Home Effect of pH in the bismuth vanadate nanorods for their supercapacitor applications
Article
Licensed
Unlicensed Requires Authentication

Effect of pH in the bismuth vanadate nanorods for their supercapacitor applications

  • Palani Suganya EMAIL logo , Veerasamy Uma Shankar , Yuttana Mona , Chatchawan Chaichana , Shanmugam Vignesh , Venkatesa Prabhu Sundramurthy , Tarikayehu Amanuel Untisso and Tae Hwan Oh EMAIL logo
Published/Copyright: April 24, 2024

Abstract

The different pH-varied bismuth vanadate nanorods have been synthesized through a solvothermal method and utilized for XRD, HRTEM, SEM and electrochemical studies. The XRD spectra of BV-5 and BV-7 samples show the monoclinic structure. Both electrodes show rod-like morphology. Also, when the pH 7 the bismuth oxide shows large size nanorods compared with pH 5. The interspacing distance of the samples were reduced while the pH was increased. The electrochemical performance of the prepared BV-5 and BV-7 shows higher capacitance values of 235 and 167 F/g for BV-5 and BV-7 electrodes, also these electrodes show a maximum energy density value of 13.4 and 18.8 Wh/kg and related power density values are 720 and 867 W/kg, respectively. The power density value of the BV-7 electrode was increased without affecting the energy density value. Moreover, the cyclic retention of BV-7 shows 93 % at the 1000th cycle. Also, the capacitance and Rct values of BV-7 electrode are comparatively higher than pure BV-5 electrode.


Corresponding authors: Palani Suganya, Department of Chemistry, Arunai Engineering College, Tiruvannamalai 606603, India, E-mail: ; and Tae Hwan Oh, School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro 38541, Gyeongsan, Republic of Korea, E-mail:
Palani Suganya and Shanmugam Vignesh are contributed equally.

References

1. Vijayakumar, M.; Bharathi Sankar, A.; Sri Rohita, D.; Rao, T. N.; Karthik, M. Conversion of Biomass Waste into High Performance Supercapacitor Electrodes for Real-Time Supercapacitor Applications. ACS Sustainable Chem. Eng. 2019, 7 (20), 17175–17185; https://doi.org/10.1021/acssuschemeng.9b03568.Search in Google Scholar

2. Saravanan, C.; Karpuraranjith, M.; Paramasivaganesh, K.; Mareeswaran, P. M.; Varghese, A. Pseudocapacitive Electrode Performance of Zinc Oxide Decorated Reduced Graphene Oxide/poly (1, 8-diaminonaphthalene) Composite. J. Energy Storage 2024, 76, 109792; https://doi.org/10.1016/j.est.2023.109792.Search in Google Scholar

3. Velmurugan, G.; Ganapathi Raman, R.; Prakash, D.; Kim, I.; Sahadevan, J.; Sivaprakash, P. Influence of Ni and Sn Perovskite NiSn(OH)6 Nanoparticles on Energy Storage Applications. Nanomaterials 2023, 13 (9), 1523; https://doi.org/10.3390/nano13091523.Search in Google Scholar PubMed PubMed Central

4. Olabi, A. G.; Abbas, Q.; Al Makky, A.; Abdelkareem, M. A. Supercapacitors as Next Generation Energy Storage Devices: Properties and Applications. Energy 2022, 248, 123617; https://doi.org/10.1016/j.energy.2022.123617.Search in Google Scholar

5. Zhang, J.; Gu, M.; Chen, X. Supercapacitors for Renewable Energy Applications: A Review. Micro Nano Eng. 2023, 21, 100229; https://doi.org/10.1016/j.mne.2023.100229.Search in Google Scholar

6. Govindarajan, D.; Uma Shankar, V.; Gopalakrishnan, R. Supercapacitor Behavior and Characterization of RGO Anchored V2O5 Nanorods. J. Mater. Sci.: Mater. Electron. 2019, 30, 16142–16155; https://doi.org/10.1007/s10854-019-01984-9.Search in Google Scholar

