. Nature Geoscience, 6, 824–827, https://doi.org/10.1038/ngeo1923Suche in Google Scholar
Adcock, C.T., Tschauner, O., Hausrath, E.M., Udry, A., Luo, S.N., Cai, Y., Ren, M., Lanzirotti, A., Newville, M., Kunz, M., and others. (2017) Shock-transformation of whitlockite to merrillite and the implications for meteoritic phosphate. Nature Communications, 8, 14667, https://doi.org/10.1038/ncomms14667Suche in Google Scholar
Adcock, C., Hausrath, E., Rampe, E., Panduro-Allanson, R., and Steinberg, S. (2021) In situ resources from water-rock interactions for human exploration of Mars. 52nd Lunar and Planetary Science Conference, p. 1665. LPI, Virtual.Suche in Google Scholar
Benner, S.A. and Kim, H.-J. (2015) The case for a martian origin for Earth life. Instruments, Methods, and Missions for Astrobiology XVII, 9606, 96060C, International Society for Optics and Photonics, https://doi.org/10.1117/12.2192890Suche in Google Scholar
Berger, J., Schmidt, M., Izawa, M., Gellert, R., Ming, D., Rampe, E., VanBommel, S., and McAdam, A. (2016) Phosphate stability in diagenetic fluids constrains the acidic alteration model for lower Mt. Sharp sedimentary rocks in Gale crater, Mars. 47th Lunar and Planetary Science Conference, p. 1652. LPI, The Woodlands.Suche in Google Scholar
Berger, J., VanBommel, S., Clark, B., Gellert, R., House, C., King, P., McCraig, M., Ming, D., O’Connell-Cooper, C., and Schmidt, M. (2021) Manganese-and phosphorus-rich nodules in Gale Crater, Mars: APXS results from the Groken Drill Site. 52nd Lunar and Planetary Science Conference, p. 2194. LPI, Virtual.Suche in Google Scholar
Brearley, A. and Jones, R. (1998) Chondritic meteorites. Reviews in Mineralogy, 3-001–3-398.Suche in Google Scholar
Brese, N. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192–197, https://doi.org/10.1107/S0108768190011041Suche in Google Scholar
Burcar, B., Pasek, M., Gull, M., Cafferty, B.J., Velasco, F., Hud, N.V., and Menor-Salván, C. (2016) Darwin’s warm little pond: A one-pot reaction for prebiotic phosphorylation and the mobilization of phosphate from minerals in a ureabased solvent. Angewandte Chemie International Edition, 55, 13249–13253, https://doi.org/10.1002/anie.201606239Suche in Google Scholar
Carr, M.H. and Head, J.W. III (2003) Oceans on Mars: An assessment of the observational evidence and possible fate. Journal of Geophysical Research, 108 (E5), 5042, https://doi.org/10.1029/2002JE001963Suche in Google Scholar
Chen, Q., Wei, C., Zhang, Y., Pang, H., Lu, Q., and Gao, F. (2014) Single-crystalline hyperbranched nanostructure of iron hydroxyl phosphate Fe5(PO4)4(OH)3·2H2O for highly selective capture of phosphopeptides. Scientific Reports, 4, 3753, https://doi.org/10.1038/srep03753Suche in Google Scholar
Cheng, C.Y., Misra, V.N., Clough, J., and Muni, R. (1999) Dephosphorisation of western Australian iron ore by hydrometallurgical process. Minerals Engineering, 12, 1083–1092, https://doi.org/10.1016/S0892-6875(99)00093-XSuche in Google Scholar
Corbin, D., Whitney, J., Fultz, W., Stucky, G., Eddy, M., and Cheetham, A. (1986) Synthesis of open-framework transition-metal phosphates using organometallic precursors in acidic media. Preparation and structural characterization of Fe5P4O20H10 and NaFe3P3O12. Inorganic Chemistry, 25, 2279–2280, https://doi.org/10.1021/ic00234a001Suche in Google Scholar
Delvasto, P., Valverde, A., Ballester, A., Muñoz, J.A., González, F., Blázquez, M.L., Igual, J.M., and García-Balboa, C. (2008) Diversity and activity of phosphate bioleaching bacteria from a high-phosphorus iron ore. Hydrometallurgy, 92, 124–129, https://doi.org/10.1016/j.hydromet.2008.02.007Suche in Google Scholar
Dill, H.G., Melcher, F., Gerdes, A., and Weber, B. (2008) The origin and zoning of hypogene and supergene Fe-Mn-Mg-Sc-U-REE phosphate mineralization from the newly discovered Trutzhofmühle aplite, Hagendorf pegmatite province, Germany. Canadian Mineralogist, 46, 1131–1157, https://doi.org/10.3749/canmin.46.5.1131Suche in Google Scholar
