Startseite Role of the thermal regime in the defect formation of zinc oxide nanostructures prepared by the thermal decomposition process
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Role of the thermal regime in the defect formation of zinc oxide nanostructures prepared by the thermal decomposition process

  • Panuwat Katekaew , Anurak Prasatkhetragarn , Reungruthai Sirirak , Chatdanai Boonruang und Arrak Klinbumrung EMAIL logo
Veröffentlicht/Copyright: 12. Juli 2023

Abstract

The intrinsic defect of ZnO depicts a crucial role in the charge transfer owing to the suppression of the exciton recombination, exhibiting superior semiconducting performance. In this study, the intrinsic defect of ZnO nanostructures prepared by direct thermal activation of 300–900 °C was investigated. X-ray diffraction (XRD) was employed to analyze phase, crystallite size, Zn–O bond length, and dislocation density. The relation of Williamson–Hall (W–H) was used to calculate crystallite size and micro-strain. The atomic coordination was approximated through the Rietveld method. Morphology and crystal growth investigation was carried on by scanning electron microscope (SEM) and tunneling electron microscope (TEM), exhibiting rod-like nanostructures transform to oval shape particle with high residual strain when increasing calcination temperature, exhibiting the crystal growth direction of (101). Specific surface and pore analysis reveals a significant value corresponding to SEM analysis. Fourier transform infrared spectroscopy (FT-IR) detected Zn–O stretching vibration bands, presenting a notable increase in the intensity when heat at 600 °C. Relating to the thermal regime, energy bandgap (Eg) was found to be 3.41–3.50 eV as increasing heat treatment temperatures. Photoluminescence (PL) was applied to determine intrinsic defects through emissive spectra. The surface charge was determined through the zeta potential measurement. The photo-induced dye degradation was measured to understand the effect of the defect in semiconductors. The X-ray photoelectron spectroscopy (XPS) confirms the wurtzite structure appearance, including the intrinsic defects. The observed intrinsic defects are discussed, associating with the structural constants, emissive spectra, cationic dye degradation, and binding energy.


Corresponding author: Arrak Klinbumrung, Unit of Excellence on Advanced Materials for Sensors, University of Phayao, Phayao, Thailand; and School of Science, University of Phayao, Phayao, Thailand, E-mail:

Funding source: Chiang Mai University

Award Identifier / Grant number: Unassigned

Acknowledgments

The authors would like to thank the Unit of Excellence on Advanced Materials for Sensors and Scientific Instrument and Product Standard Quality Inspection Center (SIPQC), University of Phayao and Center of Excellence in Materials Science and Technology, Chiang Mai University for general support to this work.

  1. Author contribution: Panuwat Katekaew: Methodology, Formal analysis, Writing – drafting. Reungruthai Sirirak: Formal analysis. Anurak Prasatkhetragarn: Formal analysis. Chatdanai Boonruang: XPS analysis. Arrak Klinbumrung: Conceptualization, Methodology, Formal analysis, Writing – review & editing.

  2. Research funding: This work was funded by the School of Science, University of Phayao (Grant No. PBTSC64027).

  3. Data availability statement: The data presented in this study are available on request from the corresponding author.

  4. Conflict of interest: The authors declare no conflict of interest.

  5. Ethical approval: The work does not require ethical approval as no experiments involving human tissue were performed.

References

1. Nadupalli, S., Repp, S., Weber, S., Erdem, E. About defect phenomena in ZnO nanocrystals. Nanoscale 2021, 13, 9160–9171. https://doi.org/10.1039/D1NR00943E.Suche in Google Scholar

2. Das, D., Mondal, P. Low temperature grown ZnO:Ga films with predominant c-axis orientation in wurtzite structure demonstrating high conductance, transmittance and photoluminescence. RSC Adv. 2016, 6, 6144–6153. https://doi.org/10.1039/C5RA22288E.Suche in Google Scholar

3. Zeng, H., Duan, G., Li, Y., Yang, S., Xu, X., Cai, W. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Adv. Funct. Mater. 2018, 20, 561–572. https://doi.org/10.1002/adfm.200901884.Suche in Google Scholar

4. Sandeep, K. M., Bhat, S., Dharmaprakash, S. M. Structural, optical, and LED characteristics of ZnO and Al doped ZnO thin films. J. Phys. Chem. Solids 2017, 104, 36–44. https://doi.org/10.1016/j.jpcs.2017.01.003.Suche in Google Scholar