7. Isacfranklin, M.; Deepika, C.; Ravi, G.; Yuvakkumar, R.; Velauthapillai, D.; Saravanakumar, B. Nickel, Bismuth, and Cobalt Vanadium Oxides for Supercapacitor Applications. Ceram. Int. 2020, 46 (18), 28206–28210; https://doi.org/10.1016/j.ceramint.2020.07.320.Search in Google Scholar

8. Renani, A. S.; Momeni, M. M.; Aydisheh, H. M.; Lee, B. K. New Photoelectrodes Based on Bismuth Vanadate-V2O5@ TiNT for Photo-Rechargeable Supercapacitors. J. Energy Storage 2023, 62, 106866; https://doi.org/10.1016/j.est.2023.106866.Search in Google Scholar

9. Pardeshi, O. M.; Gite, A. B.; Jain, G. H.; Palve, B. M.; Patil, A. V. Sol Gel Auto-Combustion Synthesis of Bismuth Vanadate (BiVO4) Nanoparticles and its Supercapacitor Applications. J. Mater. Sci.: Mater. Electron. 2023, 34 (26), 1817; https://doi.org/10.1007/s10854-023-11229-5.Search in Google Scholar

10. Balachandran, S.; Karthikeyan, R.; Jothi, K. J.; Manimuthu, V.; Prakash, N.; Chen, Z.; Liang, T.; Hu, C.; Wang, F.; Yang, M. Fabrication of Flower-like Bismuth Vanadate Hierarchical Spheres for an Improved Supercapacitor Efficiency. Mater. Adv. 2022, 3 (1), 254–264; https://doi.org/10.1039/d1ma00810b.Search in Google Scholar

11. Packiaraj, R.; Venkatesh, K. S.; Devendran, P.; Bahadur, S. A.; Nallamuthu, N. Structural, Morphological and Electrochemical Studies of Nanostructured BiVO4 for Supercapacitor Application. Mater. Sci. Semicond. Process. 2020, 115, 105122; https://doi.org/10.1016/j.mssp.2020.105122.Search in Google Scholar

12. Sahadevan, J.; Sivaprakash, P.; Esakki Muthu, S.; Kim, I.; Padmanathan, N.; Eswaramoorthi, V. Influence of Te-Incorporated LaCoO3 on Structural, Morphology and Magnetic Properties for Multifunctional Device Applications. Int. J. Mol. Sci. 2023, 24 (12), 10107; https://doi.org/10.3390/ijms241210107.Search in Google Scholar PubMed PubMed Central

13. Bommineedi, L. K.; Pandit, B.; Sankapal, B. R. Spongy Nano Surface Architecture of Chemically Grown BiVO4: High-Capacitance Retentive Electrochemical Supercapacitor. Int. J. Hydrogen Energy 2021, 46 (50), 25586–25595; https://doi.org/10.1016/j.ijhydene.2021.05.057.Search in Google Scholar

14. Packiaraj, R.; Venkatesh, K. S.; Devendran, P.; Bahadur, S. A.; Nallamuthu, N. Synthesis and Characterization of Sol–Gel Derived BiVO4 Nanoparticles for Electrochemical Applications. Int J Eng Adv Technol 2019, 9, 390e3; https://doi.org/10.35940/ijeat.a1189.1291s419.Search in Google Scholar

15. Subbiah, M.; Sowndarya, A. A. G.; Sundaramurthy, A.; Venkatachalam, S.; Saravanan, N.; Pitchaimuthu, S.; Srinivasan, N. Tailoring Hierarchical BiVO4 Sub-micron Particles for Enhanced Cyclability in Asymmetric Supercapacitor. J. Energy Storage 2023, 71, 108137; https://doi.org/10.1016/j.est.2023.108137.Search in Google Scholar

16. Packiaraj, R.; Devendran, P.; Asath Bahadur, S.; Nallamuthu, N. Structural and Electrochemical Studies of Scheelite Type BiVO4 Nanoparticles: Synthesis by Simple Hydrothermal Method. J. Mater. Sci.: Mater. Electron. 2018, 29 (15), 13265–13276; https://doi.org/10.1007/s10854-018-9450-0.Search in Google Scholar

