Home Investigating adsorptive potential of Raphanus caudatus leaves biomass for methyl orange dye: isotherm and kinetic study
Article
Licensed
Unlicensed Requires Authentication

Investigating adsorptive potential of Raphanus caudatus leaves biomass for methyl orange dye: isotherm and kinetic study

  • Khalida Naseem ORCID logo EMAIL logo , Muhammad Arif , Aneela Anwar , Sajjad Haider EMAIL logo and Muhammad Saeed Akhtar
Published/Copyright: June 13, 2023

Abstract

This study emphasis the removal of methyl orange (MO) from aqueous medium by Raphanus caudatus powdered leaves biomass. Functional groups involved in the removal of MO dye from aqueous medium by leave biomass were identified by Fourier transform infrared (FTIR) spectroscopy analysis. It was seen that removal of dye molecules from aqueous medium was affected by the change in adsorption condition such as adsorbent dose, agitation time and pH of the medium. Maximum adsorption capacity of Raphanus caudatus leave biomass powder for MO dye was found as 30.86 mg/g. Regression factor (R2) value indicates the best fitting of Langmuir isotherm model for the adsorption process. Amount of adsorption energy calculated by Dubinin-Radushkevich (DR) isotherm model illustrates the chemical bond formation between dye and biomass particles. Recyclability results depict that biomass showed good adsorption capacity value for MO up to 4th reusability cycle.


Corresponding authors: Khalida Naseem, Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan, E-mail: ; and Sajjad Haider, Chemical Engineering Department, College of Engineering, King Saud University, P.O.Box 800, Riyadh 11421, Saudi Arabia, E-mail:

  1. Research funding: The authors sincerely appreciate funding from Researchers Supporting Project number (RSP2023R399), King Saud University, Riyadh, Saudi Arabia.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Conflict of interest statement: Authors declares no conflict of interest.

References

1. Cavalcante, E. H., Candido, I. C., de Oliveira, H. P., Silveira, K. B., Víctor de Souza Álvares, T., Lima, E. C., Thyrel, M., Larsson, S. H., Simões Dos Reis, G. ACS Omega 2022, 7, 18997; https://doi.org/10.1021/acsomega.2c02101.Search in Google Scholar PubMed PubMed Central

2. Duhan, M., Kaur, R. Environ. Technol. 2020, 41, 2977; https://doi.org/10.1080/09593330.2019.1593511.Search in Google Scholar PubMed

3. Yeow, P. K., Wong, S. W., Hadibarata, T. Biointerface Res. Appl. Chem. 2021, 11, 8218.10.33263/BRIAC111.82188232Search in Google Scholar

4. Mishra, S., Cheng, L., Maiti, A. J. Environ. Chem. Eng. 2021, 9, 104901; https://doi.org/10.1016/j.jece.2020.104901.Search in Google Scholar

5. Liu, Z., Khan, T. A., Islam, M. A., Tabrez, U. Bioresour. Technol. 2022, 354, 127168; https://doi.org/10.1016/j.biortech.2022.127168.Search in Google Scholar PubMed

6. Haque, E., Lee, J. E., Jang, I. T., Hwang, Y. K., Chang, J. S., Jegal, J., Jhung, S. H. J. Hazard. Mater. 2010, 181, 535; https://doi.org/10.1016/j.jhazmat.2010.05.047.Search in Google Scholar PubMed

7. Subbaiah, M. V., Kim, D. S. Ecotoxicol. Environ. Saf. 2016, 128, 109; https://doi.org/10.1016/j.ecoenv.2016.02.016.Search in Google Scholar PubMed

8. Gallo-Cordova, A., Lemus, J., Palomares, F. J., Morales, M., Mazarío, E. Sci. Total Environ. 2020, 711, 134644; https://doi.org/10.1016/j.scitotenv.2019.134644.Search in Google Scholar PubMed

9. Rattanapan, S., Srikram, J., Kongsune, P. Energy Procedia 2017, 138, 949; https://doi.org/10.1016/j.egypro.2017.10.064.Search in Google Scholar

10. Gong, R., Ye, J., Dai, W., Yan, X., Hu, J., Hu, X., Li, S., Huang, H. Ind. Eng. Chem. 2013, 52, 14297; https://doi.org/10.1021/ie402138w.Search in Google Scholar