5. Liu, K., Sakurai, M., Aono, M. ZnO-based ultraviolet photodetectors. Sensors 2010, 9, 8604–8634. https://doi.org/10.3390/s100908604.Suche in Google Scholar PubMed PubMed Central

6. Mondal, P., Das, D. Further improvements in conducting and transparent properties of ZnO:Ga films with perpetual c-axis orientation: materials optimization and application in silicon solar cells. Appl. Surf. Sci. 2017, 411, 315–320. https://doi.org/10.1016/j.apsusc.2017.03.171.Suche in Google Scholar

7. Sinha, M., Mahapatra, R., Mondal, B., Maruyama, T., Ghosh, R. Ultrafast and reversible gas-sensing properties of ZnO nanowire arrays grown by hydrothermal technique. J. Phys. Chem. C 2016, 120, 3019–3025. https://doi.org/10.1021/acs.jpcc.5b11012.Suche in Google Scholar

8. Wang, Z. L. Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter 2004, 16. https://doi.org/10.1088/0953-8984/16/25/R01.Suche in Google Scholar

9. Nandi, P., Das, D. Photocatalytic degradation of rhodamine -B dye by stable ZnO nanostructures with different calcination temperature induced defects. Appl. Surf. Sci. 2018, 465, 546–556. https://doi.org/10.1016/j.apsusc.2018.09.193.Suche in Google Scholar

10. Kayaci, F., Vempati, S., Akgun, C. O., Biyikli, N., Uyar, T. Enhanced photocatalytic activity of homoassembled ZnO nanostructures on electrospun polymeric nanofibers: a combination of atomic layer deposit. Appl. Catal. B. 2014, 156–157, 173–183. https://doi.org/10.1016/j.apcatb.2014.03.004.Suche in Google Scholar

11. Erdem, E. Microwave power, temperature, atmospheric and light dependence of intrinsic defects in ZnO nanoparticles: a study of electron paramagnetic resonance (EPR) spectroscopy. J. Alloys Compd. 2014, 605, 34–44. https://doi.org/10.1016/j.jallcom.2014.03.157.Suche in Google Scholar

12. Najib, S., Bakan, F., Abdullayeva, N., Bahariqushchi, R., Kasap, S., Franzò, G., Sankir, M., Sankir, N. D., Mirabella, S., Erdem, E. Tailoring morphology to control defect structures in ZnO electrodes for high-performance supercapacitor devices. Nanoscale 2022, 12, 16162–16172. https://doi.org/10.1039/D0NR03921G.Suche in Google Scholar PubMed

13. Janotti, A., Van de Walle, C. G. Oxygen vacancies in ZnO. Appl. Phys. Lett. 2005, 87, 122102. https://doi.org/10.1063/1.2053360.Suche in Google Scholar

14. Kumaresan, N., Ramamurthi, K., Babu, R., Sethuraman, K., Babu, S. M. Hydrothermally grown ZnO nanoparticles for effective photocatalytic activity. Appl. Surf. Sci. A 2007, 418, 138–146. https://doi.org/10.1016/j.apsusc.2016.12.231.Suche in Google Scholar

15. Baruah, S., Dutta, J. Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 2009, 10, 013001. https://doi.org/10.1088/1468-6996/10/1/013001.Suche in Google Scholar PubMed PubMed Central

16. Znaidi, L. Sol–gel-deposited ZnO thin films: a review. Mater. Sci. Eng. B 2010, 174, 18–30. https://doi.org/10.1016/j.mseb.2010.07.001.Suche in Google Scholar

17. Boughelout, A., Macaluso, R., Kechouane, M., Trari, M. Photocatalysis of rhodamine B and methyl orange degradation under solar light on ZnO and Cu2O thin films. React. Kinet. Mech. Catal. 2020, 129, 1115–1130. https://doi.org/10.1007/s11144-020-01741-8.Suche in Google Scholar

18. Thankappan, A., Thomas, S. Structural and spectral characterization of ZnO nanowires by thermal decomposition method - a comparative study. Braz. J. Phys. 2022, 52. https://doi.org/10.1007/s13538-022-01116-5.Suche in Google Scholar

