Abstract
This study emphasis the removal of methyl orange (MO) from aqueous medium by Raphanus caudatus powdered leaves biomass. Functional groups involved in the removal of MO dye from aqueous medium by leave biomass were identified by Fourier transform infrared (FTIR) spectroscopy analysis. It was seen that removal of dye molecules from aqueous medium was affected by the change in adsorption condition such as adsorbent dose, agitation time and pH of the medium. Maximum adsorption capacity of Raphanus caudatus leave biomass powder for MO dye was found as 30.86 mg/g. Regression factor (R2) value indicates the best fitting of Langmuir isotherm model for the adsorption process. Amount of adsorption energy calculated by Dubinin-Radushkevich (DR) isotherm model illustrates the chemical bond formation between dye and biomass particles. Recyclability results depict that biomass showed good adsorption capacity value for MO up to 4th reusability cycle.
-
Research funding: The authors sincerely appreciate funding from Researchers Supporting Project number (RSP2023R399), King Saud University, Riyadh, Saudi Arabia.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Conflict of interest statement: Authors declares no conflict of interest.
References
1. Cavalcante, E. H., Candido, I. C., de Oliveira, H. P., Silveira, K. B., Víctor de Souza Álvares, T., Lima, E. C., Thyrel, M., Larsson, S. H., Simões Dos Reis, G. ACS Omega 2022, 7, 18997; https://doi.org/10.1021/acsomega.2c02101.Search in Google Scholar PubMed PubMed Central
2. Duhan, M., Kaur, R. Environ. Technol. 2020, 41, 2977; https://doi.org/10.1080/09593330.2019.1593511.Search in Google Scholar PubMed
3. Yeow, P. K., Wong, S. W., Hadibarata, T. Biointerface Res. Appl. Chem. 2021, 11, 8218.10.33263/BRIAC111.82188232Search in Google Scholar
4. Mishra, S., Cheng, L., Maiti, A. J. Environ. Chem. Eng. 2021, 9, 104901; https://doi.org/10.1016/j.jece.2020.104901.Search in Google Scholar
5. Liu, Z., Khan, T. A., Islam, M. A., Tabrez, U. Bioresour. Technol. 2022, 354, 127168; https://doi.org/10.1016/j.biortech.2022.127168.Search in Google Scholar PubMed
6. Haque, E., Lee, J. E., Jang, I. T., Hwang, Y. K., Chang, J. S., Jegal, J., Jhung, S. H. J. Hazard. Mater. 2010, 181, 535; https://doi.org/10.1016/j.jhazmat.2010.05.047.Search in Google Scholar PubMed
7. Subbaiah, M. V., Kim, D. S. Ecotoxicol. Environ. Saf. 2016, 128, 109; https://doi.org/10.1016/j.ecoenv.2016.02.016.Search in Google Scholar PubMed
8. Gallo-Cordova, A., Lemus, J., Palomares, F. J., Morales, M., Mazarío, E. Sci. Total Environ. 2020, 711, 134644; https://doi.org/10.1016/j.scitotenv.2019.134644.Search in Google Scholar PubMed
9. Rattanapan, S., Srikram, J., Kongsune, P. Energy Procedia 2017, 138, 949; https://doi.org/10.1016/j.egypro.2017.10.064.Search in Google Scholar
10. Gong, R., Ye, J., Dai, W., Yan, X., Hu, J., Hu, X., Li, S., Huang, H. Ind. Eng. Chem. 2013, 52, 14297; https://doi.org/10.1021/ie402138w.Search in Google Scholar
11. Hou, X. X., Deng, Q. F., Ren, T. Z., Yuan, Z. Y. Environ. Sci. Pollut. Res. 2013, 20, 8521; https://doi.org/10.1007/s11356-013-1792-9.Search in Google Scholar PubMed
12. Zhao, M., Liu, P. Microporous Mesoporous Mater. 2008, 112, 419; https://doi.org/10.1016/j.micromeso.2007.10.018.Search in Google Scholar
13. Pocasap, P., Weerapreeyakul, N., Barusrux, S. J. Funct. Foods 2013, 5, 1372; https://doi.org/10.1016/j.jff.2013.05.005.Search in Google Scholar
14. El Maguana, Y., Elhadiri, N., Benchanaa, M., Chikri, R. J. Chem. 2020, 2020, 1; https://doi.org/10.1155/2020/2096834.Search in Google Scholar
15. Ahmaruzzaman, M. Sep. Sci. Technol. 2012, 47, 2381.Search in Google Scholar
16. Wang, F. Y., Wang, H., Ma, J. W. J. Hazard. Mater. 2010, 177, 300; https://doi.org/10.1016/j.jhazmat.2009.12.032.Search in Google Scholar PubMed
17. Su, Y., Jiao, Y., Dou, C., Han Desalin, R. Water Treat 2014, 52, 6145; https://doi.org/10.1080/19443994.2013.811121.Search in Google Scholar
18. Iftekhar, S., Ramasamy, D. L., Srivastava, V., Asif, M. B., Sillanpää, M. Chemosphere 2018, 204, 413; https://doi.org/10.1016/j.chemosphere.2018.04.053.Search in Google Scholar PubMed
19. Yagub, M. T., Sen, T. K., Ang, H. Water Air Soil Pollut. 2012, 223, 5267; https://doi.org/10.1007/s11270-012-1277-3.Search in Google Scholar