Dosen, A. and Giese, R.F. (2011) Thermal decomposition of brushite, CaHPO4· 2H2O to monetite CaHPO4 and the formation of an amorphous phase. American Mineralogist, 96, 368–373, https://doi.org/10.2138/am.2011.3544Suche in Google Scholar
Duan, X., Li, D., Zhang, H., Ma, J., and Zheng, W. (2013) Crystal-facet engineering of ferric giniite by using ionic-liquid precursors and their enhanced photocatalytic performances under visible-light irradiation. Chemistry (Weinheim an der Bergstrasse, Germany), 19, 7231–7242, https://doi.org/10.1002/chem.201300385Suche in Google Scholar
Dumitraş, D.-G., Marincea, S., and Fransolet, A.-M. (2004) Brushite in the bat guano deposit from the “dry” Cioclovina Cave (Sureanu Mountains, Romania). Neues Jahrbuch für Mineralogie Abhandlungen, 180, 45–64, https://doi.org/10.1127/0077-7757/2004/0180-0045Suche in Google Scholar
Dyar, M.D., Jawin, E.R., Breves, E., Marchand, G., Nelms, M., Lane, M.D., Mertzman, S.A., Bish, D.L., and Bishop, J.L. (2014) Mössbauer parameters of iron in phosphate minerals: Implications for interpretation of martian data. American Mineralogist, 99, 914–942, https://doi.org/10.2138/am.2014.4701Suche in Google Scholar
Filiberto, J., Gross, J., and McCubbin, F.M. (2016) Constraints on the water, chlorine, and fluorine content of the martian mantle. Meteoritics & Planetary Science, 51, 2023–2035, https://doi.org/10.1111/maps.12624Suche in Google Scholar
Fleischer, M., Cabri, L., Chao, G., and Pabst, A. (1980) New mineral names. American Mineralogist, 65, 1065–1070.Suche in Google Scholar
Frost, R.L. and Palmer, S.J. (2011) Thermal stability of the ‘cave’ mineral brushite CaHPO4·2H2O–Mechanism of formation and decomposition. Thermochimica Acta, 521, 14–17, https://doi.org/10.1016/j.tca.2011.03.035Suche in Google Scholar
Frost, R.L., Wills, R.-A., and Martens, W.N. (2007) A Raman spectroscopic study of synthetic giniite. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 66, 42–47, https://doi.org/10.1016/j.saa.2006.02.018Suche in Google Scholar
Frost, R.L., Bahfenne, S., Čejka, J., Sejkora, J., Plášil, J., Palmer, S.J., Keeffe, E.C., and Němec, I. (2011) Dussertite
Frost, R.L., Xi, Y., López, A., Scholz, R., Lana, C.C., and Souza, B.F. (2013a) Vibrational spectroscopic characterization of the phosphate mineral barbosalite Fe2+Fe23+(PO4)2(OH)2—Implications for the molecular structure. Journal of Molecular Structure, 1051, 292–298, https://doi.org/10.1016/j. molstruc.2013.07.058Suche in Google Scholar
Frost, R.L., Xi, Y., Millar, G., Tan, K., and Palmer, S.J. (2013b) Vibrational spectroscopy of natural cave mineral monetite CaHPO4 and the synthetic analog. Spectroscopy Letters, 46, 54–59, https://doi.org/10.1080/00387010. 2012.663852Suche in Google Scholar
Frost, R.L., Xi, Y., Scholz, R., and Belotti, F.M. (2013c) Vibrational spectroscopic characterization of the phosphate mineral ludlamite (Fe,Mn,Mg)3(PO4)2·4H2O— A mineral found in lithium bearing pegmatites. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 103, 143–150, https://doi.org/10.1016/j.saa.2012.11.023Suche in Google Scholar
Gagné, O.C. and Hawthorne, F.C. (2018) Bond-length distributions for ions bonded to oxygen: Results for the non-metals and discussion of lone-pair stereoactivity and the polymerization of PO4. Acta Crystallographica, B74, 79–96, https://doi.org/10.1107/S2052520617017541Suche in Google Scholar
Gellert, R., Rieder, R., Brückner, J., Clark, B., Dreibus, G., Klingelhöfer, G., Lugmair, G., Ming, D., Wänke, H., and Yen, A. (2006) Alpha Particle X-ray Spectrometer (APXS): Results from Gusev crater and calibration report. Journal of Geophysical Research. Planets, 111, E02S05.Suche in Google Scholar