19. Lin, C.-C., Li, Y.-Y. Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dihydrate. Mater. Chem. Phys. 2009, 113, 334–337. https://doi.org/10.1016/j.matchemphys.2008.07.070.Suche in Google Scholar

20. Mishra, K., Srivastava, S., Srivastava, S. K., Panday, R., Prakash, A. Photoluminescence and ultraviolet photoresponse in ZnO nanophorsphors prepared by thermal decomposition of zinc acetate. Adv. Mater. Lett. 2011, 4, 298–302. https://doi.org/10.5185/amlett.indias.210.Suche in Google Scholar

21. Makal, P., Das, D. Self-doped TiO2 nanowires in TiO2-B single phase, TiO2-B/anatase and TiO2-anatase/rutile heterojunctions demonstrating individual superiority in photocatalytic activity under visible and UV light. Appl. Surf. Sci. 2018, 455, 1106–1115. https://doi.org/10.1016/j.apsusc.2018.06.055.Suche in Google Scholar

22. Chandraiahgari, C. R., Bellis, G., Ballirano, P., Balijepalli, S., Kaciulis, S., Caneve, L., Sarto, F., Sarto, M. S. Synthesis and characterization of ZnO nanorods with a narrow size distribution. RSC Adv. 2015, 5, 49861–49870. https://doi.org/10.1039/C5RA02631H.Suche in Google Scholar

23. Kumar, K., Chitkara, M., Sandhu, I. S., Mehta, D., Kumar, S. Photocatalytic, optical and magnetic properties of Fe-doped ZnO nanoparticles prepared by chemical route. J. Alloys Compd. 2014, 588, 681–689. https://doi.org/10.1016/j.jallcom.2013.11.127.Suche in Google Scholar

24. Cullity, B. D., Stock, S. R. Elements of X-Ray Diffraction, 3rd ed.; Prentice Hall: New Jersey, 2001.Suche in Google Scholar

25. Ashraf, R., Riaz, S., Kayani, Z., Naseem, S. Effect of calcination on properties of ZnO nanoparticles. Mater. Today: Proc. 2015, 10, 5468–5472. https://doi.org/10.1016/j.matpr.2015.11.071.Suche in Google Scholar

26. Kislov, N., Lahiri, J., Verma, H., Goswami, D. Y., Stefanakos, E., Batzill, M. Photocatalytic degradation of methyl orange over single crystalline ZnO: orientation dependence of photoactivity and photostability of ZnO. Langmui 2009, 25, 3310–3315. https://doi.org/10.1021/la803845f.Suche in Google Scholar PubMed

27. Bindu, P., Thomas, S. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. Theor. Appl. Phys. 2014, 8, 123–134. https://doi.org/10.1007/S40094-014-0141-9.Suche in Google Scholar

28. Bokuniaeva, A. O., Vorokh, A. S. Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. J. Phys.: Conf. Ser. 2019, 1, 012057. https://doi.org/10.1088/1742-6596/1410/1/012057.Suche in Google Scholar

29. Mornani, E. G., Mosayebian, P., Dorranian, D., Behzad, K. Effect of calcination temperature on the size and optical properties of synthesized ZnO nanoparticles. J. Ovonic Res. 2016, 2, 75–80.Suche in Google Scholar

30. Prabhu, Y. T., Rao, K. V. X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World J. Nano Sci. Eng. 2014, 2014, 21–28. https://doi.org/10.4236/wjnse.2014.41004.Suche in Google Scholar

31. Yathisha, R. O., Nayaka, Y. A., Manjunatha, P., Purushothama, H. T., Vinay, M. M., Basavarajappa, K. V. Study on the effect of Zn2+ doping on optical and electrical properties of CuO nanoparticles. Phys. E Low-dimens. Syst. Nanostruct. 2019, 108, 257–268. https://doi.org/10.1016/j.physe.2018.12.021.Suche in Google Scholar

32. Pearton, S. J., Norton, D. P., Heo, I. Y., Steiner, T. Recent progress in processing and properties of ZnO, progress in materials science. J. Vac. Sci. Technol. B. 2005, 22, 293–340. https://doi.org/10.1016/j.pmatsci.2004.04.001.Suche in Google Scholar

33. Barret, C. S., Massalski, F. B. Structure of metals. Cryst. Res. Technol. 1980, 9, 982. https://doi.org/10.1002/crat.19810160904.Suche in Google Scholar