20. Naseem, K., Farooqi, Z. H., Begum, R., Rehman, M. Z. U., Shahbaz, A., Farooq, U., Ali, M., Rahman, H. M. A. U., Irfan, A., Al-Sehemi, A. G. Z. Phys. Chem. 2019, 233, 669; https://doi.org/10.1515/zpch-2018-1223.Search in Google Scholar
21. Rao, P. V., Pydiraju, P., Madhuri, V., Vineeth, S., Rahimuddin, S., Vangalapati, M. Mater. Today 2020, 26, 3020.10.1016/j.matpr.2020.02.628Search in Google Scholar
22. Yu, J., Zhang, X., Wang, D., Li, P. Water Sci. Technol. 2018, 77, 1303; https://doi.org/10.2166/wst.2018.003.Search in Google Scholar PubMed
23. Naseem, K., Farooqi, Z. H., Begum, R., Ghufran, M., Rehman, M. Z. U., Najeeb, J., Irfan, A., Al-Sehemi, A. G. J. Mol. Liq. 2018, 268, 229; https://doi.org/10.1016/j.molliq.2018.07.039.Search in Google Scholar
24. Kaya, N., Uzun, Z. Y. Biomass Convers. Biorefin. 2021, 11, 1067; https://doi.org/10.1007/s13399-020-01063-8.Search in Google Scholar
25. Velkova, Z., Kirova, G., Gochev, V., Kafadarova, V., Stoytcheva, M. Sci. Works Univ. Food Technol. 2014, 61, 546.Search in Google Scholar
26. Lata, H., Garg, V., Gupta, R. Desalination 2008, 219, 250; https://doi.org/10.1016/j.desal.2007.05.018.Search in Google Scholar
27. Fontana, K. B., Chaves, E. S., Sanchez, J. D., Watanabe, E. R., Pietrobelli, J. M., Lenzi, G. G. Ecotoxicol. Environ. Saf. 2016, 124, 329; https://doi.org/10.1016/j.ecoenv.2015.11.012.Search in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/zpch-2023-0255).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Article
- GO-Ag-NPs as a promising agent for biomedical, catalytic, electrochemical detection and water treatment technologies; a comprehensive review
- Original Papers
- Role of the thermal regime in the defect formation of zinc oxide nanostructures prepared by the thermal decomposition process
- Facile synthesis of a ZnO/Fe2O3 heterostructure and its graphene-reinforced composite for boosting the photo-mineralization of crystal violet and phenol
- Desulfurization of coal using SnO2/TiO2 nanocomposite immobilized on glass beads under solar light irradiation
- Photocatalytic degradation of dyes in aqueous media by gum shellac stabilized selenium nanoparticles
- Eco-friendly extraction of cellulose from Ailanthus altissima for nanocellulose production: physico-chemical properties
- Inquisition of micellar and surface active properties of gemini surfactants in the presence of a dipeptide
- Investigating adsorptive potential of Raphanus caudatus leaves biomass for methyl orange dye: isotherm and kinetic study
- Thienylpicolinamidine derivatives as new dissolution inhibitors for carbon steels in HCl medium: experimental and theoretical studies
- Extraction and characterization of novel cellulose nanocrystals from Artemisia scoparia straw and their application in hydroxypropyl methyl cellulose (HPMC) films
- Synthesis of doped metal sulfide nanoparticles and their graphene reinforced nanohybrid for Pb(II) detection
Articles in the same Issue
- Frontmatter
- Review Article
- GO-Ag-NPs as a promising agent for biomedical, catalytic, electrochemical detection and water treatment technologies; a comprehensive review
- Original Papers
- Role of the thermal regime in the defect formation of zinc oxide nanostructures prepared by the thermal decomposition process
- Facile synthesis of a ZnO/Fe2O3 heterostructure and its graphene-reinforced composite for boosting the photo-mineralization of crystal violet and phenol
- Desulfurization of coal using SnO2/TiO2 nanocomposite immobilized on glass beads under solar light irradiation
- Photocatalytic degradation of dyes in aqueous media by gum shellac stabilized selenium nanoparticles
- Eco-friendly extraction of cellulose from Ailanthus altissima for nanocellulose production: physico-chemical properties
- Inquisition of micellar and surface active properties of gemini surfactants in the presence of a dipeptide
- Investigating adsorptive potential of Raphanus caudatus leaves biomass for methyl orange dye: isotherm and kinetic study
- Thienylpicolinamidine derivatives as new dissolution inhibitors for carbon steels in HCl medium: experimental and theoretical studies
- Extraction and characterization of novel cellulose nanocrystals from Artemisia scoparia straw and their application in hydroxypropyl methyl cellulose (HPMC) films
- Synthesis of doped metal sulfide nanoparticles and their graphene reinforced nanohybrid for Pb(II) detection