11. Hou, X. X., Deng, Q. F., Ren, T. Z., Yuan, Z. Y. Environ. Sci. Pollut. Res. 2013, 20, 8521; https://doi.org/10.1007/s11356-013-1792-9.Search in Google Scholar PubMed

12. Zhao, M., Liu, P. Microporous Mesoporous Mater. 2008, 112, 419; https://doi.org/10.1016/j.micromeso.2007.10.018.Search in Google Scholar

13. Pocasap, P., Weerapreeyakul, N., Barusrux, S. J. Funct. Foods 2013, 5, 1372; https://doi.org/10.1016/j.jff.2013.05.005.Search in Google Scholar

14. El Maguana, Y., Elhadiri, N., Benchanaa, M., Chikri, R. J. Chem. 2020, 2020, 1; https://doi.org/10.1155/2020/2096834.Search in Google Scholar

15. Ahmaruzzaman, M. Sep. Sci. Technol. 2012, 47, 2381.Search in Google Scholar

16. Wang, F. Y., Wang, H., Ma, J. W. J. Hazard. Mater. 2010, 177, 300; https://doi.org/10.1016/j.jhazmat.2009.12.032.Search in Google Scholar PubMed

17. Su, Y., Jiao, Y., Dou, C., Han Desalin, R. Water Treat 2014, 52, 6145; https://doi.org/10.1080/19443994.2013.811121.Search in Google Scholar

18. Iftekhar, S., Ramasamy, D. L., Srivastava, V., Asif, M. B., Sillanpää, M. Chemosphere 2018, 204, 413; https://doi.org/10.1016/j.chemosphere.2018.04.053.Search in Google Scholar PubMed

19. Yagub, M. T., Sen, T. K., Ang, H. Water Air Soil Pollut. 2012, 223, 5267; https://doi.org/10.1007/s11270-012-1277-3.Search in Google Scholar

20. Naseem, K., Farooqi, Z. H., Begum, R., Rehman, M. Z. U., Shahbaz, A., Farooq, U., Ali, M., Rahman, H. M. A. U., Irfan, A., Al-Sehemi, A. G. Z. Phys. Chem. 2019, 233, 669; https://doi.org/10.1515/zpch-2018-1223.Search in Google Scholar

21. Rao, P. V., Pydiraju, P., Madhuri, V., Vineeth, S., Rahimuddin, S., Vangalapati, M. Mater. Today 2020, 26, 3020.10.1016/j.matpr.2020.02.628Search in Google Scholar

22. Yu, J., Zhang, X., Wang, D., Li, P. Water Sci. Technol. 2018, 77, 1303; https://doi.org/10.2166/wst.2018.003.Search in Google Scholar PubMed

23. Naseem, K., Farooqi, Z. H., Begum, R., Ghufran, M., Rehman, M. Z. U., Najeeb, J., Irfan, A., Al-Sehemi, A. G. J. Mol. Liq. 2018, 268, 229; https://doi.org/10.1016/j.molliq.2018.07.039.Search in Google Scholar

24. Kaya, N., Uzun, Z. Y. Biomass Convers. Biorefin. 2021, 11, 1067; https://doi.org/10.1007/s13399-020-01063-8.Search in Google Scholar

25. Velkova, Z., Kirova, G., Gochev, V., Kafadarova, V., Stoytcheva, M. Sci. Works Univ. Food Technol. 2014, 61, 546.Search in Google Scholar

26. Lata, H., Garg, V., Gupta, R. Desalination 2008, 219, 250; https://doi.org/10.1016/j.desal.2007.05.018.Search in Google Scholar

27. Fontana, K. B., Chaves, E. S., Sanchez, J. D., Watanabe, E. R., Pietrobelli, J. M., Lenzi, G. G. Ecotoxicol. Environ. Saf. 2016, 124, 329; https://doi.org/10.1016/j.ecoenv.2015.11.012.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zpch-2023-0255).


Received: 2023-05-13
Accepted: 2023-05-31
Published Online: 2023-06-13
Published in Print: 2023-08-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0255/html
Scroll to top button