Goetz, W., Bertelsen, P., Binau, C.S., Gunnlaugsson, H.P., Hviid, S.F., Kinch, K.M., Madsen, D.E., Madsen, M.B., Olsen, M., Gellert, R., and others. (2005) Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust. Nature, 436, 62–65, https://doi.org/10.1038/nature03807Suche in Google Scholar
Gonçalves, R., Martins, R., Costa, C.M., Ferdov, S., and Lanceros-Méndez, S. (2017) Crystal morphology control of synthetic giniite by alkaline cations and pH variations. Crystal Growth & Design, 17, 4710–4714, https://doi.org/10.1021/acs.cgd.7b00590Suche in Google Scholar
Grotzinger, J.P., Sumner, D.Y., Kah, L.C., Stack, K., Gupta, S., Edgar, L., Rubin, D., Lewis, K., Schieber, J., Mangold, N., and others, and the MSL Science Team. (2014) A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars. Science, 343, 1242777, https://doi.org/10.1126/science.1242777Suche in Google Scholar
Han, C., Zhoumin, Ye., Ye, Q., Yao, L., and Xu, Z. (2017) Controllable synthesis of sphere-and star-like Fe5(PO4)4(OH)3·2H2O microcrystals for effective photo-Fenton-like degradation of rhodamine B. Inorganic and Nano-Metal Chemistry, 47, 806–809, https://doi.org/10.1080/15533174.2016.1218512Suche in Google Scholar
Hausrath, E.M. and Tschauner, O. (2013) Natural fumarolic alteration of fluorapatite, olivine, and basaltic glass, and implications for habitable environments on Mars. Astrobiology, 13, 1049–1064, https://doi.org/10.1089/ast.2013.0985Suche in Google Scholar
Hausrath, E., Golden, D., Morris, R., Agresti, D., and Ming, D. (2013) Acid sulfate alteration of fluorapatite, basaltic glass and olivine by hydrothermal vapors and fluids: Implications for fumarolic activity and secondary phosphate phases in sulfate-rich Paso Robles soil at Gusev Crater, Mars. Journal of Geophysical Research Planets, 118, 1–13, https://doi.org/10.1029/2012JE004246Suche in Google Scholar
Hausrath, E.M., Ming, D.W., Peretyazhko, T., and Rampe, E.B. (2018) Reactive transport and mass balance modeling of the Stimson sedimentary formation and altered fracture zones constrain diagenetic conditions at Gale crater, Mars. Earth and Planetary Science Letters, 491, 1–10, https://doi.org/10.1016/j.epsl.2018.02.037Suche in Google Scholar
Hawthorne, F.C. (1998) Structure and chemistry of phosphate minerals. Mineralogical Magazine, 62, 141–164, https://doi.org/10.1180/002646198547512Suche in Google Scholar
Hong, Y.S., Ryu, K.S., and Chang, S.H. (2003) New iron-containing electrode materials for lithium secondary batteries. ETRI Journal, 25, 412–417, https://doi.org/10.4218/etrij.03.0102.0015Suche in Google Scholar
Hurowitz, J.A., McLennan, S., Tosca, N., Arvidson, R., Michalski, J.R., Ming, D.W., Schroder, C., and Squyres, S.W. (2006) In situ and experimental evidence for acidic weathering of rocks and soils on Mars. Journal of Geophysical Research, 111, E02S19, https://doi.org/10.1029/2005JE002515Suche in Google Scholar
Jambor, J. and Dutrizac, J. (1988) Synthesis of the ferric analog of the ferrous-ferric phosphate, giniite. Neues Jahrbuch für Mineralogie Abhandlungen, 159, 51–58.Suche in Google Scholar
Jones, R.H., McCubbin, F.M., Dreeland, L., Guan, Y., Burger, P.V., and Shearer, C.K. (2014) Phosphate minerals in LL chondrites: A record of the action of fluids during metamorphism on ordinary chondrite parent bodies. Geochimica et Cosmochimica Acta, 132, 120–140, https://doi.org/10.1016/j.gca.2014.01.027Suche in Google Scholar
Kanowitz, S.M. and Palenik, G.J. (1998) Bond valence sums in coordination chemistry using oxidation-state-independent R0 values. A simple method for calculating the oxidation state of iron in Fe-O complexes. Inorganic Chemistry, 37, 2086–2088, https://doi.org/10.1021/ic971342hSuche in Google Scholar
Keller, P. (1980a) GINIIT, Fe2+Fe43+((H2O)2(OH)2(PO4)4) Ein Neues Mineral Aus Dem Pegmatit von Sandamab Bei Usakos, Namibia. Neues Jahrbuch für Mineralogie Monatshefte, 2, 49–56.Suche in Google Scholar