17. Shankar, V. U.; Suganya, P.; Govindarajan, D.; Ranjith, B.; Saravanan, C.; Muthuraja, P. Electrochemical Investigation of Neodymium Doped Vanadium Pentoxide Anchored on Reduced Graphene Oxide Nanocomposites for Hybrid Symmetric Capacitor Devices. J. Energy Storage 2023, 69, 107955; https://doi.org/10.1016/j.est.2023.107955.Search in Google Scholar

18. Mohaghegh, Z.; Ghodsi, F. E.; Mazloom, J. Comparative Study of Electrical Parameters and Li-Ion Storage Capacity of PEG Modified β-V2O5: M (M: Mo, Ni) Thin Films. J. Mater. Sci.: Mater. Electron. 2019, 30, 13582–13592; https://doi.org/10.1007/s10854-019-01726-x.Search in Google Scholar

19. Abraham, S. D.; David, S. T.; Bennie, R. B.; Joel, C.; Kumar, D. S. Eco-friendly and Green Synthesis of BiVO4 Nanoparticle Using Microwave Irradiation as Photocatalayst for the Degradation of Alizarin Red S. J. Mol. Struct. 2016, 1113, 174–181; https://doi.org/10.1016/j.molstruc.2016.01.053.Search in Google Scholar

20. Shan, L., Liu, Y., Ma, C., Dong, L., Liu, L., & Wu, Z., Enhanced Photocatalytic Performance in Ag+‐Induced BiVO4/β‐Bi2O3 Heterojunctions. Eur. J. Inorg. Chem. 2016, 2016 (2), 232–239, https://doi.org/10.1002/ejic.201500936.Search in Google Scholar

21. Suganya, P.; Princy, J.; Mathivanan, N.; Krishnasamy, K. One-Pot Synthesis of rGO@Cu2V2O7 Nanocomposite as High Stabled Electrode for Symmetric Electrochemical Capacitors. ECS J. Solid State Sci. Technol. 2022, 11 (4), 041005; https://doi.org/10.1149/2162-8777/ac62f1.Search in Google Scholar

22. Patil, S. S.; Dubal, D. P.; Tamboli, M. S.; Ambekar, J. D.; Kolekar, S. S.; Gomez-Romero, P.; Kale, B. B.; Patil, D. R. Ag: BiVO4 Dendritic Hybrid-Architecture for High Energy Density Symmetric Supercapacitors. J. Mater. Chem. A 2016, 4 (20), 7580–7584; https://doi.org/10.1039/c6ta01980c.Search in Google Scholar

23. Selvaraj, K.; Spontón, M. E.; Estenoz, D. A.; Casarino, A. F.; Veerasamy, U. S.; Kumar, M.; Al-Mohaimeed, A. M.; Al-Onazi, W. A.; Kannaiyan, D. Development of Quinoline-Based Heteroatom Polybenzoxazines Reinforced Graphitic Carbon Nitride (GCN) Carbonisation Composites for Emerging Supercapacitor Applications. Soft Matter 2024, 20, 1210–1223; https://doi.org/10.1039/d3sm01445b.Search in Google Scholar PubMed

24. Revathi, P.; Nethaji, P.; Suganya, P.; Krishnasamy, K. High Energy Density Nickel Doped Tungsten Oxide/reduced Graphene Oxide Nanocomposite Designed to Advance Supercapacitor Material. Sustain. Energy Technol. Assess. 2022, 53, 102771; https://doi.org/10.1016/j.seta.2022.102771.Search in Google Scholar

25. Shankar, V. U.; Kumar, P. S.; Govindarajan, D.; Vinoth Kumar, P.; Suganya, P.; Rangasamy, G. Design and Construction of rGO/NiMoO4 and FeOCl/BiOCl Utilised as a Positive and Negative Electrode for Asymmetric Capacitance. J. Inorg. Organomet. Polym. Mater. 2023, 33 (11), 3551–3564; https://doi.org/10.1007/s10904-023-02773-y.Search in Google Scholar

26. Palani, S.; Venkatachalam, M.; Palanisamy, R.; Veerasamy, U. S.; Kuppusamy, K. High Performance Electrochemical Investigations of SnS2 Hierarchichal Nanostructures via Surfactant-free Solvothermal Method. Mater. Today: Proc. 2021 , 47, 47–51; https://doi.org/10.1016/j.matpr.2021.03.518.Search in Google Scholar

