Impact of annealing temperature on the structural, morphological and optical properties of Ni doped ZnO nanostructured thin films synthesized by sol–gel methodology
-
Balaprakash Vadivel
, Thangavel Krishnasamy
, Mahitha Mohan , Geetha Appukkutti , Gowrisankar Ponnusamy and Sakthivel Ranganathan
Abstract
Nickel doped zinc oxide (NZO) nanostructured thin films were prepared by hydrolysis and poly condensation reaction based on the sol–gel methodology. Nanostructured thin films were prepared over the glass substrate by dip coating. Prepared samples were annealed at 350 °C and 450 °C respectively to tune the desired characteristics. The XRD studies endorses the prepared films were polycrystalline in nature and high intensity sharp peaks were exhibited in (101) direction. EDAX results confirms the presence of Ni, Zn and O elements. FESEM results exhibits the spherical like morphology throughout the sample. The typical grain size of prepared samples are vary from 35 nm to 105 nm. Results of the FTIR divulges the different composition of prepared NZO samples. UV–vis spectrophotometer results reveals that the fabricated 1 at.% NZO thin films annealed at 450 °C were guaranteed to have the lowest absorbance of less than 10 %, while the 0.5 at.% NZO thin films have an energy band gap of roughly 3.08 eV. The obtained results of the prepared films are useful for devices like solar cells, optoelectronic devices, flat panel displays, anticorrosion and surface protection applicant against stainless steel etc.
-
Research ethics: Not applicable.
-
Author contributions: Balaprakash Vadivel - Conceptualization, Methodology / Study design, Software, Validation, Formal analysis, Investigation, Resources, Data curation, Writing – original draft, Writing – review and editing, Visualization, Supervision & Project administration. Thangavel Krishnasamy - Conceptualization, Validation, Formal analysis, Investigation, Resources, Writing – original draft, Writing – review and editing, Visualization & Supervision. Mahitha Mohan - Conceptualization, Methodology / Study design, Software, Validation, Investigation, Resources, Data curation, Writing – original draft. Geetha Appukkutti - Conceptualization, Validation, Formal analysis, Investigation, Resources, Writing – original draft, Writing – review and editing, Visualization & Supervision. Gowrisankar Ponnusamy - Conceptualization, Validation, Formal analysis, Visualization & Supervision. Sakthivel Ranganathan - Conceptualization, Validation, Formal analysis, Investigation, Resources, Writing – original draft & Supervision.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Ramesh, J., Pasupathi, G., Mariappan, R., Senthil Kumar, V., Ponnusamy, V. Optik 2013, 124, 2023–2027; https://doi.org/10.1016/j.ijleo.2012.06.035.Search in Google Scholar
2. Lee, H. J., Jeong, S. Y., Cho, C. R., Park, C. H. Appl. Phys. Lett. 2002, 81, 4020–4022; https://doi.org/10.1063/1.1517405.Search in Google Scholar
3. Prellier, W., Fouchet, A., Mercey, B., Simon, Ch., Raveau, B. Appl. Phys. Lett. 2003, 82, 3490–3492; https://doi.org/10.1063/1.1578183.Search in Google Scholar
4. Wakano, T., Fujimura, N., Morinaga, Y., Abe, N., Ashida, A., Ito, T. Phys. E 2001, 10, 260–264; https://doi.org/10.1016/s1386-9477(01)00095-9.Search in Google Scholar
5. Zada, A., Khan, M., Hussain, Z., Shah, M. I. A., Ateeq, M., Ullah, M., Ali, N., Shaheen, S., Yasmeen, H., Shah, S. N. A., Dang, A. Z. Phys. Chem. 2022, 236, 53–66; https://doi.org/10.1515/zpch-2020-1778.Search in Google Scholar
6. Vandana, N. M., Sable, M. J., Suhas, R. P. Indian J. Eng. Mater. Sci. 2022, 29, 9–17.Search in Google Scholar
7. Shang, Y. L., Huo, L., Jia, Y. L., Liao, F. H., Li, J. R., Li, M. X., Zhang, S. H. Colloids. Surf. A: Physicochem. Eng. Asp. 2008, 325, 160–165; https://doi.org/10.1016/j.colsurfa.2008.04.048.Search in Google Scholar
8. Krauss, G. J. Heat Treat. 1992, 9, 81–89; https://doi.org/10.1007/bf02833144.Search in Google Scholar
9. An, Y. I., Du, H. Y., Wei, Y. H., Yang, N., Hou, L. F., Lin, W. M. Mater. Des. 2013, 46, 627–633; https://doi.org/10.1016/j.matdes.2012.11.005.Search in Google Scholar