34. Seetawan, U., Jugsujinda, S., Seetawan, T., Ratchasin, A., Euvananont, C., Junin, C., Thanachayanont, C., Chainaronk, P. Effect of calcinations temperature on crystallography and nanoparticles in ZnO disk. Mater. Sci. Appl. 2011, 2, 1302–1306. https://doi.org/10.1016/j.solidstatesciences.2011.06.007.Suche in Google Scholar

35. Rietveld, H. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 1967, 22, 151–152. https://doi.org/10.1107/S0365110X67000234.Suche in Google Scholar

36. Tripathia, S. K., Kaurb, R., Ranic, M. Oxide nanomaterials and their applications as a memristor. Solid State Phenom. 2015, 222, 67–97. https://doi.org/10.4028/www.scientific.net/SSP.222.67.Suche in Google Scholar

37. Toby, B. R factors in Rietveld analysis: how good is good enough? Powder Diffr. 2006, 1, 67–70. https://doi.org/10.1154/1.2179804.Suche in Google Scholar

38. Kruk, M., Jaronies, M. Gas adsorption characterization of orderedorganic-inorganic nanocomposite materials. Chem. Mater. 2001, 13, 3169–3183. https://doi.org/10.1021/cm0101069.Suche in Google Scholar

39. Lin, Z., Guo, F., Wang, C., Wang, X., Wang, K., Qu, Y. Preparation and sensing properties of hierarchical 3D assembled porous ZnO from zinc hydroxide carbonate. RSC Adv. 2014, 10, 5122–5129. https://doi.org/10.1039/C3RA45254A.Suche in Google Scholar

40. Soto-Robles, C. A., Luque, P. A., Gómez-Gutiérrez, C. M., Nava, O., Vilchis-Nestor, A. R., Lugo-Medina, E., Ranjithkumar, R., Castro-Beltrán, A. Study on the effect of the concentration of Hibiscus sabdariffa extract on the green synthesis of ZnO nanoparticles. Results Phys 2019, 15, 102807. https://doi.org/10.1016/j.rinp.2019.102807.Suche in Google Scholar

41. Hales, M. C., Frost, R. L. Synthesis and vibrational spectroscopic characterisation of synthetic hydrozincite and smithsonite. Polyhedron 2007, 17, 4955–4962. https://doi.org/10.1016/j.poly.2007.07.002.Suche in Google Scholar

42. Yusof, N. A. A., Zain, N. M., Pauzi, A. Synthesis of chitosan/zinc oxide nanoparticles stabilized by chitosan via microwave heating. Bull. Chem. React. Eng. Catal. 2019, 2, 450–458. https://doi.org/10.9767/bcrec.14.2.3319.450-458.Suche in Google Scholar

43. Rini, A. S., Rahayu, S., Hamzah, Y., Linda, T., Rati, Y. Effect of pH on the morphology and microstructure of ZnO synthesized using ananas comosus peel extract. J. Phys. Conf. Ser. 2019, 2021, 012100. https://doi.org/10.1088/1742-6596/2019/1/012100.Suche in Google Scholar

44. Talam, S., Karumuri, S. R., Gunnam, N. Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nano 2012, 2012, 1–6. https://doi.org/10.5402/2012/372505.Suche in Google Scholar

45. Zak, A. K., Razali, R., Majid, W. H., Darroudi, M. Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. Int. J. Nanomed. 2011, 6, 1399–1403. https://doi.org/10.2147/IJN.S19693.Suche in Google Scholar PubMed PubMed Central

46. Zak, A. K., Abrishami, M., Majid, W., Yousefi, R., Hosseini, S. Effect of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol-gel combustion method. Ceram. Int. 2011, 1, 393–398. https://doi.org/10.1016/j.ceramint.2010.08.017.Suche in Google Scholar

47. Burns, G. Solid State Physics; Academic Press: Orlando, 1985; pp. 765–775.Suche in Google Scholar

48. Berlin, I. J., Maneeshya, L. V., Thomas, J. K., Thomas, P. V., Joy, K. Enhancement of photoluminescence emission intensity of zirconia thin films via aluminum doping for the application of solid state lighting in light emitting diode. J. Lumin. 2012, 11, 3077–3081. https://doi.org/10.1016/j.jlumin.2012.06.027.Suche in Google Scholar

