Enhancing performance: insights into the augmentation potential of acrylonitrile butadiene styrene/boron nitride composites
-
Bindhu Baby
, Asha Pitchaikutty
, Shine Kadaikunnan
Abstract
This work aims to investigate the morphological, mechanical and thermal characteristics of boron nitride (BN)-reinforced acrylonitrile-butadiene styrene (ABS) composites. ABS and ABS/BN composites with a maximum BN loading up to 8 wt% were developed using two-roll mill followed by compression molding. Scanning electron microscopy (SEM) images presented interlinking of BN flakes in the dimple texture of ABS. A modest decrease in tensile properties was observed for the composites. The tensile strength and impact strength for the ABS/BN8 specimen were lowered by 4.7 and 81.7 %, respectively. On the other hand, hardness increased by 3.39 % for ABS/BN8 composite. The interaction effect of BN in the ABS matrix on the thermal properties was assessed using thermo-gravimetric analysis (TGA). An enhancement in the thermal-stability was observed for BN incorporated ABS. There is a modest shift in glass transition (Tg) temperature to a higher value for the ABS/BN composites.
Acknowledgments
One of the authors is acknowledges the support from the National Research Foundation of Korea (NRF) (Grant No. 2020R1A6A1A03044512) and the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) funded by the Ministry of Agriculture, Food, and Rural Affairs (MAFRA) (321027-5). The authors express their sincere appreciation to the Researchers Supporting Project number (RSPD2024R679), King Saud University, Riyadh, Saudi Arabia.
-
Research ethics: Not applicable.
-
Author contribution: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
-
Research funding: The authors is acknowledges the support from the National Research Foundation of Korea (NRF) (Grant No. 2020R1A6A1A03044512) and The authors express their sincere appreciation to the Researchers Supporting Project number (RSPD2024R679), King Saud University, Riyadh, Saudi Arabia.
-
Data availability: All the data used in the manuscript are within the manuscript.
References
1. Zong, R.; Hu, Y.; Wang, S.; Song, L. Polym. Degrad. Stab. 2004, 83, 423. https://doi.org/10.1016/j.polymdegradstab.2003.09.004.Search in Google Scholar
2. Memarian, F.; Fereidoon, A.; Ghorbanzadeh Ahangari, M. RSC Adv. 2016, 6, 101038. https://doi.org/10.1039/C6RA23087C.Search in Google Scholar
3. Wegrzyn, M.; Juan, S.; Benedito, A.; Giménez, E. J. Appl. Polym. Sci. 2013, 130, 2152. https://doi.org/10.1002/app.39412.Search in Google Scholar
4. Jonathan, N. C.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H. Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Science 2011, 331, 568. https://doi.org/10.1126/science.1194975.Search in Google Scholar PubMed
5. Gonon, C. P. P.; Sylvestre, A.; Teysseyre, J.; Prior, C. J. Mater. Sci. Mater. Electron. 2001, 12, 81. https://doi.org/10.1023/A:1011241818209.10.1023/A:1011241818209Search in Google Scholar
6. Cui, W.; Du, F.; Zhao, J.; Zhang, W.; Yang, Y.; Xie, X.; Mai, Y.-W. Carbon 2011, 49, 495. https://doi.org/10.1016/j.carbon.2010.09.047.Search in Google Scholar
7. Chao, Y.; Duan, B.; Lan, L.; Xie, B.; Huang, M.; Luo, X. ACS Appl. Mater. Interfaces 2015, 7, 13000. https://doi.org/10.1021/acsami.5b03007.Search in Google Scholar PubMed
8. Lee, J.; Jung, H.; Yu, S.; Man Cho, S.; Tiwari, V. K.; Babu Velusamy, D.; Park, C. Chem. Asian J. 2016, 11, 1921. https://doi.org/10.1002/asia.201600470.Search in Google Scholar PubMed
