Home Physical Sciences Impact of annealing temperature on the structural, morphological and optical properties of Ni doped ZnO nanostructured thin films synthesized by sol–gel methodology
Article
Licensed
Unlicensed Requires Authentication

Impact of annealing temperature on the structural, morphological and optical properties of Ni doped ZnO nanostructured thin films synthesized by sol–gel methodology

  • Balaprakash Vadivel EMAIL logo , Thangavel Krishnasamy , Mahitha Mohan , Geetha Appukkutti , Gowrisankar Ponnusamy and Sakthivel Ranganathan
Published/Copyright: March 28, 2024

Abstract

Nickel doped zinc oxide (NZO) nanostructured thin films were prepared by hydrolysis and poly condensation reaction based on the sol–gel methodology. Nanostructured thin films were prepared over the glass substrate by dip coating. Prepared samples were annealed at 350 °C and 450 °C respectively to tune the desired characteristics. The XRD studies endorses the prepared films were polycrystalline in nature and high intensity sharp peaks were exhibited in (101) direction. EDAX results confirms the presence of Ni, Zn and O elements. FESEM results exhibits the spherical like morphology throughout the sample. The typical grain size of prepared samples are vary from 35 nm to 105 nm. Results of the FTIR divulges the different composition of prepared NZO samples. UV–vis spectrophotometer results reveals that the fabricated 1 at.% NZO thin films annealed at 450 °C were guaranteed to have the lowest absorbance of less than 10 %, while the 0.5 at.% NZO thin films have an energy band gap of roughly 3.08 eV. The obtained results of the prepared films are useful for devices like solar cells, optoelectronic devices, flat panel displays, anticorrosion and surface protection applicant against stainless steel etc.


Corresponding author: Balaprakash Vadivel, Hindusthan College of Arts & Science, Coimbatore, Tamilnadu, India, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: Balaprakash Vadivel - Conceptualization, Methodology / Study design, Software, Validation, Formal analysis, Investigation, Resources, Data curation, Writing – original draft, Writing – review and editing, Visualization, Supervision & Project administration. Thangavel Krishnasamy - Conceptualization, Validation, Formal analysis, Investigation, Resources, Writing – original draft, Writing – review and editing, Visualization & Supervision. Mahitha Mohan - Conceptualization, Methodology / Study design, Software, Validation, Investigation, Resources, Data curation, Writing – original draft. Geetha Appukkutti - Conceptualization, Validation, Formal analysis, Investigation, Resources, Writing – original draft, Writing – review and editing, Visualization & Supervision. Gowrisankar Ponnusamy - Conceptualization, Validation, Formal analysis, Visualization & Supervision. Sakthivel Ranganathan - Conceptualization, Validation, Formal analysis, Investigation, Resources, Writing – original draft & Supervision.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Ramesh, J., Pasupathi, G., Mariappan, R., Senthil Kumar, V., Ponnusamy, V. Optik 2013, 124, 2023–2027; https://doi.org/10.1016/j.ijleo.2012.06.035.Search in Google Scholar

2. Lee, H. J., Jeong, S. Y., Cho, C. R., Park, C. H. Appl. Phys. Lett. 2002, 81, 4020–4022; https://doi.org/10.1063/1.1517405.Search in Google Scholar

3. Prellier, W., Fouchet, A., Mercey, B., Simon, Ch., Raveau, B. Appl. Phys. Lett. 2003, 82, 3490–3492; https://doi.org/10.1063/1.1578183.Search in Google Scholar

4. Wakano, T., Fujimura, N., Morinaga, Y., Abe, N., Ashida, A., Ito, T. Phys. E 2001, 10, 260–264; https://doi.org/10.1016/s1386-9477(01)00095-9.Search in Google Scholar

5. Zada, A., Khan, M., Hussain, Z., Shah, M. I. A., Ateeq, M., Ullah, M., Ali, N., Shaheen, S., Yasmeen, H., Shah, S. N. A., Dang, A. Z. Phys. Chem. 2022, 236, 53–66; https://doi.org/10.1515/zpch-2020-1778.Search in Google Scholar

6. Vandana, N. M., Sable, M. J., Suhas, R. P. Indian J. Eng. Mater. Sci. 2022, 29, 9–17.Search in Google Scholar

7. Shang, Y. L., Huo, L., Jia, Y. L., Liao, F. H., Li, J. R., Li, M. X., Zhang, S. H. Colloids. Surf. A: Physicochem. Eng. Asp. 2008, 325, 160–165; https://doi.org/10.1016/j.colsurfa.2008.04.048.Search in Google Scholar

