Abstract
In this manuscript, we present a facile and friendly sol-gel method to prepare bare and Zn-doped SnO2 nanoparticles and measured the photocatalytic performance of the materials by measuring the degradation of MB dye under UV light irradiation. A variety of analytical techniques were employed to characterize the materials, including X-ray diffraction, UV–Vis spectroscopy, Photoluminescence (PL), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). The X-ray diffraction (XRD) analysis reveals the presence of tetragonal SnO2 nanostructures. The average crystallite size of the bare SnO2 nanostructures was found to be 7.4 nm, but the addition of Zn dopant caused the size to increase to 10.5 nm. PL studies shows that the majority of emission energies fell within the SnO2 NPs’ band gap, indicating defects related to oxygen vacancies or Sn interstitials. The morphological analysis of SEM exhibits the various forms of SnO2 nanostructures which are densely agglomerate. The photocatalytic activity of the SZ10 NPs was found to be MB (88 %). The results showed that the Zn doped SnO2 exhibited good photocatalytic activity.
Acknowledgements
The author B. Kaleeswaran and Ra. Shanmugavadivu are thankful to M.Stalin Mano Gibson, Head of the department of Physics, Raja Doraisingam Govt. Arts College, Sivagangai for providing very good research equipments.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: B. Kaleeswaran: Methodology, Investigation, Writing – original draft. G. Vinodhkumar: Investigation, Formal analysis, Validation. Ra. Shanmugavadivu: Writing – Reviewing and Editing, Supervision.
-
Competing interests: No conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Parthibavarman, M.; Vallalperuman, K.; Sathishkumar, S.; Durairaj, M.; Thavamani, K. J. Mater. Sci. Mater. Electron. 2014, 25, 730; https://doi.org/10.1007/s10854-013-1637-9.Search in Google Scholar
2. Teoh, W. Y.; Scott, J. A.; Amal, R. J. Phys. Chem. Lett. 2012, 3, 629–639.10.1021/jz3000646Search in Google Scholar PubMed
3. Yin, K.; Shao, M.; Zhang, Z.; Lin, Z. Mater. Res. Bull. 2012, 47, 3704–3708; https://doi.org/10.1016/j.materresbull.2012.06.037.Search in Google Scholar
4. Liu, H.; Dong, X.; Duan, C.; Su, X.; Zhu, Z. Ceram. Int. 2013, 39, 8789–8795; https://doi.org/10.1016/j.ceramint.2013.04.066.Search in Google Scholar
5. Awoke, N.; Pandey, D.; Habtemariam, A. B. Regen. Eng. Transl. Med. 2021, 8, 401–12.10.1007/s40883-021-00218-xSearch in Google Scholar
6. Li, J.; Zhao, Y.; Wang, N.; Guan, L. Chem. Commun. 2011, 47, 5238–5240; https://doi.org/10.1039/c1cc10542f.Search in Google Scholar PubMed
7. Wang, W.-W.; Zhu, Y.-J.; Yang, L.-X. Adv. Funct. Mater. 2007, 17, 59–64.10.1002/adfm.200600431Search in Google Scholar
8. Wang, J.; Wang, Z.; Huang, B.; Ma, Y.; Liu, Y.; Qin, X.; Zhang, X.; Dai, Y. ACS Appl. Mater. Interfaces 2012, 4 (8), 4024–4030; https://doi.org/10.1021/am300835p.Search in Google Scholar PubMed
9. Lu, X.; Wang, G.; Zhai, T.; Yu, M.; Gan, J.; Tong, Y.; Li, Y. Nano Lett. 2012, 12, 1690–1696; https://doi.org/10.1021/nl300173j.Search in Google Scholar PubMed
10. Gan, J.; Lu, X.; Wu, J.; Xie, S.; Zhai, T.; Yu, M.; Zhang, Z.; Mao, Y.; Wang, S. C. I.; Shen, Y.; Tong, Y. Sci. Rep. 2013, 3, 1021; https://doi.org/10.1038/srep01021.Search in Google Scholar PubMed PubMed Central
11. Tan, O. K.; Cao, W.; Zhu, W.; Chai, J. W.; Pan, J. S. Sens. Actuat. B 2003, 93, 396–401; https://doi.org/10.1016/s0925-4005(03)00191-6.Search in Google Scholar
12. Abe, S.; Sung Choi, U.; Shimanoe, K.; Yamazoe, N. Sens. Actuat. B 2005, 107, 516–522; https://doi.org/10.1016/j.snb.2004.11.010.Search in Google Scholar