9. Sebnem Kemaioglu, A. A.; Ozkoc, G. Thermochim. Acta 2010, 499, 40. https://doi.org/10.1016/j.tca.2009.10.020.Search in Google Scholar
10. Wen Ying, Z.; Qi, S.-H.; Zhao, H. Z.; Liang Liu, N. Polym. Compos. 2007, 28, 23. https://doi.org/10.1002/pc.20296.Search in Google Scholar
11. Warner, J. H.; Rummeli, M. H.; Bachmatiuk, A.; Buchner, B. ACS Nano 2010, 4, 1299. https://doi.org/10.1021/nn901648q.Search in Google Scholar PubMed
12. Sohel, M. A.; Mandal, A.; Mondal, A.; Pan, S.; SenGupta, A. J. Therm. Anal. Calorim. 2017, 129, 1689. https://doi.org/10.1007/s10973-017-6312-6.Search in Google Scholar
13. Moustafa, H.; Youssef, A. M.; Duquesne, S.; Darwish, N. A. Polym. Compos. 2017, 38, 2788. https://doi.org/10.1002/pc.23878.Search in Google Scholar
14. Modesti, M.; Besco, S.; Lorenzetti, A.; Causin, V.; Marega, C.; Gilman, J.; Fox, D.; Trulove, P.; De Long, H.; Zammarano, M. Polym. Degrad. Stab. 2007, 92, 2206. https://doi.org/10.1016/j.polymdegradstab.2007.01.036.Search in Google Scholar
15. Ben Difallah, B.; Kharrat, M.; Dammak, M.; Monteil, G. Mater. Des. 2012, 34, 782. https://doi.org/10.1016/j.matdes.2011.07.001.Search in Google Scholar
16. Al-Saleh, M. H.; Al-Saidi, B. A.; Al-Zoubi, R. M. Polymer 2016, 89, 12. https://doi.org/10.1016/j.polymer.2016.01.053.Search in Google Scholar
17. Attia, N. F.; Goda, E. S.; Nour, M. A.; Sabaa, M. W.; Hassan, M. A. Mater. Chem. Phys. 2015, 168, 147. https://doi.org/10.1016/j.matchemphys.2015.11.014.Search in Google Scholar
18. Clark, B.; Zhang, Z.; Christopher, G.; Pantoya, M. L. J. Mater. Sci. 2017, 52, 993. https://doi.org/10.1007/s10853-016-0395-5.Search in Google Scholar
19. Yu, W.; Xie, H.; Chen, L.; Wang, M.; Wang, W. Polym. Compos. 2017, 38, 2221. https://doi.org/10.1002/pc.23802.Search in Google Scholar
20. Sung, Y. T.; Fasulo, P. D.; Rodgers, W. R.; Yoo, Y. T.; Yoo, Y.; Paul, D. R. J. Appl. Polym. Sci. 2012, 124, 1020. https://doi.org/10.1002/app.35147.Search in Google Scholar
21. Yan, G.; Wang, X.; Wu, D. J. Appl. Polym. Sci. 2013, 129, 3502. https://doi.org/10.1002/app.39105.Search in Google Scholar
22. Du, X.; Yu, H.; Wang, Z.; Tang, T. Polym. Degrad. Stab. 2010, 95, 587. https://doi.org/10.1016/j.polymdegradstab.2009.12.009.Search in Google Scholar
23. Wei, W.; Hu, S.; Zhang, R.; Xu, C.; Zhang, F.; Liu, Q. Polym. Bull. 2017, 74, 4279. https://doi.org/10.1007/s00289-017-1956-8.Search in Google Scholar
24. Lim, S. K.; Hong, E.-P.; Song, Y.-H.; Park, B. J.; Choi, H. J.; In-Joo, C. Polym. Eng. Sci. 50, 504 (2009). https://doi.org/10.1002/pen.21551.Search in Google Scholar
25. Tiwari, R. R.; Natarajan, U. J. Appl. Polym. Sci. 2008, 110, 2374. https://doi.org/10.1002/app.28699.Search in Google Scholar
26. Stretz, H. A.; Paul, D. R.; Cassidy, P. E. Polymer 2005, 46, 3818. https://doi.org/10.1016/j.polymer.2005.03.043.Search in Google Scholar
27. Yang, S.; Castilleja, J. R.; Barrera, E. V.; Lozano, K. Polym. Degrad. Stab. 2004, 83, 383. https://doi.org/10.1016/j.polymdegradstab.2003.08.002.Search in Google Scholar
28. Bindhu, B.; Renisha, R.; Roberts, L.; Varghese, T. O. Polym. Test. 2018, 66, 172. https://doi.org/10.1016/j.polymertesting.2018.01.018.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Synergistic enhancement of electrochemical supercapacitor efficiency via Co3O4/GO composite electrode
- Impact of annealing temperature on the structural, morphological and optical properties of Ni doped ZnO nanostructured thin films synthesized by sol–gel methodology