Keller, P. (1980b) GINIT, Fe2+ Fe43+ ((H2O)2(OH)2(PO4)4): Neue Kristallographische Daten. Neues Jahrbuch für Mineralogie Monatshefte, 12, 561–563.Suche in Google Scholar
Keller, P. and Knorring, O. (1989) Pegmatites at the Okatjimukuju farm, Karibib, Namibia Part I: Phosphate mineral associations of the Clementine II pegmatite. European Journal of Mineralogy, 1, 567–594, https://doi.org/10.1127/ejm/1/4/0567Suche in Google Scholar
Klingelhöfer, G., Morris, R.V., Bernhardt, B., Schröder, C., Rodionov, D.S., de Souza, P.A. Jr., Yen, A., Gellert, R., Evlanov, E.N., Zubkov, B., and others. (2004) Jarosite and hematite at Meridiani Planum from Opportunity’s Mossbauer Spectrometer. Science, 306, 1740–1745, https://doi.org/10.1126/science. 1104653Suche in Google Scholar
Kolesov, B. (2006) Raman investigation of H2O molecule and hydroxyl groups in the channels of hemimorphite. American Mineralogist, 91, 1355–1362, https://doi.org/10.2138/am.2006.2179Suche in Google Scholar
Lafuente, B., Downs, R. T., Yang, H., and Stone, N. (2016) The power of databases: The RRUFF project. In T. Armbruster and R.M. Danisi, Eds., Highlights in Mineralogical Crystallography, p. 1–29. de GruyterSuche in Google Scholar
Liu, A., Ma, F., and Chen, Y. (2017) Synthesis of shape-controlled Fe5(PO4)4(OH)3·2H2O microcrystal via one-step hydrothermal method. Micro & Nano Letters, 12, 325–328, https://doi.org/10.1049/mnl.2016.0412Suche in Google Scholar
Lv, C., Duan, X., Deng, J., and Wang, T. (2017) LiFePO4 mesocrystals coated with N-doped carbon from an ionic liquid for Li-ion batteries. CrystEngComm, 19, 1253–1257, https://doi.org/10.1039/C6CE02512ASuche in Google Scholar
Martins, P.M., Salazar, H., Aoudjit, L., Gonçalves, R., Zioui, D., Fidalgo-Marijuan, A., Costa, C.M., Ferdov, S., and Lanceros-Mendez, S. (2021) Crystal morphology control of synthetic giniite for enhanced photo-Fenton activity against the emerging pollutant metronidazole. Chemosphere, 262, 128300, https://doi.org/10.1016/j.chemosphere.2020.128300Suche in Google Scholar
McCollom, T.M., Donaldson, C., Moskowitz, B., Berquó, T. S., and Hynek, B. (2018) Phosphorous immobility during formation of the layered sulfate deposits of the Burns formation at Meridiani Planum. Journal of Geophysical Research. Planets, 123, 1230–1254, https://doi.org/10.1029/2017JE005493Suche in Google Scholar
McCubbin, F.M. and Jones, R.H. (2015) Extraterrestrial apatite: Planetary geochemistry to astrobiology. Elements (Quebec), 11, 183–188, https://doi.org/10.2113/gselements.11.3.183Suche in Google Scholar
McCubbin, F.M., Jolliff, B.L., Nekvasil, H., Carpenter, P.K., Zeigler, R.A., Steele, A., Elardo, S.M., and Lindsley, D.H. (2011) Fluorine and chlorine abundances in lunar apatite: Implications for heterogeneous distributions of magmatic volatiles in the lunar interior. Geochimica et Cosmochimica Acta, 75, 5073–5093, https://doi.org/10.1016/j.gca.2011.06.017Suche in Google Scholar
McCubbin, F.M., Shearer, C.K., Burger, P.V., Hauri, E.H., Wang, J., Elardo, S.M., and Papike, J.J. (2014) Volatile abundances of coexisting merrillite and apatite in the martian meteorite Shergotty: Implications for merrillite in hydrous magmas. American Mineralogist, 99, 1347–1354, https://doi.org/10.2138/am.2014.4782Suche in Google Scholar
McGowan, G. I and Prangnell, J. (2006) The significance of vivianite in archaeological settings. Geoarchaeology, 21, 93–111, https://doi.org/10.1002/gea.20090Suche in Google Scholar
McSween, H. and Treiman, A. (1998) martian meteorites. In J.J. Papike, Ed., Planetary Materials, 36, p. 953–1006. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia.Suche in Google Scholar
Miller, H.M., Mayhew, L.E., Ellison, E. T., Kelemen, P., Kubo, M., and Templeton, A. S. (2017) Low temperature hydrogen production during experimental hydration of partially-serpentinized dunite. Geochimica et Cosmochimica Acta, 209, 161–183, https://doi.org/10.1016/j.gca.2017.04.022Suche in Google Scholar
