Home Physical Sciences Ethanedithiol-modified silica nanoparticles for selective removal of Hg2+ ions from aqueous wastewater
Article
Licensed
Unlicensed Requires Authentication

Ethanedithiol-modified silica nanoparticles for selective removal of Hg2+ ions from aqueous wastewater

  • Anandhu Mohan , Munusamy Ashwini , Madhappan Santhamoorthy , Kokila Thirupathi , Ranganathan Suresh , Loganathan Guganathan , Natarajan Arumugam , Abdulrahman I. Almansour , Mei-Ching Lin , Seong-Cheol Kim , Keerthika Kumarasamy EMAIL logo and Thi Tuong Vy Phan EMAIL logo
Published/Copyright: May 23, 2024

Abstract

A mesoporous silica nanoparticle was synthesized by incorporating (3-glycidoxypropyl trimethoxysilane (GPTS)) via sol-gel co-condensation method using Pluronic P123 as structure directing agent and further reacted with ethanedithiol (ED) by post-surface modification process. To produce ethanedithiol-modified silica nanoparticles, approximately 20 wt% of GPTS was incorporated into the mesoporous silica pore walls by reacting tetraethyl orthosilicate and GPTS mixture (80:20 wt/wt%). Next, the ethanedithiol groups were introduced onto the silica surface by reacting with the epoxy part of GPTS and thiol groups of ED to produce the ED-modified-mesoporous silica adsorbent (MS-ED NPs) material. The synthesized MS-ED NPs show a high surface area, pore size, and mesopore volume of approximately 556 m2/g, 2.7 nm, and 0.052 cm3/g, respectively. The MS-ED NPs showed selective removal of mercury ions (Hg2+) ions from the aqueous solution in the presence of other competitive metal ions with an adsorption amount of ∼168 mg/g with a removal capacity of approximately >90 % from the initial metal ion solutions (100 mg/L). The produced MS-ED NPs can be reusable up to 5 times by treating the metal-adsorbed MS-ED NPs in an acidic (0.1 M HCl) aqueous solution. Hence, the MS-ED NPs could be utilized to selectively remove Hg2+ ions from aqueous wastewater.


Corresponding authors: Keerthika Kumarasamy, Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan, ROC, E-mail: ; and Thi Tuong Vy Phan, Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam; and Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam, E-mail:
Anandhu Mohan, Madhappan Santhamoorthy and Ranganathan Suresh contributed equally to this work.

Funding source: King Saud University

Award Identifier / Grant number: Unassigned

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A3052258). The project was funded by Researchers Supporting Project number (RSP2024R143), King Saud University, Riyadh, Saudi Arabia.

  1. Research ethics: Not applicable.

  2. Author contributions: Anandhu Mohan, Munusamy Ashwini, Madhappan Santhamoorthy, Kokila Thirupathi, Ranganathan Suresh, Loganathan Guganathan, Nataraj Arumugam, Seong-Cheol Kim: Conceptualization, Methodology, Characterization and data analysis, original draft writing. Abdulrahman I. Almansour, Mei-Ching Lin: Data curation and rearrangement, Draft revising., Thi Tuong Vy Phan, Keerthika Kumarasamy: Supervision, review, and editing.

  3. Competing interests: The authors have no conflicts to declare.

  4. Research funding: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A3052258). The project was funded by Researchers Supporting Project number (RSP2024R143), King Saud University, Riyadh, Saudi Arabia.

  5. Data availability: Data availability on request.

References

1. Ahmad, W., Alharthy, R. D., Zubair, M., Ahmed, M., Hameed, A., Rafique, S. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci. Rep. 2021, 11, 17006; https://doi.org/10.1038/s41598-021-94616-4.Search in Google Scholar PubMed PubMed Central

2. Abu Shmeis, R. M. Water chemistry and microbiology. Compr. Anal. Chem. 2018, 81, 1–56; https://doi.org/10.1016/bs.coac.2018.02.001.Search in Google Scholar