13. Gu, F.; Wang, S. F.; Song, C. F.; Lu, M. K.; Qi, Y. X.; Zhou, G. J.; Xu, D.; Yuan, D. R. Chem. Phys. Lett. 2003, 372, 451–454; https://doi.org/10.1016/s0009-2614(03)00440-8.Search in Google Scholar
14. Aziz, M.; Abbas, S. S.; Baharom, W. R. W. Mater. Lett. 2013, 91, 31–34.10.1016/j.matlet.2012.09.079Search in Google Scholar
15. Tian, Z. M.; Yuan, S. L.; He, J. H.; Li, P.; Zhang, S. Q.; Wang, C. H.; Wang, Y. Q.; Yin, S. Y.; Liu, L. J. Alloys Compd. 2008, 466, 26–30.10.1016/j.jallcom.2007.11.054Search in Google Scholar
16. Sathyaseelan, B.; Senthilnathan, K.; Alagesan, T.; Jayavel, R.; Sivakumar, K. Mater. Chem. Phys. 2010, 124, 1046–1050; https://doi.org/10.1016/j.matchemphys.2010.08.029.Search in Google Scholar
17. Ganesh, E. P.; Kajale, D. D.; Gaikwad, V. B.; Jain, G. H. Int. Nano Lett. 2012, 2, 17; https://doi.org/10.1186/2228-5326-2-17.Search in Google Scholar
18. Sujatha, K.; Seethalakshmi, T. Int. J. Sci. Res. Sci. Technol. 2017, 3, 639–642.Search in Google Scholar
19. Zhao, Q.; Deng, X.; Ding, M.; Gan, L.; Zhai, T.; Xu, X. CrystEngComm 2015, 17, 4394–4401; https://doi.org/10.1039/c5ce00546a.Search in Google Scholar
20. Cullity, B. D. Elements of X-Ray Diffraction, 2nd ed.; Boston: Addison-Wesley Publishing Co, 1956.Search in Google Scholar
21. Patterson, A. Phys. Rev. 1939, 56 (10), 978.10.1103/PhysRev.56.978Search in Google Scholar
22. Shkir, M.; Yahia, I. S.; Ganesh, V.; Algarni, H.; AlFaify, S. Mater. Lett. 2016, 176, 135–138.10.1016/j.matlet.2016.04.062Search in Google Scholar
23. Saravanakumar, S.; Chandramohan, R.; Premarani, R.; Jebaraj Devadasan, J.; Thirumalai, J. J. Mater. Sci.: Mater. Electron. 2017, 28, 12092–12099; https://doi.org/10.1007/s10854-017-7022-3.Search in Google Scholar
24. Song, K. C.; Kang, Y. Mater. Lett. 2000, 42, 283–286.10.1016/S0144-8617(99)00173-3Search in Google Scholar
25. Sudhaparimala, S.; Gnanamani, A.; Baran Mandal, A. J. Nanosci. Nanotechnol. 2014, 2 (4), 75–83; https://doi.org/10.11648/j.nano.20140204.13.Search in Google Scholar
26. Chen, H.; Ding, L.; Sun, W.; Jiang, Q.; Hu, J.; Li, J. RSC Adv. 2015, 5, 56401–56409; https://doi.org/10.1039/c5ra10268e.Search in Google Scholar
27. Manikandan, K.; Dhanuskodi, S.; Thomas, A. R.; Maheswari, N.; Muralidharan, G.; Sastikumar, D. RSC Adv. 2016, 6, 90559–90570; https://doi.org/10.1039/c6ra20503h.Search in Google Scholar
28. Son, H. H.; Lee, W. G. J. Ind. Eng. Chem. 2012, 18, 317–320.10.1016/j.jiec.2011.11.042Search in Google Scholar
29. Asaithambi, S.; Sakthivel, P.; Karuppaiah, M.; Murugan, R.; Yuvakkumar, R.; Ravi, G. J. Electr. Mater. 2019, 48, 2183–2194.10.1007/s11664-019-07061-5Search in Google Scholar
30. Tien, L. C.; Pearton, S. J.; Norton, D. P.; Ren, F. J. Mater. Sci. 2008, 34, 6925–6932.10.1007/s10853-008-2988-0Search in Google Scholar
31. Kowsari, E. J. Nanopart. Res. 2011, 13, 3363–3376; https://doi.org/10.1007/s11051-011-0255-9.Search in Google Scholar
32. Liu, D. H.; Liao, L.; Li, J. C.; Gue, H. X.; Fu, Q. Mater. Sci. Eng. B 2005, 121, 77–80; https://doi.org/10.1016/j.mseb.2005.03.005.Search in Google Scholar
33. Kim, S. P.; Yong Choi, M.; Chul Choi, H. Mater. Res. Bull. 2016, 74, 85–89.10.1016/j.materresbull.2015.10.024Search in Google Scholar
34. Sun, S. M.; Wang, W. Z.; Jiang, D.; Zhang, L. X. M.; Li, M.; Zheng, Y. L.; An, Q. Nano Res. 2014, 7, 1497; https://doi.org/10.1007/s12274-014-0511-2.Search in Google Scholar
35. Jiao, Y.; Liu, Y.; Yin, B.; Zhang, S.; Qu, F.; Wu, X. Nano Energy 2014, 10, 90; https://doi.org/10.1016/j.nanoen.2014.09.002.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Synergistic enhancement of electrochemical supercapacitor efficiency via Co3O4/GO composite electrode