27. Yang, X.; Niu, H.; Jiang, H.; Wang, Q.; Qu, F. A High Energy Density All-Solid-State Asymmetric Supercapacitor Based on MoS2/graphene Nanosheets and MnO2/graphene Hybrid Electrodes. J. Mater. Chem. A 2016, 4 (29), 11264–11275; https://doi.org/10.1039/c6ta03474h.Search in Google Scholar

28. Peng, C.; Lang, J.; Xu, S.; Wang, X. Oxygen-enriched Activated Carbons from Pomelo Peel in High Energy Density Supercapacitors. RSC Adv. 2014, 4 (97), 54662–54667; https://doi.org/10.1039/c4ra09395j.Search in Google Scholar

29. Sivaprakash, P.; Kumar, K. A.; Muthukumaran, S.; Pandurangan, A.; Dixit, A.; Arumugam, S. NiF2 as an Efficient Electrode Material with High Window Potential of 1.8 V for High Energy and Power Density Asymmetric Supercapacitor. J. Electroanal. Chem. 2020, 873, 114379; https://doi.org/10.1016/j.jelechem.2020.114379.Search in Google Scholar

30. Deng, L.; Liu, J.; Ma, Z.; Fan, G.; Liu, Z. H. Free-standing Graphene/bismuth Vanadate Monolith Composite as a Binder-free Electrode for Symmetrical Supercapacitors. RSC adv. 2018, 8 (44), 24796–24804; https://doi.org/10.1039/c8ra04200d.Search in Google Scholar PubMed PubMed Central

31. Athira, K., Dhanapandian, S., Suthakaran, S., Shobika, S., Yogalakshmi, K., Ayyar, M., Iqbal, M. Facile Hydrothermally Grown Cobalt Oxide (Co3O4) Nanostructures and Their Electrochemical Performances. Zeitschrift für Physikalische Chemie 2024, 238(4), 615–629; https://doi.org/10.1515/zpch-2023-0440.Search in Google Scholar

32. Jayachandran, M.; Rose, A.; Maiyalagan, T.; Poongodi, N.; Vijayakumar, T. Effect of Various Aqueous Electrolytes on the Electrochemical Performance of V2O5 Spindle-like Nanostructures as Electrode Material for Supercapacitor Application. J. Mater. Sci.: Mater. Electron. 2021, 32, 6623–6635; https://doi.org/10.1007/s10854-021-05378-8.Search in Google Scholar

33. Sivaprakash, P.; Kumar, K. A.; Subalakshmi, K.; Bathula, C.; Sandhu, S.; Arumugam, S. Fabrication of High-Performance Asymmetric Supercapacitors with High Energy and Power Density Based on Binary Metal Fluoride. Mater. Lett. 2020, 275, 128146; https://doi.org/10.1016/j.matlet.2020.128146.Search in Google Scholar

34. Zhang, Z. J.; Zheng, Q. C.; Sun, L. Synthesis of 2-D Nanostructured BiVO4:Ag Hybrid as an Efficient Electrode Material for Supercapacitors. Ceram. Int. 2017, 43 (18), 16217–16224; https://doi.org/10.1016/j.ceramint.2017.08.200.Search in Google Scholar

35. Patil, S. S.; Dubal, D. P.; Deonikar, V. G.; Tamboli, M. S.; Ambekar, J. D.; Gomez-Romero, P.; Kolekar, S. S.; Kale, B. B.; Patil, D. R. Fern-like rGO/BiVO4 Hybrid Nanostructures for High-Energy Symmetric Supercapacitor. ACS Appl. Mater. Interfaces 2016, 8 (46), 31602–31610; https://doi.org/10.1021/acsami.6b08165.Search in Google Scholar PubMed