Ming, D.W., Mittlefehldt, D.W., Morris, R.V., Golden, D., Gellert, R., Yen, A., Clark, B.C., Squyres, S.W., Farrand, W.H., and Ruff, S.W. (2006) Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars. Journal of Geophysical Research Planets, 111, E02S12.Suche in Google Scholar
Mojzsis, S.J. and Arrhenius, G. (1998) Phosphates and carbon on Mars: Exobiological implications and sample return considerations. Journal of Geophysical Research, 103 (E12), 28495–28511, https://doi.org/10.1029/98JE02141Suche in Google Scholar
Mojzsis, S.J., Arrhenius, G., McKeegan, K.D., Harrison, T.M., Nutman, A.P., and Friend, C.R. (1996) Evidence for life on Earth before 3,800 million years ago. Nature, 384, 55–59, https://doi.org/10.1038/384055a0Suche in Google Scholar
Moore, P. (1973) Pegmatite phosphates: Descriptive mineralogy and crystal chemistry. The Mineralogical Record, 4, 103–130.Suche in Google Scholar
Morris, R.V., Klingelhoefer, G., Schröder, C., Rodionov, D.S., Yen, A., Ming, D.W., De Souza, P., Wdowiak, T., Fleischer, I., and Gellert, R. (2006) Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. Journal of Geophysical Research. Planets, 111, E12.Suche in Google Scholar
Morris, R.V., Ming, D., Blake, D., Vaniman, D., Bish, D., Chipera, S., Downs, R., Gellert, R., Treiman, A., Yen, A., and others and the MSL Science Team (2013) The amorphous component in martian basaltic soil in global perspective from MSL and MER missions. 44th Lunar and Planetary Science conference, p. 1653. LPI, The Woodlands, Texas.Suche in Google Scholar
Nedkov, I., Groudeva, V., Angelova, R., Iliev, M., and Slavov, L. (2016) New Iron Oxides/Hydroxides Biomaterials for Application in Electronics and Medicine. Machines. Technologies. Materials (Basel), 10, 48–51.Suche in Google Scholar
Nunes, A.P.L., de Araujo, A.C., de Magalhães, P.R., and Viana, A.B.H. (2009) Occurrence of phosphorus-bearing minerals in Brazilian iron ores. Proceedings of the GEOMIN 2009 Conference, First International Seminar on Geology for the Mining Industry, p. 10–12, Antofagasta, Chile.Suche in Google Scholar
Ofoegbu, S.U. (2019) Technological challenges of phosphorus removal in high-phosphorus ores: Sustainability implications and possibilities for greener ore processing. Sustainability (Basel), 11, 6787, https://doi.org/10.3390/su11236787Suche in Google Scholar
Pasek, M.A. and Kee, T.P. (2011) On the origin of phosphorylated biomolecules. In R. Egel, D. Lankenau, and A.Y. Mulkidjanian, Eds., Origins of Life: The Primal Self-Organization, 57–84. Springer.Suche in Google Scholar
Patiño Douce, A.E., Roden, M.F., Chaumba, J., Fleisher, C., and Yogodzinski, G. (2011) Compositional variability of terrestrial mantle apatites, thermodynamic modeling of apatite volatile contents, and the halogen and water budgets of planetary mantles. Chemical Geology, 288, 14–31, https://doi.org/10.1016/j.chemgeo.2011.05.018Suche in Google Scholar
Poienar, M., Damay, F., Rouquette, J., Ranieri, V., Malo, S., Maignan, A., Elkaïm, E., Haines, J., and Martin, C. (2020) Structural and magnetic characterization of barbosalite Fe3(PO4)2(OH)2. Journal of Solid State Chemistry, 287, 121357, https://doi.org/10.1016/j.jssc.2020.121357Suche in Google Scholar
Powner, M.W., Gerland, B., and Sutherland, J.D. (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature, 459, 239–242, https://doi.org/10.1038/nature08013Suche in Google Scholar
Priambodo, R., Tan, Y.-L., Shih, Y.-J., and Huang, Y.-H. (2017) Fluidized-bed crystallization of iron phosphate from solution containing phosphorus. Journal of the Taiwan Institute of Chemical Engineers, 80, 247–254, https://doi.org/10.1016/j.jtice.2017.07.004Suche in Google Scholar
Rampe, E.B., Morris, R.V., Archer, P.D. Jr., Agresti, D.G., and Ming, D.W. (2016) Recognizing sulfate and phosphate complexes chemisorbed onto nanophase weathering products on Mars using in-situ and remote observations. American Mineralogist, 101, 678–689, https://doi.org/10.2138/am-2016-5408CCBYNCNDSuche in Google Scholar