3. Custodio, M., Cuadrado, W., Peñaloza, R., Montalvo, R., Ochoa, S., Quispe, J. Human risk from exposure to heavy metals and arsenic in water from rivers with mining influence in the central Andes of Peru. Water 2018, 12, 1946; https://doi.org/10.3390/w12071946.Search in Google Scholar

4. Figueira, P., Lourenço, M., Pereira, E., Gomes, J. R. B., Ferreira, P., Lopesad, C. B. Periodic mesoporous organosilica with low thiol density – a safer material to trap Hg(II) from water. J. Environ. Chem. Eng. 2017, 5, 5043–5053; https://doi.org/10.1016/j.jece.2017.09.032.Search in Google Scholar

5. Chen, W., Guan, Y., Chen, Q., Ren, J., Xie, Y., Yin, J. The mark of Mercury(II) in living animals and plants through using a BODIPY-based near-infrared fluorescent probe. Dyes Pigm. 2022, 200, 110134; https://doi.org/10.1016/j.dyepig.2022.110134.Search in Google Scholar

6. Santhamoorthy, M., Mohan, A., Mani, K. S., Devendhiran, T., Periyasami, P., Kim, S. C., Lin, M. C., Kumarasamy, K., Huang, P. J., Ali, A. Synthesis of functionalized mesoporous silica nanoparticles for colorimetric and fluorescence sensing of selective metal (Fe3+) ions in aqueous solution. Methods 2024, 223, 26–34; https://doi.org/10.1016/j.ymeth.2024.01.010.Search in Google Scholar PubMed

7. Govindaraj, S., Ayyapan, S., Durai, P., Kandasamy, P., Guganathan, L., Santhamoorthy, M., Murugan, A., Suthakaran, S., Sathiyamurthy, S., Ayyar, M. A baseline study of temporal and spatial variations of physico-chemical variables in Vellar estuary Parangipettai southeast of India. Z. Phys. Chem. 2024, 238, 275–289; https://doi.org/10.1515/zpch-2023-0374.Search in Google Scholar

8. Ramkumar, V., Raorane, C. J., Christy, H. J., Anandhi, S., Santhamoorthy, M., Kamachiyappan, P., Ashokkumar, A., Balamurugan, S., Kim, S. C. Hydrogen-bonded keto-enol mechanized chalcone material for optical and antibiofilm applications. J. Mol. Struct. 2023, 1292, 136109; https://doi.org/10.1016/j.molstruc.2023.136109.Search in Google Scholar

9. Balakrishnan, C., Manonmani, M., Santhamoorthy, M., Vinitha, G., Meenakshisundaram, S. P. Synthesis, crystal structure, and third-order NLO properties of a new supramolecular cocrystals of 18-crown-6 with 5-amino-2,4,6-triiodoisophthalic acid. J. Mater. Sci.: Mater. Electron. 2023, 34, 2202; https://doi.org/10.1007/s10854-023-11635-9.Search in Google Scholar

10. Mohan, A., Suresh, R., Ashwini, A., Periyasami, G., Guganathan, L., Lin, M. C., Kumarasamy, K., Kim, S. C., Santhamoorthy, M. Alginate functionalized magnetic-silica composites for pH-responsive drug delivery and magnetic hyperthermia applications. Mater. Lett. 2024, 362, 136088; https://doi.org/10.1016/j.matlet.2024.136088.Search in Google Scholar

11. Mohan, A., Santhamoorthy, M., Lee, Y. C. Recent advances in the pH-responsive organic–inorganic mesoporous hybrid silica for targeted drug delivery. Eur. Polym. J. 2024, 206, 112783; https://doi.org/10.1016/j.eurpolymj.2024.112783.Search in Google Scholar

12. Balakrishnan, C., Manonmani, M., Santhamoorthy, M., Rajasekar, M., Vinitha, G., Meenakshisundaram, S. P. Supramolecular structure of bis(1-methyl-1,3,5,7-tetraazatricyclo[3.3.1.13, 7]decan-1-ium)2,5-dicarboxybenzene-1,4-dicarboxylate: synthesis, spectral, structural and third-order nonlinear optical properties. J. Mol. Struct. 2024, 1296, 136822; https://doi.org/10.1016/j.molstruc.2023.136822.Search in Google Scholar