49. Prakash, T., Jayaprakash, R., Neri, G., Kumar, S. Synthesis of ZnO Nanostructures by microwave irradiation using albumen as a template. J. Nanoparticles 2013, 2013, 1–8. https://doi.org/10.1155/2013/274894.Suche in Google Scholar

50. Vempati, S., Mitra, J., Dawson, P. One-step synthesis of ZnO nanosheets: a blue-white fluorophore. Nanoscale Res. Lett. 2012, 7, 470. https://doi.org/10.1186/1556-276X-7-470.Suche in Google Scholar PubMed PubMed Central

51. Repp, S., Erdem, E. Controlling the exciton energy of zinc oxide (ZnO) quantum dots by changing the confinement conditions. Spectrochim. Acta Mol. Biomol. Spectrosc. 2016, 152, 1386–1425. https://doi.org/10.1016/j.saa.2015.01.110.Suche in Google Scholar PubMed

52. Sharma, P. K., Pandey, A. C., Zolnierkiewicz, G., Guskos, N., Rudowicz, C. Relationship between oxygen defects and the photoluminescence property of ZnO nanoparticles. J. Appl. Phys. 2009, 106, 094314. https://doi.org/10.1063/1.3256000.Suche in Google Scholar

53. Voss, T., Bekeny, C., Wischmeier, L., Gafsi, H., Börner, S., Schade, W., Mofor, A. C., Bakin, A., Waag, A. Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires. Appl. Phys. Lett. 2006, 89, 182107. https://doi.org/10.1063/1.2364146.Suche in Google Scholar

54. Reddy, A. J., Kokila, M. K., Nagabhushana, H., Rao, J. L., Shivakumara, C., Nagabhushana, B. M., Chakradhar, R. P. S. EPR, thermo and photoluminescence properties of ZnO nanopowders. Spectrochim. Acta A 2011, 81, 59–63. https://doi.org/10.1016/j.saa.2011.06.048.Suche in Google Scholar PubMed

55. Najib, S., Erdem, E. Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv. 2019, 1, 2817–2827. https://doi.org/10.1039/C9NA00345B.Suche in Google Scholar PubMed PubMed Central

56. Kasap, S., Kaya, I. I., Repp, S., Erdem, E. Superbat: battery-like supercapacitor utilized by graphene foam and zinc oxide (ZnO) electrodes induced by structural defects. Nanoscale Adv. 2019, 1, 2586–2597. https://doi.org/10.1039/C9NA00199A.Suche in Google Scholar

57. Sokol, A. A., French, S. A., Bromley, S. T., Catlow, C. R. A., van Dam, H. J., Sherwood, P. Point defects in ZnO. Faraday Discuss. 2007, 134, 267–282. https://doi.org/10.1039/B607406E.Suche in Google Scholar

58. Ye, J. D., Gu, S. L., Qin, F., Zhu, S. M., Liu, S. M., Zhou, X., Liu, W., Hu, L. Q., Zhang, R., Shi, Y., Zheng, Y. D. Correlation between green luminescence and morphology evolution of ZnO films. Appl. Phys. A 2005, 18, 759–762. https://doi.org/10.1007/s00339-004-2996-0.Suche in Google Scholar

59. Vlasenko, L., Watkins, G. D. Optical detection of electron paramagnetic resonance in room-temperature electron-irradiated ZnO. Phys. Rev. B 2005, 71, 125210. https://doi.org/10.1103/PHYSREVB.72.035203.Suche in Google Scholar

60. Li, D., Leung, Y. H., Djurusic, A. B., Xie, N. H., Chan, W. K. Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods. Appl. Phys. Lett. 2004, 85, 1601. https://doi.org/10.1117/12.614050.Suche in Google Scholar

61. Guo, H. L., Zhu, Q., Wu, X. L., Jiang, Y. F., Xie, X., Xu, A. W. Oxygen deficient ZnO1-x nanosheets with high visible light photocatalytic activity. Nanoscale 2015, 7, 7216–7223. https://doi.org/10.1039/C5NR00271K.Suche in Google Scholar PubMed

62. Degen, A., Kosec, M. Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. J. Eur. Ceram. Soc. 2000, 20, 667–673. https://doi.org/10.1016/S0955-2219(99)00203-4.Suche in Google Scholar