8. Krauss, G. J. Heat Treat. 1992, 9, 81–89; https://doi.org/10.1007/bf02833144.Search in Google Scholar

9. An, Y. I., Du, H. Y., Wei, Y. H., Yang, N., Hou, L. F., Lin, W. M. Mater. Des. 2013, 46, 627–633; https://doi.org/10.1016/j.matdes.2012.11.005.Search in Google Scholar

10. Ajao, J. A. J. Alloys Compod. 2010, 493, 314–321; https://doi.org/10.1016/j.jallcom.2009.12.091.Search in Google Scholar

11. Shakoor, R. A., Kahraman, R., Waware, U. S., Wang, Y., Gao, W. Int. J. Electrochem. Sci. 2014, 9, 5520–5536; https://doi.org/10.1016/s1452-3981(23)08186-5.Search in Google Scholar

12. Fotovvati, B., Namdari, N., Dehghanghadikolaei, A. J. Manuf. Mater. Process. 2019, 28, 1–22.10.3390/jmmp3010028Search in Google Scholar

13. Anandhavelu, S., Dhanasekaran, V., Sethuraman, V., Park, H. J. J. Nanosci. Nanotechnol. 2017, 17, 1321–1328; https://doi.org/10.1166/jnn.2017.12721.Search in Google Scholar PubMed

14. Lin, S., Shih, H., Mansfeld, F. Corros. Sci. 1992, 33, 1331–1349; https://doi.org/10.1016/0010-938x(92)90176-4.Search in Google Scholar

15. Singh, B. P., Jena, B. K., Bhattacharjee, S., Besra, L. Surf. Coat. Technol. 2013, 232, 475–481; https://doi.org/10.1016/j.surfcoat.2013.06.004.Search in Google Scholar

16. Miao, J., Zhang, L-C., Lin, H. Chem. Eng. Sci. 2013, 87, 152–159; https://doi.org/10.1016/j.ces.2012.10.015.Search in Google Scholar

17. Miao, J., Lin, H., Wang, W., Zhang, L-C. J. Chem. Eng. 2013, 234, 132–139; https://doi.org/10.1016/j.cej.2013.08.085.Search in Google Scholar

18. Elilarassi, R., Chandrasekaran, G. Mater. Chem. Phys. 2010, 123, 450–455; https://doi.org/10.1016/j.matchemphys.2010.04.039.Search in Google Scholar

19. Balaprakash, V., Gowrisankar, P., Sudha, S., Rajkumar, R. Mater. Technol. 2018, 33, 414–420; https://doi.org/10.1080/10667857.2018.1455384.Search in Google Scholar

20. Balaprakash, V., Gowrisankar, P., Sudha, S. Indian J. Pure Appl. Phys. 2016, 54, 689–693.Search in Google Scholar

21. Katekaew, P., Prasatkhetragarn, A., Sirirak, R., Boonruang, C., Klinbumrung, A. Z. Phys. Chem. 2023, 237, 1077–1104; https://doi.org/10.1515/zpch-2023-0235.Search in Google Scholar

22. Hu, J., Gordon, R. G. J. Appl. Phys. 1992, 71, 880–890; https://doi.org/10.1063/1.351309.Search in Google Scholar

23. Tan, S. T., Chen, B. J., Sun, X. W., Hu, X. W., Zhang, X. H., Chua, S. J. J. Cryst. Growth 2005, 98, 013505; https://doi.org/10.1063/1.1940137.Search in Google Scholar

24. Abed, C., Fernandez, S., Aouida, S., Elhouichet, H., Priego, F., Castro, Y., Gomez-Mancebo, M. B., Munuera, C. Materials 2020, 13, 1–12; https://doi.org/10.3390/ma13092146.Search in Google Scholar PubMed PubMed Central

25. Nithya Sree, D., Paul Mary Deborrah, S., Gopinathan, C., Inbanathan, S. S. R. Appl. Surf. Sci. 2019, 499, 116–123; https://doi.org/10.1016/j.apsusc.2019.07.091.Search in Google Scholar

26. Cembrero, J., Elmanouni, A., Hartiti, B., Mollar, M., Mari, B. Thin Solid Films 2004, 451, 198–202; https://doi.org/10.1016/j.tsf.2003.10.119.Search in Google Scholar

27. Dilawar Ali, M. Z., Butt, I., Muneer, M. A., Farrukh, M., Aftab, M., Saleem, F., Bashir, A. V., Khan, A. U. Thin Solid Films 2019, 679, 86–98; https://doi.org/10.1016/j.tsf.2019.04.017.Search in Google Scholar