13. Hao, N., Han, L., Yang, Y., Wang, H., Webley, P. A., Zhao, D. A metal-ion-assisted assembly approach to synthesize disulfide-bridged periodical mesoporous organosilicas with high sulfide contents and efficient adsorption. Appl. Surf. Sci. 2010, 256, 5334–5342; https://doi.org/10.1016/j.apsusc.2009.12.073.Search in Google Scholar

14. Parambadath, S., Rana, V. K., Moorthy, S., Chu, S. W., Park, S. K., Lee, D., Sung, G., Ha, C. S. Periodic mesoporous organosilicas with co-existence of diurea and sulfanilamide as an effective drug delivery carrier. J. Solid State Chem. 2011, 184, 1208–1215; https://doi.org/10.1016/j.jssc.2011.03.003.Search in Google Scholar

15. Moorthy, M. S., Park, S. S., Fuping, D., Hong, S. H., Selvaraj, M., Ha, C. S. Step-up synthesis of amidoxime-functionalised periodic mesoporous organosilicas with an amphoteric ligand in the framework for drug delivery. J. Mater. Chem. 2012, 22, 9100–9108; https://doi.org/10.1039/c2jm16341a.Search in Google Scholar

16. Sana, S. S., Santhamoorthy, M., Haldar, R., Raorane, C. J., Iravani, S., Varma, R. S., Kim, S. C. Recent advances on MXene-based hydrogels for antibacterial and drug delivery applications. Process Biochem. 2023, 132, 200–220; https://doi.org/10.1016/j.procbio.2023.06.022.Search in Google Scholar

17. Santhamoorthy, M., Ramkumar, V., Thirupathi, K., Gnanasekaran, L., Karuppannan, V., Phan, T. T. V., Kim, S. C. L-Lysine functionalized mesoporous silica hybrid nanoparticles for pH-responsive delivery of curcumin. Pharmaceutics 2023, 15, 1631; https://doi.org/10.3390/pharmaceutics15061631.Search in Google Scholar PubMed PubMed Central

18. Khire, V. S., Lee, T. Y., Bowman, C. N. Surface modification using Thiol−Acrylate conjugate addition reactions. Macromol 2007, 40, 5669–5677; https://doi.org/10.1021/ma070146j.Search in Google Scholar

19. Hancock, R. D., Marsicao, F. Parametric correlation of formation constants in aqueous solution. 1. Ligands with small donor atoms. Inorg. Chem. 1978, 17, 560–564; https://doi.org/10.1021/ic50181a009.Search in Google Scholar

20. Moorthy, M. S., Cho, H. J., Yu, E. J., Jung, Y. S., Ha, C. S. A modified mesoporous silica optical nanosensor for selective monitoring of multiple analytes in water. Chem. Commun. 2013, 49, 8758–8760; https://doi.org/10.1039/c3cc42513d.Search in Google Scholar PubMed

21. Nagappan, S., Choi, M. C., Sung, G., Park, S. S., Moorthy, S. M., Chu, S. W., Lee, W. K., Ha, C. S. Highly transparent, hydrophobic fluorinated polymethylsiloxane/silica organic-inorganic hybrids for anti-stain coating. Macromol. Res. 2013, 21, 669–680; https://doi.org/10.1007/s13233-013-1069-7.Search in Google Scholar

22. Moorthy, M. S., Seo, D. J., Song, H. J., Park, S. S., Ha, C. S. Magnetic mesoporous silica hybrid nanoparticles for highly selective boron adsorption. J. Mater. Chem. A 2013, 1, 12485–12496; https://doi.org/10.1039/c3ta12553j.Search in Google Scholar

23. Zhou, C., Zhu, H., Wang, Q., Wang, J., Cheng, J., Guo, Y., Zhou, X., Bai, R. Adsorption of mercury(ii) with an Fe3O4 magnetic polypyrrole–graphene oxide nanocomposite. RSC Adv. 2017, 7, 18466–18479; https://doi.org/10.1039/c7ra01147d.Search in Google Scholar

24. Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., Wang, H., Ok, Y. S., Jiang, Y., Gao, B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chem. Eng. J. 2019, 15, 608–621; https://doi.org/10.1016/j.cej.2019.02.119.Search in Google Scholar PubMed PubMed Central

25. Moorthy, M. S., Tapaswi, P. T., park, S. S., Mathew, A., Cho, H. J., Ha, C. S. Ion-imprinted mesoporous silica hybrids for selective recognition of target metal ions. Microporous Mesoporous Mater. 2013, 180, 162–171; https://doi.org/10.1016/j.micromeso.2013.06.010.Search in Google Scholar

26. Phan, T. T. V., Santhamoorthy, M. Preparation of dual pH-and temperature-sensitive nanogels for curcumin delivery. Mater. Today: Proc. 2023, 14, 71.10.3390/IOCN2023-14468Search in Google Scholar

27. Santhamoorthy, M., Thirupathi, K., Krishnan, S., Guganathan, L., Dave, S., Phan, T. T. V., Kim, S. C. Preparation of magnetic iron oxide incorporated mesoporous silica hybrid composites for pH and temperature-sensitive drug delivery. Magnetochemistry 2023, 9, 81; https://doi.org/10.3390/magnetochemistry9030081.Search in Google Scholar

28. Thirupathi, T., Santhamoorthy, M., Radhakrishnan, S., Ulagesan, S., Nam, T. J., Phan, T. T. V., Kim, S. C. Thermosensitive polymer-modified mesoporous silica for pH and temperature-responsive drug delivery. Pharmaceutics 2023, 15, 795; https://doi.org/10.3390/pharmaceutics15030795.Search in Google Scholar PubMed PubMed Central

29. Moorthy, M. S., Kim, M. J., Bae, H. J., Park, S. S., Saravanan, N., Kim, S. H., Ha, C. S. Multifunctional periodic mesoporous organosilicas for biomolecule recognition, biomedical applications in cancer therapy, and metal adsorption. Eur. J. Inorg. Chem. 2013, 2013, 3028–3038; https://doi.org/10.1002/ejic.201300118.Search in Google Scholar

30. Moorthy, M. S., Song, H. J., Bae, J. H., Kim, S. H., Ha, C. S. Red fluorescent hybrid mesoporous organosilicas for simultaneous cell imaging and anticancer drug delivery. RSC Adv. 2014, 4, 43342–43345; https://doi.org/10.1039/c4ra08204d.Search in Google Scholar

31. Tapaswi, P. K., Moorthy, M. S., Park, S. S., Ha, C. S. Fast, selective adsorption of Cu2+ from aqueous mixed metal ions solution using 1,4,7-triazacyclononane modified SBA-15 silica adsorbent (SBA-TACN). J. Solid State Chem. 2014, 211, 191–199; https://doi.org/10.1016/j.jssc.2013.12.028.Search in Google Scholar

32. Vivero-Escoto, J. L., Carboni, M., Abney, C. W., deKrafft, K. E., Lin, W. Organo-functionalized mesoporous silicas for efficient uranium extraction. Microporous Mesoporous Mater. 2013, 180, 22–31; https://doi.org/10.1016/j.micromeso.2013.05.030.Search in Google Scholar

33. Manoj, D., Rajendran, S., Naushad, M., Santhamoorthy, M., Gracia, F., Moscoso, M. S., Gracia-Pinilla, M. A. Mesoporogen free synthesis of CuO/TiO2 heterojunction for ultra-trace detection of catechol in water samples. Environ. Res. 2023, 216, 114428; https://doi.org/10.1016/j.envres.2022.114428.Search in Google Scholar PubMed

34. Thirupathi, K., Raorane, C. J., Ramkumar, V., Ulagesan, S., Santhamoorthy, M., Raj, V., Krishnakumar, G. S., Phan, T. T. V., Kim, S. C. Update on chitosan-based hydrogels: preparation, characterization, and its antimicrobial and antibiofilm applications. Gels 2022, 9, 35; https://doi.org/10.3390/gels9010035.Search in Google Scholar PubMed PubMed Central