Rampe, E., Ming, D., Blake, D., Bristow, T., Chipera, S., Grotzinger, J., Morris, R., Morrison, S., Vaniman, D., Yen, A., and others. (2017) Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars. Earth and Planetary Science Letters, 471, 172–185, https://doi.org/10.1016/j.epsl.2017.04.021Suche in Google Scholar
Rampe, E.B., Blake, D.F., Bristow, T., Ming, D.W., Vaniman, D., Morris, R., Achilles, C., Chipera, S., Morrison, S., Tu, V., and others. (2020) Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: A review after six Earth years of exploration with Curiosity. Chemie der Erde, 80, 125605, https://doi.org/10.1016/j.chemer.2020.125605Suche in Google Scholar
Redhammer, G., Tippelt, G., Roth, G., Lottermoser, W., and Amthauer, G. (2000) Structure and Mössbauer spectroscopy of barbosalite Fe2+Fe23+(PO4)2(OH)2 between 80 K and 300 K. Physics and Chemistry of Minerals, 27, 419–429, https://doi.org/10.1007/s002699900078Suche in Google Scholar
Roncal-Herrero, T., Rodríguez-Blanco, J.D., Benning, L.G., and Oelkers, E.H. (2009) Precipitation of iron and aluminum phosphates directly from aqueous solution as a function of temperature from 50 to 200 °C. Crystal Growth & Design, 9, 5197–5205, https://doi.org/10.1021/cg900654mSuche in Google Scholar
Rouzies, D., Varloud, J., and Millet, J.-M.M. (1994) Thermal behaviour and physico-chemical characterization of synthetic and natural iron hydroxyphosphates. Journal of the Chemical Society, Faraday Transactions, 90, 3335–3339, https://doi.org/10.1039/ft9949003335Suche in Google Scholar
Sanders, G.B. and Larson, W.E. (2011) Integration of in-situ resource utilization into lunar/Mars exploration through field analogs. Advances in Space Research, 47, 20–29, https://doi.org/10.1016/j.asr.2010.08.020Suche in Google Scholar
Shearer, C.K., Hess, P.C., Wieczorek, M.A., Pritchard, M.E., Parmentier, E.M., Borg, L.E., Longhi, J., Elkins-Tanton, L.T., Neal, C.R., and Antonenko, I. (2006) Thermal and magmatic evolution of the Moon. Reviews in Mineralogy and Geochemistry, 60, 365–518, https://doi.org/10.2138/rmg.2006.60.4Suche in Google Scholar
Shearer, C., Burger, P., Papike, J., McCubbin, F., and Bell, A. (2015) Crystal chemistry of merrillite from martian meteorites: Mineralogical recorders of magmatic processes and planetary differentiation. Meteoritics & Planetary Science, 50, 649–673, https://doi.org/10.1111/maps.12355Suche in Google Scholar
Sheldrick, G.M. (2015a) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 3–8, https://doi.org/10.1107/S2053229614024218Suche in Google Scholar
Sheldrick, G.M. (2015b) SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 3–8, https://doi.org/10.1107/S2053273314026370Suche in Google Scholar
Sridhar, K.R., Finn, J.E., and Kliss, M.H. (2000) In-situ resource utilization technologies for Mars life support systems. Advances in Space Research, 25, 249–255, https://doi.org/10.1016/S0273-1177(99)00955-2Suche in Google Scholar
Starr, S.O. and Muscatello, A.C. (2020) Mars in situ resource utilization: A review. Planetary and Space Science, 182, 104824, https://doi.org/10.1016/j.pss.2019.104824Suche in Google Scholar
Taylor, G.J. (2013) The bulk composition of Mars. Chemie der Erde, 73, 401–420, https://doi.org/10.1016/j.chemer.2013.09.006Suche in Google Scholar
Treiman, A., Downs, R., Ming, D., Morris, R., Thorpe, M., Hazen, R., Downs, G., Rampe, E., and the CheMin Team (2021) Possible detection of a Jahnsite-Whiteite Group phosphate mineral by MSL CheMin in Glen Torridon, Gale Crater, Mars. 52nd Lunar and Planetary Science Conference, p. 1200. LPI, Virtual.Suche in Google Scholar
Tu, V.M., Hausrath, E.M., Tschauner, O., Iota, V., and Egeland, G.W. (2014) Dissolution rates of amorphous Al- and Fe-phosphates and their relevance to phosphate mobility on Mars. American Mineralogist, 99, 1206–1215, https://doi.org/10.2138/am.2014.4613Suche in Google Scholar
