Home Enhancing performance: insights into the augmentation potential of acrylonitrile butadiene styrene/boron nitride composites
Article
Licensed
Unlicensed Requires Authentication

Enhancing performance: insights into the augmentation potential of acrylonitrile butadiene styrene/boron nitride composites

  • Bindhu Baby EMAIL logo , Asha Pitchaikutty , Sahariya Priya ORCID logo , Shine Kadaikunnan , Jamal M. Khaled and Sung Soo Han EMAIL logo
Published/Copyright: May 13, 2024

Abstract

This work aims to investigate the morphological, mechanical and thermal characteristics of boron nitride (BN)-reinforced acrylonitrile-butadiene styrene (ABS) composites. ABS and ABS/BN composites with a maximum BN loading up to 8 wt% were developed using two-roll mill followed by compression molding. Scanning electron microscopy (SEM) images presented interlinking of BN flakes in the dimple texture of ABS. A modest decrease in tensile properties was observed for the composites. The tensile strength and impact strength for the ABS/BN8 specimen were lowered by 4.7 and 81.7 %, respectively. On the other hand, hardness increased by 3.39 % for ABS/BN8 composite. The interaction effect of BN in the ABS matrix on the thermal properties was assessed using thermo-gravimetric analysis (TGA). An enhancement in the thermal-stability was observed for BN incorporated ABS. There is a modest shift in glass transition (Tg) temperature to a higher value for the ABS/BN composites.


Corresponding authors: Bindhu Baby, Department of Physics, Noorul Islam Centre for Higher Education, Kumaracoil 629180 Tamil Nadu, India, E-mail: ; and Sung Soo Han, School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, 38541, Gyeongsan, South Korea, E-mail:
B. Bindhu and Sahariya Priya are equally contributed.

Acknowledgments

One of the authors is acknowledges the support from the National Research Foundation of Korea (NRF) (Grant No. 2020R1A6A1A03044512) and the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) funded by the Ministry of Agriculture, Food, and Rural Affairs (MAFRA) (321027-5). The authors express their sincere appreciation to the Researchers Supporting Project number (RSPD2024R679), King Saud University, Riyadh, Saudi Arabia.

  1. Research ethics: Not applicable.

  2. Author contribution: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Research funding: The authors is acknowledges the support from the National Research Foundation of Korea (NRF) (Grant No. 2020R1A6A1A03044512) and The authors express their sincere appreciation to the Researchers Supporting Project number (RSPD2024R679), King Saud University, Riyadh, Saudi Arabia.

  5. Data availability: All the data used in the manuscript are within the manuscript.

References

1. Zong, R.; Hu, Y.; Wang, S.; Song, L. Polym. Degrad. Stab. 2004, 83, 423. https://doi.org/10.1016/j.polymdegradstab.2003.09.004.Search in Google Scholar

2. Memarian, F.; Fereidoon, A.; Ghorbanzadeh Ahangari, M. RSC Adv. 2016, 6, 101038. https://doi.org/10.1039/C6RA23087C.Search in Google Scholar

3. Wegrzyn, M.; Juan, S.; Benedito, A.; Giménez, E. J. Appl. Polym. Sci. 2013, 130, 2152. https://doi.org/10.1002/app.39412.Search in Google Scholar

4. Jonathan, N. C.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H. Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Science 2011, 331, 568. https://doi.org/10.1126/science.1194975.Search in Google Scholar PubMed

5. Gonon, C. P. P.; Sylvestre, A.; Teysseyre, J.; Prior, C. J. Mater. Sci. Mater. Electron. 2001, 12, 81. https://doi.org/10.1023/A:1011241818209.10.1023/A:1011241818209Search in Google Scholar

6. Cui, W.; Du, F.; Zhao, J.; Zhang, W.; Yang, Y.; Xie, X.; Mai, Y.-W. Carbon 2011, 49, 495. https://doi.org/10.1016/j.carbon.2010.09.047.Search in Google Scholar

7. Chao, Y.; Duan, B.; Lan, L.; Xie, B.; Huang, M.; Luo, X. ACS Appl. Mater. Interfaces 2015, 7, 13000. https://doi.org/10.1021/acsami.5b03007.Search in Google Scholar PubMed

8. Lee, J.; Jung, H.; Yu, S.; Man Cho, S.; Tiwari, V. K.; Babu Velusamy, D.; Park, C. Chem. Asian J. 2016, 11, 1921. https://doi.org/10.1002/asia.201600470.Search in Google Scholar PubMed

9. Sebnem Kemaioglu, A. A.; Ozkoc, G. Thermochim. Acta 2010, 499, 40. https://doi.org/10.1016/j.tca.2009.10.020.Search in Google Scholar

10. Wen Ying, Z.; Qi, S.-H.; Zhao, H. Z.; Liang Liu, N. Polym. Compos. 2007, 28, 23. https://doi.org/10.1002/pc.20296.Search in Google Scholar

11. Warner, J. H.; Rummeli, M. H.; Bachmatiuk, A.; Buchner, B. ACS Nano 2010, 4, 1299. https://doi.org/10.1021/nn901648q.Search in Google Scholar PubMed

12. Sohel, M. A.; Mandal, A.; Mondal, A.; Pan, S.; SenGupta, A. J. Therm. Anal. Calorim. 2017, 129, 1689. https://doi.org/10.1007/s10973-017-6312-6.Search in Google Scholar

13. Moustafa, H.; Youssef, A. M.; Duquesne, S.; Darwish, N. A. Polym. Compos. 2017, 38, 2788. https://doi.org/10.1002/pc.23878.Search in Google Scholar