35. Moorthy, M. S., Park, S. S., Mathew, A., Lee, S. H., Lee, W. K., Ha, C. S. Amidoxime Functionalized SBA-15 for Selective Adsorption of Li+ ions. Sci. Adv. Mater. 2014, 6, 1611-1617; https://doi.org/10.1166/sam.2014.1819.Search in Google Scholar

36. Moorthy, M. S., Kim, H. B., Sung, A. R., Bae, J. H., Kim, S. H., Ha, C. S. Fluorescent mesoporous organosilicas for selective monitoring of Hg2+ and Fe3+ ions in water and living cells. Microporous Mesoporous Mater.s 2014, 194, 219–228; https://doi.org/10.1016/j.micromeso.2014.03.043.Search in Google Scholar

37. Park, S. S., Moorthy, M. S., Song, H. J., Ha, C. S. Functionalized mesoporous silicas with crown ether moieties for selective adsorption of lithium ions in artificial sea water. J. Nanosci. Nanotechnol. 2014, 14, 8845–8851; https://doi.org/10.1166/jnn.2014.9956.Search in Google Scholar

38. Bharathiraja, S., Manivasagan, P., Oh, Y., Moorthy, M. S., Seo, H., Bui, N. Q., Oh, J. Astaxanthin conjugated polypyrrole nanoparticles as a multimodal agent for photo-based therapy and imaging. Int. J. Pharm. 2017, 517, 216–225; https://doi.org/10.1016/j.ijpharm.2016.12.020.Search in Google Scholar PubMed

39. Moorthy, M. S., Bharathiraja, S., Manivasagan, P., Lee, K. D., Oh, J. Crown ether triad modified core–shell magnetic mesoporous silica nanocarrier for pH-responsive drug delivery and magnetic hyperthermia applications. New J. Chem. 2017, 41, 10935–10947; https://doi.org/10.1039/c7nj02432k.Search in Google Scholar

40. Ulagesan, S., Santhamoorthy, M., Phan, T. T. V., Alagumalai, K., Thirupathi, K., Kim, S. C., Nam, T. J., Choi, Y. H. Mesoporous silica (SBA-15) with enriched amidoxime functionalities for pH-controlled anticancer drug delivery. Inorg. Chem. Commun. 2022, 146, 110132; https://doi.org/10.1016/j.inoche.2022.110132.Search in Google Scholar

41. Kavitha, R. J., Thiagarajan, C., Priya, P. I., Anand, A. V., Al-Ammar, E. A., Santhamoorthy, M., Chandramohan, P. Improved Harris Hawks optimization with hybrid deep learning based heating and cooling load prediction on residential buildings. Chemosphere 2022, 309, 136525; https://doi.org/10.1016/j.chemosphere.2022.136525.Search in Google Scholar PubMed

42. Manoj, D., Rajendran, S., Gracia, F., Ansar, S., Santhamoorthy, M., Soto-Moscoso, M., Gracia-Pinilla, M. A. Improving the sensitivity for hydrogen peroxide determination with active V2O5 nanocubes incorporated on mesoporous TiO2. Environ. Res. 2022, 215, 114427; https://doi.org/10.1016/j.envres.2022.114427.Search in Google Scholar PubMed

43. Guganathan, L., Rajeevgandhi, R., Sathiyamurthy, K., Thirupathi, K., Santhamoorthy, M., Chinnasamy, E., Raorane, C. J., Raj, V., Kim, S. C., Anand, P. Magnetic application of gadolinium orthoferrite nanoparticles synthesized by sol–gel auto-combustion method. Gels 2022, 8, 688; https://doi.org/10.3390/gels8110688.Search in Google Scholar PubMed PubMed Central

44. Venkatesan, R., Santhamoorthy, M., Alagumalai, K., Haldhar, R., Raorane, C. J., Raj, V., Kim, S. C. Novel approach in biodegradation of synthetic thermoplastic polymers: an overview. Polymers 2022, 14, 4271; https://doi.org/10.3390/polym14204271.Search in Google Scholar PubMed PubMed Central