36. Mali, G.; Walekar, L.; Kolhe, N.; Kadam, A. N.; Kore, R.; Mhamane, D.; Parbat, H.; Lee, S. W.; Lokhande, B.; Patil, V.; Gokavi, G.; Mali, M. Multifunctional Polyoxotungstocobaltate Anchored Fern-Leaf like BiVO4 Microstructures for Enhanced Photocatalytic and Supercapacitive Performance. Colloids Surf., A 2023, 662, 130974; https://doi.org/10.1016/j.colsurfa.2023.130974.Search in Google Scholar

37. Shah, S. S.; Aziz, M. A.; Al Marzooqi, M.; Khan, A. Z.; Yamani, Z. H. Enhanced Light-Responsive Supercapacitor Utilizing BiVO4 and Date Leaves-Derived Carbon: A Leap towards Sustainable Energy Harvesting and Storage. J. Power Sources 2024, 602, 234334; https://doi.org/10.1016/j.jpowsour.2024.234334.Search in Google Scholar

38. Reddy, C. V.; Reddy, I. N.; Koutavarapu, R.; Reddy, K. R.; Kim, D.; Shim, J. Novel BiVO4 Nanostructures for Environmental Remediation, Enhanced Photoelectrocatalytic Water Oxidation and Electrochemical Energy Storage Performance. Sol. Energy 2020, 207, 441–449; https://doi.org/10.1016/j.solener.2020.06.075.Search in Google Scholar

39. Kumar, M.; Chauhan, H.; Satpati, B.; Deka, S. Yolk Type Asymmetric Ag–Cu2O Hybrid Nanoparticles on Graphene Substrate as Efficient Electrode Material for Hybrid Supercapacitors. Zeitschrift für Physikalische Chemie 2019, 233 (1), 85–104. https://doi.org/10.1515/zpch-2017-1067.Search in Google Scholar

40. Swaminathan, K.; Kuppusamy, R.; Govindaraju, V.; Thirugnanam, T.; Dinesh, A.; Ponnusamy, S.; Iqbal, M.; Ayyar, M. Effect of Reducing Agents on Structural, Morphological, Optical and Electrochemical Properties of Mn2O3 Nanoparticles by Co-precipitation Method. Zeitschrift für Physikalische Chemie 2024, 238 (2), 239–260; https://doi.org/10.1515/zpch-2023-0391.Search in Google Scholar

Received: 2024-02-20
Accepted: 2024-04-03
Published Online: 2024-04-24
Published in Print: 2025-02-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Contributions to “Materials for solar water splitting”
  3. Synergistic enhancement of electrochemical supercapacitor efficiency via Co3O4/GO composite electrode
  4. Impact of annealing temperature on the structural, morphological and optical properties of Ni doped ZnO nanostructured thin films synthesized by sol–gel methodology
  5. Comparison of different iron oxides for degradation of tetracycline anti-bacterial drug
  6. Structural and electrical properties of mol% (100 − x)Li2SO4:xP2O5 solid electrolyte system (0 ≤ x ≤ 20)
  7. Microwave synthesis of magnesium phosphate-rGO as an effective electrode for supercapacitor application
  8. Adsorptive removal of Cu(II) ions from aqueous solution using Teff (Eragrostis tef) hay based magnetized biocarbon: RSM-GA, ANN based optimization and kinetics aspects
  9. Efficiency assessment of hydrothermally synthesized Mn2+/3+ modified LaCoO3 nanoparticles for advanced wastewater remediation
  10. Synthesis of BaO/NiO/rGO nanocomposite for supercapacitor application
  11. Ethanedithiol-modified silica nanoparticles for selective removal of Hg2+ ions from aqueous wastewater
  12. Effect of Zr substitution on photocatalytic and magnetic properties of lanthanum titanate
  13. Investigations on the microbial activity and anti-corrosive efficiency of nickel oxide nanoparticles synthesised through green route
  14. Multifunctional application of different iron oxide nanoparticles
  15. Effect of pH in the bismuth vanadate nanorods for their supercapacitor applications
  16. Maximizing biogas production from leftover injera: influence of yeast addition to anaerobic digestion system
  17. Synthesis, characterization and efficient photo-catalytic performance of methylene blue by Zn doped SnO2 nanoparticles
  18. Enhancing performance: insights into the augmentation potential of acrylonitrile butadiene styrene/boron nitride composites
Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2024-0700/html
Scroll to top button