- Impact of annealing temperature on the structural, morphological and optical properties of Ni doped ZnO nanostructured thin films synthesized by sol–gel methodology
- Comparison of different iron oxides for degradation of tetracycline anti-bacterial drug
- Structural and electrical properties of mol% (100 − x)Li2SO4:xP2O5 solid electrolyte system (0 ≤ x ≤ 20)
- Microwave synthesis of magnesium phosphate-rGO as an effective electrode for supercapacitor application
- Adsorptive removal of Cu(II) ions from aqueous solution using Teff (Eragrostis tef) hay based magnetized biocarbon: RSM-GA, ANN based optimization and kinetics aspects
- Efficiency assessment of hydrothermally synthesized Mn2+/3+ modified LaCoO3 nanoparticles for advanced wastewater remediation
- Synthesis of BaO/NiO/rGO nanocomposite for supercapacitor application
- Ethanedithiol-modified silica nanoparticles for selective removal of Hg2+ ions from aqueous wastewater
- Effect of Zr substitution on photocatalytic and magnetic properties of lanthanum titanate
- Investigations on the microbial activity and anti-corrosive efficiency of nickel oxide nanoparticles synthesised through green route
- Multifunctional application of different iron oxide nanoparticles
- Effect of pH in the bismuth vanadate nanorods for their supercapacitor applications
- Maximizing biogas production from leftover injera: influence of yeast addition to anaerobic digestion system
- Synthesis, characterization and efficient photo-catalytic performance of methylene blue by Zn doped SnO2 nanoparticles
- Enhancing performance: insights into the augmentation potential of acrylonitrile butadiene styrene/boron nitride composites
Articles in the same Issue
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Synergistic enhancement of electrochemical supercapacitor efficiency via Co3O4/GO composite electrode
- Impact of annealing temperature on the structural, morphological and optical properties of Ni doped ZnO nanostructured thin films synthesized by sol–gel methodology
- Comparison of different iron oxides for degradation of tetracycline anti-bacterial drug
- Structural and electrical properties of mol% (100 − x)Li2SO4:xP2O5 solid electrolyte system (0 ≤ x ≤ 20)
- Microwave synthesis of magnesium phosphate-rGO as an effective electrode for supercapacitor application
- Adsorptive removal of Cu(II) ions from aqueous solution using Teff (Eragrostis tef) hay based magnetized biocarbon: RSM-GA, ANN based optimization and kinetics aspects
- Efficiency assessment of hydrothermally synthesized Mn2+/3+ modified LaCoO3 nanoparticles for advanced wastewater remediation
- Synthesis of BaO/NiO/rGO nanocomposite for supercapacitor application
- Ethanedithiol-modified silica nanoparticles for selective removal of Hg2+ ions from aqueous wastewater
- Effect of Zr substitution on photocatalytic and magnetic properties of lanthanum titanate
- Investigations on the microbial activity and anti-corrosive efficiency of nickel oxide nanoparticles synthesised through green route
- Multifunctional application of different iron oxide nanoparticles
- Effect of pH in the bismuth vanadate nanorods for their supercapacitor applications
- Maximizing biogas production from leftover injera: influence of yeast addition to anaerobic digestion system
- Synthesis, characterization and efficient photo-catalytic performance of methylene blue by Zn doped SnO2 nanoparticles
- Enhancing performance: insights into the augmentation potential of acrylonitrile butadiene styrene/boron nitride composites