63. Matusiak, J., Grządka, E., Bastrzyk, A., Pasieczna-Patkowska, S. The influence of fucoidan on stability, adsorption and electrokinetic properties of ZnO and TiO2 suspensions. Appl. Nanosci. 2022, 12, 919–927. https://doi.org/10.1007/s13204-021-01760-4.Suche in Google Scholar

64. Kowalczyk, D., Kaminska, I. Effect of pH and surfactants on the electrokinetic properties of nanoparticles dispersions and their application to the PET fibres modification. J. Mol. Liq. 2020, 320, 114426. https://doi.org/10.1016/j.molliq.2020.114426.Suche in Google Scholar

65. Mukhopadhyay, S., Das, P., Maity, S., Ghosh, P., Devi, P. S. Solution grown ZnO rods: synthesis, characterization and defect mediated photocatalytic activity. Appl. Catal. B Environ. 2015, 165, 128–138. https://doi.org/10.1016/j.apcatb.2014.09.045.Suche in Google Scholar

66. Nguyen, C. H., Fu, C.-C., Juang, R.-S. Degradation of methylene blue and methyl orange by palladiumdoped TiO2 photocatalysis for water reuse: efficiency and degradation pathways. J. Clean. Prod. 2018, 202, 413–427. https://doi.org/10.1016/j.jclepro.2018.08.110.Suche in Google Scholar

67. Wang, H., Wang, C., Chen, Q., Ren, B., Guan, R., Cao, X., Yang, X., Duan, R. Interfacedefect- mediated photocatalysis of mesocrystalline ZnO assembly synthesized in-situ via a template-free hydrothermal approach. Appl. Surf. Sci. 2017, 412, 517–528. https://doi.org/10.1016/j.apsusc.2017.04.024.Suche in Google Scholar

68. Akir, S., Barras, A., Coffinier, Y., Bououdina, M., Boukherroub, R., Omrani, A. D. Eco-friendly synthesis of ZnO nanoparticles with different morphologies and their visible light photocatalytic performance for the degradation of Rhodamine B. Ceram. Int. 2016, 42, 10259–10265. https://doi.org/10.1016/j.ceramint.2016.03.15.Suche in Google Scholar

69. Wang, J., Jiang, Z., Zhang, Z., Xie, Y., Wang, X., Xing, Z., Xu, R., Zhang, X. Sonocatalytic degradation of acid red B and rhodamine B catalysed by nano-sized ZnO powder under ultrasonic irradiation. Ultrason. Sonochem. 2008, 15, 768–774. https://doi.org/10.1016/j.ultsonch.2008.02.002.Suche in Google Scholar PubMed

70. Chastain, J., King, R. C.Jr. Handbook of X-ray photoelectron spectroscopy; Perkin-Elmer Corporation: Waltham, 40, 1992; p. 221.Suche in Google Scholar

71. Syed, K., Krstulović, N., Casanova-Cháfer, J., Llobet, E., Güell, F., Martínez-Alanis, P. R., Marciuš, M., Shagieva, E., Ristić, D., Gebavi, H., Baran, N., Ivanda, M. The role of the pulsed laser deposition in different growth atmospheres on the gas-sensing properties of ZnO films. Sens. Actuators B Chem. 2023, 382, 133454. https://doi.org/10.1016/j.snb.2023.133454.Suche in Google Scholar

72. Kumar, V., Swart, H. C., Som, S., Yousif, A., Pandey, A., Shaat, S. K. K., Ntwaeaborwa, O. M. The role of growth atmosphere on the structural and optical quality of defect free ZnO films for strong ultraviolet emission. Laser Phys. 2014, 24, 105704. https://doi.org/10.1088/1054-660X/24/10/105704.Suche in Google Scholar

73. Kumar, R., Kumar, G., Umar, A. Pulse laser deposited nanostructured ZnO thin films: a review. J. Nanosci. Nanotechnol. 2014, 14, 1911–1930. https://doi.org/10.1166/jnn.2014.9120.Suche in Google Scholar PubMed

Received: 2023-03-31
Accepted: 2023-06-11
Published Online: 2023-07-12
Published in Print: 2023-08-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0235/html?srsltid=AfmBOopCOScLLEo2WgL-kbMm-M1JXvHkt2aMHUgmPpsZKEZHEFRXhSm9
Button zum nach oben scrollen