Ullrich, B. (2018) Zur Mineralogie anthropogen induzierter Alterationsprozesse–Sekundärminerale des historischen Alaunschieferbergbaus von Saalfeld und Schmiedefeld im Thüringischen Schiefergebirge. Geologica Saxonica, 64, 67–79.Suche in Google Scholar
Vaniman, D.T., Bish, D.L., Ming, D.W., Bristow, T.F., Morris, R.V., Blake, D.F., Chipera, S.J., Morrison, S.M., Treiman, A.H., Rampe, E.B., and others. (2014) Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars. Science, 343, 1243480, https://doi.org/10.1126/science.1243480Suche in Google Scholar
Wald, G. (1964) The origins of life. Proceedings of the National Academy of Sciences of the United States of America, 52, 595–611, https://doi.org/10.1073/pnas.52.2.595Suche in Google Scholar
Wänke, H. and Dreibus, G. (1988) Chemical composition and accretion history of terrestrial planets. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 325, 545–557.Suche in Google Scholar
Weber, I., Böttger, U., Pavlov, S.G., Stojic, A., Hübers, H.W., and Jessberger, E.K. (2018) Raman spectra of hydrous minerals investigated under various environmental conditions in preparation for planetary space missions. Journal of Raman Spectroscopy: JRS, 49, 1830–1839, https://doi.org/10.1002/jrs.5463Suche in Google Scholar
Weckwerth, G. and Schidlowski, M. (1995) Phosphorus as a potential guide in the search for extinct life on Mars. Advances in Space Research, 15, 185–191, https://doi.org/10.1016/S0273-1177(99)80082-9Suche in Google Scholar
Westheimer, F.H. (1987) Why nature chose phosphates. Science, 235, 1173–1178, https://doi.org/10.1126/science.2434996Suche in Google Scholar
Whittingham, M.S. (2004) Lithium batteries and cathode materials. Chemical Reviews, 104, 4271–4302, https://doi.org/10.1021/cr020731cSuche in Google Scholar
Wiseman, S.M., Arvidson, R., Andrews-Hanna, J., Clark, R., Lanza, N., Des Marais, D., Marzo, G., Morris, R., Murchie, S., Newsom, H.E., and others. (2008) Phyllosilicate and sulfate-hematite deposits within Miyamoto crater in southern Sinus Meridiani, Mars. Geophysical Research Letters, 35, L19204, https://doi.org/10.1029/2008GL035363Suche in Google Scholar
Yang, X. and Post, W.M. (2011) Phosphorus transformations as a function of pedogenesis: A synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences, 8, 2907–2916, https://doi.org/10.5194/bg-8-2907-2011Suche in Google Scholar
Yang, H., Sun, H.J., and Downs, R.T. (2011) Hazenite, KNaMg2(PO4)2·14H2O, a new biologically related phosphate mineral, from Mono Lake, California, U. S.A. American Mineralogist, 96, 675–681, https://doi.org/10.2138/am.2011.3668Suche in Google Scholar
Yen, A., Ming, D., Vaniman, D., Gellert, R., Blake, D., Morris, R., Morrison, S., Bristow, T., Chipera, S., Edgett, K., and others. (2017) Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale Crater, Mars. Earth and Planetary Science Letters, 471, 186–198, https://doi.org/10.1016/j.epsl.2017.04.033Suche in Google Scholar
Zhang, S.M., Zhang, J.X., Xu, S.J., Yuan, X.J., and Tan, T. (2013) Synthesis, morphological analysis and electrochemical performance of iron hydroxyl phosphate as a cathode material for lithium ion batteries. Journal of Power Sources, 243, 274–279, https://doi.org/10.1016/j.jpowsour.2013.05.154Suche in Google Scholar
© 2023 Mineralogical Society of America
Artikel in diesem Heft
- Mineralogy and bulk geochemistry of a fumarole at Hverir, Iceland: Analog for acid-sulfate leaching on Mars
- The crystal structure and chemistry of natural giniite and implications for Mars
- Solid solution of CaSiO3 and MgSiO3 perovskites in the lower mantle: The role of ferrous iron
- Secondary ion mass spectrometer analyses for trace elements in glass standards using variably charged silicon ions for normalization