10. Ajao, J. A. J. Alloys Compod. 2010, 493, 314–321; https://doi.org/10.1016/j.jallcom.2009.12.091.Search in Google Scholar
11. Shakoor, R. A., Kahraman, R., Waware, U. S., Wang, Y., Gao, W. Int. J. Electrochem. Sci. 2014, 9, 5520–5536; https://doi.org/10.1016/s1452-3981(23)08186-5.Search in Google Scholar
12. Fotovvati, B., Namdari, N., Dehghanghadikolaei, A. J. Manuf. Mater. Process. 2019, 28, 1–22.10.3390/jmmp3010028Search in Google Scholar
13. Anandhavelu, S., Dhanasekaran, V., Sethuraman, V., Park, H. J. J. Nanosci. Nanotechnol. 2017, 17, 1321–1328; https://doi.org/10.1166/jnn.2017.12721.Search in Google Scholar PubMed
14. Lin, S., Shih, H., Mansfeld, F. Corros. Sci. 1992, 33, 1331–1349; https://doi.org/10.1016/0010-938x(92)90176-4.Search in Google Scholar
15. Singh, B. P., Jena, B. K., Bhattacharjee, S., Besra, L. Surf. Coat. Technol. 2013, 232, 475–481; https://doi.org/10.1016/j.surfcoat.2013.06.004.Search in Google Scholar
16. Miao, J., Zhang, L-C., Lin, H. Chem. Eng. Sci. 2013, 87, 152–159; https://doi.org/10.1016/j.ces.2012.10.015.Search in Google Scholar
17. Miao, J., Lin, H., Wang, W., Zhang, L-C. J. Chem. Eng. 2013, 234, 132–139; https://doi.org/10.1016/j.cej.2013.08.085.Search in Google Scholar
18. Elilarassi, R., Chandrasekaran, G. Mater. Chem. Phys. 2010, 123, 450–455; https://doi.org/10.1016/j.matchemphys.2010.04.039.Search in Google Scholar
19. Balaprakash, V., Gowrisankar, P., Sudha, S., Rajkumar, R. Mater. Technol. 2018, 33, 414–420; https://doi.org/10.1080/10667857.2018.1455384.Search in Google Scholar
20. Balaprakash, V., Gowrisankar, P., Sudha, S. Indian J. Pure Appl. Phys. 2016, 54, 689–693.Search in Google Scholar
21. Katekaew, P., Prasatkhetragarn, A., Sirirak, R., Boonruang, C., Klinbumrung, A. Z. Phys. Chem. 2023, 237, 1077–1104; https://doi.org/10.1515/zpch-2023-0235.Search in Google Scholar
22. Hu, J., Gordon, R. G. J. Appl. Phys. 1992, 71, 880–890; https://doi.org/10.1063/1.351309.Search in Google Scholar
23. Tan, S. T., Chen, B. J., Sun, X. W., Hu, X. W., Zhang, X. H., Chua, S. J. J. Cryst. Growth 2005, 98, 013505; https://doi.org/10.1063/1.1940137.Search in Google Scholar
24. Abed, C., Fernandez, S., Aouida, S., Elhouichet, H., Priego, F., Castro, Y., Gomez-Mancebo, M. B., Munuera, C. Materials 2020, 13, 1–12; https://doi.org/10.3390/ma13092146.Search in Google Scholar PubMed PubMed Central
25. Nithya Sree, D., Paul Mary Deborrah, S., Gopinathan, C., Inbanathan, S. S. R. Appl. Surf. Sci. 2019, 499, 116–123; https://doi.org/10.1016/j.apsusc.2019.07.091.Search in Google Scholar
26. Cembrero, J., Elmanouni, A., Hartiti, B., Mollar, M., Mari, B. Thin Solid Films 2004, 451, 198–202; https://doi.org/10.1016/j.tsf.2003.10.119.Search in Google Scholar
27. Dilawar Ali, M. Z., Butt, I., Muneer, M. A., Farrukh, M., Aftab, M., Saleem, F., Bashir, A. V., Khan, A. U. Thin Solid Films 2019, 679, 86–98; https://doi.org/10.1016/j.tsf.2019.04.017.Search in Google Scholar
28. Ata, S., Bano, S., Bibi, I., Alwadai, N., Mohsin, I. U., Huwayz, M. A., Iqbal, M., Nazir, A. Z. Phys. Chem. 2023, 237, 67–86; https://doi.org/10.1515/zpch-2022-0086.Search in Google Scholar
29. Humayun, M., Ullah, H., Cheng, Z.-E., Tahir, A. A., Luo, W., Wang, C.. Appl. Catal. B Environ. 2022, 310, 121322; https://doi.org/10.1016/j.apcatb.2022.121322.Search in Google Scholar
30. Humayun, M., Ullah, H., Shu, L., Ao, X., Tahir, A. A., Wang, C., Luo, W. Nano-Micro Lett. 2021, 13, 209; https://doi.org/10.1007/s40820-021-00736-x.Search in Google Scholar PubMed PubMed Central
31. Humayun, M., Ullah, H., Cao, J., Pi, W., Yuan, Y., Ali, S., Tahir, A. A., Yue, P., Khan, A., Zheng, Z., Fu, Q., Luo, W. Nano-Micro Lett. 2020, 12, 1–18.10.1007/s40820-019-0345-2Search in Google Scholar PubMed PubMed Central
32. Ullah, H., Tahir, A. A., Bibi, S., Mallick, T. K., Karazhanov, S. Z. Appl. Catal. B 2018, 229, 24–31; https://doi.org/10.1016/j.apcatb.2018.02.001.Search in Google Scholar
33. Danks, A. E., Hall, S. R., Schnepp, Z. Mater. Horiz. 2016, 3, 91–112; https://doi.org/10.1039/c5mh00260e.Search in Google Scholar
34. Liu, Y., He, T., Chen, D., Yang, H., Ferguson, I. T., Huang, D., Feng, Z. C. J. Alloys Compd. 2020, 848, 156631; https://doi.org/10.1016/j.jallcom.2020.156631.Search in Google Scholar