14. Modesti, M.; Besco, S.; Lorenzetti, A.; Causin, V.; Marega, C.; Gilman, J.; Fox, D.; Trulove, P.; De Long, H.; Zammarano, M. Polym. Degrad. Stab. 2007, 92, 2206. https://doi.org/10.1016/j.polymdegradstab.2007.01.036.Search in Google Scholar

15. Ben Difallah, B.; Kharrat, M.; Dammak, M.; Monteil, G. Mater. Des. 2012, 34, 782. https://doi.org/10.1016/j.matdes.2011.07.001.Search in Google Scholar

16. Al-Saleh, M. H.; Al-Saidi, B. A.; Al-Zoubi, R. M. Polymer 2016, 89, 12. https://doi.org/10.1016/j.polymer.2016.01.053.Search in Google Scholar

17. Attia, N. F.; Goda, E. S.; Nour, M. A.; Sabaa, M. W.; Hassan, M. A. Mater. Chem. Phys. 2015, 168, 147. https://doi.org/10.1016/j.matchemphys.2015.11.014.Search in Google Scholar

18. Clark, B.; Zhang, Z.; Christopher, G.; Pantoya, M. L. J. Mater. Sci. 2017, 52, 993. https://doi.org/10.1007/s10853-016-0395-5.Search in Google Scholar

19. Yu, W.; Xie, H.; Chen, L.; Wang, M.; Wang, W. Polym. Compos. 2017, 38, 2221. https://doi.org/10.1002/pc.23802.Search in Google Scholar

20. Sung, Y. T.; Fasulo, P. D.; Rodgers, W. R.; Yoo, Y. T.; Yoo, Y.; Paul, D. R. J. Appl. Polym. Sci. 2012, 124, 1020. https://doi.org/10.1002/app.35147.Search in Google Scholar

21. Yan, G.; Wang, X.; Wu, D. J. Appl. Polym. Sci. 2013, 129, 3502. https://doi.org/10.1002/app.39105.Search in Google Scholar

22. Du, X.; Yu, H.; Wang, Z.; Tang, T. Polym. Degrad. Stab. 2010, 95, 587. https://doi.org/10.1016/j.polymdegradstab.2009.12.009.Search in Google Scholar

23. Wei, W.; Hu, S.; Zhang, R.; Xu, C.; Zhang, F.; Liu, Q. Polym. Bull. 2017, 74, 4279. https://doi.org/10.1007/s00289-017-1956-8.Search in Google Scholar

24. Lim, S. K.; Hong, E.-P.; Song, Y.-H.; Park, B. J.; Choi, H. J.; In-Joo, C. Polym. Eng. Sci. 50, 504 (2009). https://doi.org/10.1002/pen.21551.Search in Google Scholar

25. Tiwari, R. R.; Natarajan, U. J. Appl. Polym. Sci. 2008, 110, 2374. https://doi.org/10.1002/app.28699.Search in Google Scholar

26. Stretz, H. A.; Paul, D. R.; Cassidy, P. E. Polymer 2005, 46, 3818. https://doi.org/10.1016/j.polymer.2005.03.043.Search in Google Scholar

27. Yang, S.; Castilleja, J. R.; Barrera, E. V.; Lozano, K. Polym. Degrad. Stab. 2004, 83, 383. https://doi.org/10.1016/j.polymdegradstab.2003.08.002.Search in Google Scholar

28. Bindhu, B.; Renisha, R.; Roberts, L.; Varghese, T. O. Polym. Test. 2018, 66, 172. https://doi.org/10.1016/j.polymertesting.2018.01.018.Search in Google Scholar

Received: 2024-02-14
Accepted: 2024-04-15
Published Online: 2024-05-13
Published in Print: 2025-02-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Contributions to “Materials for solar water splitting”
  3. Synergistic enhancement of electrochemical supercapacitor efficiency via Co3O4/GO composite electrode
  4. Impact of annealing temperature on the structural, morphological and optical properties of Ni doped ZnO nanostructured thin films synthesized by sol–gel methodology
  5. Comparison of different iron oxides for degradation of tetracycline anti-bacterial drug
  6. Structural and electrical properties of mol% (100 − x)Li2SO4:xP2O5 solid electrolyte system (0 ≤ x ≤ 20)
  7. Microwave synthesis of magnesium phosphate-rGO as an effective electrode for supercapacitor application
  8. Adsorptive removal of Cu(II) ions from aqueous solution using Teff (Eragrostis tef) hay based magnetized biocarbon: RSM-GA, ANN based optimization and kinetics aspects
  9. Efficiency assessment of hydrothermally synthesized Mn2+/3+ modified LaCoO3 nanoparticles for advanced wastewater remediation
  10. Synthesis of BaO/NiO/rGO nanocomposite for supercapacitor application
  11. Ethanedithiol-modified silica nanoparticles for selective removal of Hg2+ ions from aqueous wastewater
  12. Effect of Zr substitution on photocatalytic and magnetic properties of lanthanum titanate
  13. Investigations on the microbial activity and anti-corrosive efficiency of nickel oxide nanoparticles synthesised through green route
  14. Multifunctional application of different iron oxide nanoparticles
  15. Effect of pH in the bismuth vanadate nanorods for their supercapacitor applications
  16. Maximizing biogas production from leftover injera: influence of yeast addition to anaerobic digestion system
  17. Synthesis, characterization and efficient photo-catalytic performance of methylene blue by Zn doped SnO2 nanoparticles
  18. Enhancing performance: insights into the augmentation potential of acrylonitrile butadiene styrene/boron nitride composites
Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2024-0625/html
Scroll to top button