- Raman shifts of c-BN as an ideal P-T sensor for studying water-rock interactions in a diamond-anvil cell
- Resetting of the U-Pb and Th-Pb systems in altered bastnäsite: Insight from the behavior of Pb at nanoscale
- X-ray diffraction reveals two structural transitions in szomolnokite
- Contamination of heterogeneous lower crust in Hannuoba tholeiite: Evidence from in situ trace elements and strontium isotopes of plagioclase
- Oxygen fugacity buffering in high-pressure solid media assemblies from IW-6.5 to IW+4.5 and application to the V K-edge oxybarometer
- Trace element partitioning between anhydrite, sulfate melt, and silicate melt
- Chemical reaction between ferropericlase (Mg,Fe)O and water under high pressure-temperature conditions of the deep lower mantle
- Composition-dependent thermal equation of state of B2 Fe-Si alloys at high pressure
- Effects of thermal annealing on water content and δ18O in zircon
- Tourmaline and zircon trace the nature and timing of magmatic-hydrothermal episodes in granite-related Sn mineralization: Insights from the Libata Sn ore field
- Cation ordering, twinning, and pseudo-symmetry in silicate garnet: The study of a birefringent garnet with orthorhombic structure
- The occurrence of monoclinic jarosite in natural environments
- Niobium speciation in minerals revealed by L2,3-edges XANES spectroscopy
- The first occurrence of the carbide anion, C4–, in an oxide mineral: Mikecoxite, ideally (CHg4)OCl2, from the McDermitt open-pit mine, Humboldt County, Nevada, U.S.A
- Hydrothermal alteration of Ni-rich sulfides in peridotites of Abu Dahr, Eastern Desert, Egypt: Relationships among minerals in the Fe-Ni-Co-O-S system, fO2 and fS2
- New Mineral Names: Arsenic and Lead
Artikel in diesem Heft
- Mineralogy and bulk geochemistry of a fumarole at Hverir, Iceland: Analog for acid-sulfate leaching on Mars
- The crystal structure and chemistry of natural giniite and implications for Mars
- Solid solution of CaSiO3 and MgSiO3 perovskites in the lower mantle: The role of ferrous iron
- Secondary ion mass spectrometer analyses for trace elements in glass standards using variably charged silicon ions for normalization
- Raman shifts of c-BN as an ideal P-T sensor for studying water-rock interactions in a diamond-anvil cell
- Resetting of the U-Pb and Th-Pb systems in altered bastnäsite: Insight from the behavior of Pb at nanoscale
- X-ray diffraction reveals two structural transitions in szomolnokite
- Contamination of heterogeneous lower crust in Hannuoba tholeiite: Evidence from in situ trace elements and strontium isotopes of plagioclase
- Oxygen fugacity buffering in high-pressure solid media assemblies from IW-6.5 to IW+4.5 and application to the V K-edge oxybarometer
- Trace element partitioning between anhydrite, sulfate melt, and silicate melt
- Chemical reaction between ferropericlase (Mg,Fe)O and water under high pressure-temperature conditions of the deep lower mantle
- Composition-dependent thermal equation of state of B2 Fe-Si alloys at high pressure
- Effects of thermal annealing on water content and δ18O in zircon
- Tourmaline and zircon trace the nature and timing of magmatic-hydrothermal episodes in granite-related Sn mineralization: Insights from the Libata Sn ore field
- Cation ordering, twinning, and pseudo-symmetry in silicate garnet: The study of a birefringent garnet with orthorhombic structure
- The occurrence of monoclinic jarosite in natural environments
- Niobium speciation in minerals revealed by L2,3-edges XANES spectroscopy
- The first occurrence of the carbide anion, C4–, in an oxide mineral: Mikecoxite, ideally (CHg4)OCl2, from the McDermitt open-pit mine, Humboldt County, Nevada, U.S.A
- Hydrothermal alteration of Ni-rich sulfides in peridotites of Abu Dahr, Eastern Desert, Egypt: Relationships among minerals in the Fe-Ni-Co-O-S system, fO2 and fS2
- New Mineral Names: Arsenic and Lead