45. Gnanasekaran, L., Santhamoorthy, M., Naushad, M., ALOthman, G. A., Soto-Moscoso, M., Show, P. L., Khoo, K. S. Photocatalytic removal of food colorant using NiO/CuO heterojunction nanomaterials. Food Chem. Toxicol. 2022, 167, 113277; https://doi.org/10.1016/j.fct.2022.113277.Search in Google Scholar PubMed

46. Manoj, D., Rajendran, S., Gracia, F., Naushad, M., Santhamoorthy, M., Soto-Moscoso, M., Gracia-Pinilla, M. A. Engineering ZnO nanocrystals anchored on mesoporous TiO2 for simultaneous detection of vitamins. Biochem. Eng. J. 2022, 186, 108585; https://doi.org/10.1016/j.bej.2022.108585.Search in Google Scholar

47. Manikandan, A., Dhanalakshmi, M., Guganathan, L., Kokila, T., Santhamoorthy, M., Markkandan, R., Kim, S. C., Balakrishnan, C. Synthesis, structural characterization and Hirshfeld surface analysis of CH···O hydrogen-bonded supramolecular complexes of 18-crown-6 with imidazolinium derivatives. J. Mol. Struct. 2022, 1254, 132395.10.1016/j.molstruc.2022.132395Search in Google Scholar

48. Thirukumaran, P., Atchudan, R., Parveen, A. S., Santhamoorthy, M., Ramkumar, V., Kim, S. C. N-doped mesoporous carbon prepared from a polybenzoxazine precursor for high performance supercapacitors. Polymers 2021, 13, 2048; https://doi.org/10.3390/polym13132048.Search in Google Scholar PubMed PubMed Central

49. Santhamoorthy, M., Bae, J. H., Kim, M. J., Kim, S. H., Ha, C. S. Synthesis of dual-stimuli-responsive microcontainers with two payloads in different storage spaces for preprogrammable release. Part. Part. Syst. Charact. 2013, 12, 1044; https://doi.org/10.1002/ppsc.201300164.Search in Google Scholar

Received: 2024-02-04
Accepted: 2024-03-08
Published Online: 2024-05-23
Published in Print: 2025-02-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Contributions to “Materials for solar water splitting”
  3. Synergistic enhancement of electrochemical supercapacitor efficiency via Co3O4/GO composite electrode
  4. Impact of annealing temperature on the structural, morphological and optical properties of Ni doped ZnO nanostructured thin films synthesized by sol–gel methodology
  5. Comparison of different iron oxides for degradation of tetracycline anti-bacterial drug
  6. Structural and electrical properties of mol% (100 − x)Li2SO4:xP2O5 solid electrolyte system (0 ≤ x ≤ 20)
  7. Microwave synthesis of magnesium phosphate-rGO as an effective electrode for supercapacitor application
  8. Adsorptive removal of Cu(II) ions from aqueous solution using Teff (Eragrostis tef) hay based magnetized biocarbon: RSM-GA, ANN based optimization and kinetics aspects
  9. Efficiency assessment of hydrothermally synthesized Mn2+/3+ modified LaCoO3 nanoparticles for advanced wastewater remediation
  10. Synthesis of BaO/NiO/rGO nanocomposite for supercapacitor application
  11. Ethanedithiol-modified silica nanoparticles for selective removal of Hg2+ ions from aqueous wastewater
  12. Effect of Zr substitution on photocatalytic and magnetic properties of lanthanum titanate
  13. Investigations on the microbial activity and anti-corrosive efficiency of nickel oxide nanoparticles synthesised through green route
  14. Multifunctional application of different iron oxide nanoparticles
  15. Effect of pH in the bismuth vanadate nanorods for their supercapacitor applications
  16. Maximizing biogas production from leftover injera: influence of yeast addition to anaerobic digestion system
  17. Synthesis, characterization and efficient photo-catalytic performance of methylene blue by Zn doped SnO2 nanoparticles
  18. Enhancing performance: insights into the augmentation potential of acrylonitrile butadiene styrene/boron nitride composites
Downloaded on 19.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2024-0605/html
Scroll to top button