- Comparison of different iron oxides for degradation of tetracycline anti-bacterial drug
- Structural and electrical properties of mol% (100 − x)Li2SO4:xP2O5 solid electrolyte system (0 ≤ x ≤ 20)
- Microwave synthesis of magnesium phosphate-rGO as an effective electrode for supercapacitor application
- Adsorptive removal of Cu(II) ions from aqueous solution using Teff (Eragrostis tef) hay based magnetized biocarbon: RSM-GA, ANN based optimization and kinetics aspects
- Efficiency assessment of hydrothermally synthesized Mn2+/3+ modified LaCoO3 nanoparticles for advanced wastewater remediation
- Synthesis of BaO/NiO/rGO nanocomposite for supercapacitor application
- Ethanedithiol-modified silica nanoparticles for selective removal of Hg2+ ions from aqueous wastewater
- Effect of Zr substitution on photocatalytic and magnetic properties of lanthanum titanate
- Investigations on the microbial activity and anti-corrosive efficiency of nickel oxide nanoparticles synthesised through green route
- Multifunctional application of different iron oxide nanoparticles
- Effect of pH in the bismuth vanadate nanorods for their supercapacitor applications
- Maximizing biogas production from leftover injera: influence of yeast addition to anaerobic digestion system
- Synthesis, characterization and efficient photo-catalytic performance of methylene blue by Zn doped SnO2 nanoparticles
- Enhancing performance: insights into the augmentation potential of acrylonitrile butadiene styrene/boron nitride composites
Articles in the same Issue
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Synergistic enhancement of electrochemical supercapacitor efficiency via Co3O4/GO composite electrode
- Impact of annealing temperature on the structural, morphological and optical properties of Ni doped ZnO nanostructured thin films synthesized by sol–gel methodology
- Comparison of different iron oxides for degradation of tetracycline anti-bacterial drug
- Structural and electrical properties of mol% (100 − x)Li2SO4:xP2O5 solid electrolyte system (0 ≤ x ≤ 20)
- Microwave synthesis of magnesium phosphate-rGO as an effective electrode for supercapacitor application
- Adsorptive removal of Cu(II) ions from aqueous solution using Teff (Eragrostis tef) hay based magnetized biocarbon: RSM-GA, ANN based optimization and kinetics aspects
- Efficiency assessment of hydrothermally synthesized Mn2+/3+ modified LaCoO3 nanoparticles for advanced wastewater remediation
- Synthesis of BaO/NiO/rGO nanocomposite for supercapacitor application
- Ethanedithiol-modified silica nanoparticles for selective removal of Hg2+ ions from aqueous wastewater
- Effect of Zr substitution on photocatalytic and magnetic properties of lanthanum titanate
- Investigations on the microbial activity and anti-corrosive efficiency of nickel oxide nanoparticles synthesised through green route
- Multifunctional application of different iron oxide nanoparticles
- Effect of pH in the bismuth vanadate nanorods for their supercapacitor applications
- Maximizing biogas production from leftover injera: influence of yeast addition to anaerobic digestion system
- Synthesis, characterization and efficient photo-catalytic performance of methylene blue by Zn doped SnO2 nanoparticles
- Enhancing performance: insights into the augmentation potential of acrylonitrile butadiene styrene/boron nitride composites