35. Rusli, N. A., Muhammad, R., Ghoshal, S. K., Nur, H., Nayan, N. Mater. Res. Express 2020, 7, 056406; https://doi.org/10.1088/2053-1591/ab9039.Search in Google Scholar
36. Bouzouraa, M. B., Battie, Y., Dalmasso, S., Zaibi, M. A., Oueslati, M., En Naciri, A. Superlattices Microstruct. 2018, 117, 457–468; https://doi.org/10.1016/j.spmi.2018.03.078.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Synergistic enhancement of electrochemical supercapacitor efficiency via Co3O4/GO composite electrode
- Impact of annealing temperature on the structural, morphological and optical properties of Ni doped ZnO nanostructured thin films synthesized by sol–gel methodology
- Comparison of different iron oxides for degradation of tetracycline anti-bacterial drug
- Structural and electrical properties of mol% (100 − x)Li2SO4:xP2O5 solid electrolyte system (0 ≤ x ≤ 20)
- Microwave synthesis of magnesium phosphate-rGO as an effective electrode for supercapacitor application
- Adsorptive removal of Cu(II) ions from aqueous solution using Teff (Eragrostis tef) hay based magnetized biocarbon: RSM-GA, ANN based optimization and kinetics aspects
- Efficiency assessment of hydrothermally synthesized Mn2+/3+ modified LaCoO3 nanoparticles for advanced wastewater remediation
- Synthesis of BaO/NiO/rGO nanocomposite for supercapacitor application
- Ethanedithiol-modified silica nanoparticles for selective removal of Hg2+ ions from aqueous wastewater
- Effect of Zr substitution on photocatalytic and magnetic properties of lanthanum titanate
- Investigations on the microbial activity and anti-corrosive efficiency of nickel oxide nanoparticles synthesised through green route
- Multifunctional application of different iron oxide nanoparticles
- Effect of pH in the bismuth vanadate nanorods for their supercapacitor applications
- Maximizing biogas production from leftover injera: influence of yeast addition to anaerobic digestion system
- Synthesis, characterization and efficient photo-catalytic performance of methylene blue by Zn doped SnO2 nanoparticles
- Enhancing performance: insights into the augmentation potential of acrylonitrile butadiene styrene/boron nitride composites
Articles in the same Issue
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Synergistic enhancement of electrochemical supercapacitor efficiency via Co3O4/GO composite electrode
- Impact of annealing temperature on the structural, morphological and optical properties of Ni doped ZnO nanostructured thin films synthesized by sol–gel methodology
- Comparison of different iron oxides for degradation of tetracycline anti-bacterial drug
- Structural and electrical properties of mol% (100 − x)Li2SO4:xP2O5 solid electrolyte system (0 ≤ x ≤ 20)
- Microwave synthesis of magnesium phosphate-rGO as an effective electrode for supercapacitor application
- Adsorptive removal of Cu(II) ions from aqueous solution using Teff (Eragrostis tef) hay based magnetized biocarbon: RSM-GA, ANN based optimization and kinetics aspects
- Efficiency assessment of hydrothermally synthesized Mn2+/3+ modified LaCoO3 nanoparticles for advanced wastewater remediation
- Synthesis of BaO/NiO/rGO nanocomposite for supercapacitor application
- Ethanedithiol-modified silica nanoparticles for selective removal of Hg2+ ions from aqueous wastewater
- Effect of Zr substitution on photocatalytic and magnetic properties of lanthanum titanate
- Investigations on the microbial activity and anti-corrosive efficiency of nickel oxide nanoparticles synthesised through green route
- Multifunctional application of different iron oxide nanoparticles
- Effect of pH in the bismuth vanadate nanorods for their supercapacitor applications
- Maximizing biogas production from leftover injera: influence of yeast addition to anaerobic digestion system
- Synthesis, characterization and efficient photo-catalytic performance of methylene blue by Zn doped SnO2 nanoparticles
- Enhancing performance: insights into the augmentation potential of acrylonitrile butadiene styrene/boron nitride composites