28. Ata, S., Bano, S., Bibi, I., Alwadai, N., Mohsin, I. U., Huwayz, M. A., Iqbal, M., Nazir, A. Z. Phys. Chem. 2023, 237, 67–86; https://doi.org/10.1515/zpch-2022-0086.Search in Google Scholar

29. Humayun, M., Ullah, H., Cheng, Z.-E., Tahir, A. A., Luo, W., Wang, C.. Appl. Catal. B Environ. 2022, 310, 121322; https://doi.org/10.1016/j.apcatb.2022.121322.Search in Google Scholar

30. Humayun, M., Ullah, H., Shu, L., Ao, X., Tahir, A. A., Wang, C., Luo, W. Nano-Micro Lett. 2021, 13, 209; https://doi.org/10.1007/s40820-021-00736-x.Search in Google Scholar PubMed PubMed Central

31. Humayun, M., Ullah, H., Cao, J., Pi, W., Yuan, Y., Ali, S., Tahir, A. A., Yue, P., Khan, A., Zheng, Z., Fu, Q., Luo, W. Nano-Micro Lett. 2020, 12, 1–18.10.1007/s40820-019-0345-2Search in Google Scholar PubMed PubMed Central

32. Ullah, H., Tahir, A. A., Bibi, S., Mallick, T. K., Karazhanov, S. Z. Appl. Catal. B 2018, 229, 24–31; https://doi.org/10.1016/j.apcatb.2018.02.001.Search in Google Scholar

33. Danks, A. E., Hall, S. R., Schnepp, Z. Mater. Horiz. 2016, 3, 91–112; https://doi.org/10.1039/c5mh00260e.Search in Google Scholar

34. Liu, Y., He, T., Chen, D., Yang, H., Ferguson, I. T., Huang, D., Feng, Z. C. J. Alloys Compd. 2020, 848, 156631; https://doi.org/10.1016/j.jallcom.2020.156631.Search in Google Scholar

35. Rusli, N. A., Muhammad, R., Ghoshal, S. K., Nur, H., Nayan, N. Mater. Res. Express 2020, 7, 056406; https://doi.org/10.1088/2053-1591/ab9039.Search in Google Scholar

36. Bouzouraa, M. B., Battie, Y., Dalmasso, S., Zaibi, M. A., Oueslati, M., En Naciri, A. Superlattices Microstruct. 2018, 117, 457–468; https://doi.org/10.1016/j.spmi.2018.03.078.Search in Google Scholar

Received: 2023-11-09
Accepted: 2024-02-26
Published Online: 2024-03-28
Published in Print: 2025-02-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Contributions to “Materials for solar water splitting”
  3. Synergistic enhancement of electrochemical supercapacitor efficiency via Co3O4/GO composite electrode
  4. Impact of annealing temperature on the structural, morphological and optical properties of Ni doped ZnO nanostructured thin films synthesized by sol–gel methodology
  5. Comparison of different iron oxides for degradation of tetracycline anti-bacterial drug
  6. Structural and electrical properties of mol% (100 − x)Li2SO4:xP2O5 solid electrolyte system (0 ≤ x ≤ 20)
  7. Microwave synthesis of magnesium phosphate-rGO as an effective electrode for supercapacitor application
  8. Adsorptive removal of Cu(II) ions from aqueous solution using Teff (Eragrostis tef) hay based magnetized biocarbon: RSM-GA, ANN based optimization and kinetics aspects
  9. Efficiency assessment of hydrothermally synthesized Mn2+/3+ modified LaCoO3 nanoparticles for advanced wastewater remediation
  10. Synthesis of BaO/NiO/rGO nanocomposite for supercapacitor application
  11. Ethanedithiol-modified silica nanoparticles for selective removal of Hg2+ ions from aqueous wastewater
  12. Effect of Zr substitution on photocatalytic and magnetic properties of lanthanum titanate
  13. Investigations on the microbial activity and anti-corrosive efficiency of nickel oxide nanoparticles synthesised through green route
  14. Multifunctional application of different iron oxide nanoparticles
  15. Effect of pH in the bismuth vanadate nanorods for their supercapacitor applications
  16. Maximizing biogas production from leftover injera: influence of yeast addition to anaerobic digestion system
  17. Synthesis, characterization and efficient photo-catalytic performance of methylene blue by Zn doped SnO2 nanoparticles
  18. Enhancing performance: insights into the augmentation potential of acrylonitrile butadiene styrene/boron nitride composites
Downloaded on 19.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0460/html
Scroll to top button