Desulfurization of coal using SnO2/TiO2 nanocomposite immobilized on glass beads under solar light irradiation
-
Zubair Ahmed
Abstract
Coal is one of the important sources of energies and its combustion produce sulfur dioxide in the atmosphere, which needs desulphurization to avoids the pollution issue. Coal desulfurization was performed using SnO2/TiO2 nanocomposite under solar light irradiation. The SnO2/TiO2 was synthesized by co-precipitation method and deposited on glass beads. The prepared SnO2/TiO2 was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transfer infrared spectroscopy (FT-IR) techniques. The SnO2/TiO2 nanocomposite desulfurization efficiency was performed under solar light irradiation and process variables, i.e., irradiation time, H2O2 and pH were optimized for maximum desulfurization of coal. The SnO2/TiO2 nanocomposite showed promising efficiency and 60 % sulfur removal was achieved under optimum conditions. Based on efficiency, the SnO2/TiO2 nanocomposite has potential for the desulphurization of coal under solar light exposure, which will make the process highly economical feasible.
Acknowledgments
The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R439), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R439), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
-
Conflict of interest statement: The authors declare that they have no conflicts of interest.
References
1. Nazir, A., Zahra, F., Sabri, M. U., Ghaffar, A., Ather, A. Q., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2021, 235, 265–279; https://doi.org/10.1515/zpch-2019-1455.Suche in Google Scholar
2. Weber, R., Mancini, M. Z. Phys. Chem. 2015, 229, 619–641; https://doi.org/10.1515/zpch-2014-0597.Suche in Google Scholar
3. Jafarinejad, S. Chem. Int. 2017, 3, 241.Suche in Google Scholar
4. Jafarinejad, S. Chem. Int. 2017, 3, 368–377.Suche in Google Scholar
5. Jafarinejad, S. Chem. Int. 2016, 2, 242–253.Suche in Google Scholar
6. Bukhari, A., Atta, M., Nazir, A., Shahab, M. R., Kanwal, Q., Iqbal, M., Albalawi, H., Alwadai, N. Z. Phys. Chem. 2022, 236, 659–671; https://doi.org/10.1515/zpch-2021-3096.Suche in Google Scholar
7. Shaheen, M., Bhatti, I. A., Ashar, A., Mohsin, M., Nisar, J., Almoneef, M. M., Iqbal, M. Z. Phys. Chem. 2021, 235, 1395–1412; https://doi.org/10.1515/zpch-2020-1741.Suche in Google Scholar
8. Ghafoor, A., Bibi, I., Ata, S., Majid, F., Kamal, S., Rehman, F., Iqbal, S., Aamir, M., Slimani, Y., Iqbal, M., Mailk, A. Z. Phys. Chem. 2021, 235, 1413–1431; https://doi.org/10.1515/zpch-2020-1747.Suche in Google Scholar
9. Noreen, S., Ismail, S., Ibrahim, S. M., Kusuma, H. S., Nazir, A., Yaseen, M., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2020, 235, 1055–1075; https://doi.org/10.1515/zpch-2019-1599.Suche in Google Scholar
10. Jamil, A., Bokhari, T. H., Iqbal, M., Zuber, M., Bukhari, I. H. Z. Phys. Chem. 2020, 234, 129–143; https://doi.org/10.1515/zpch-2019-0006.Suche in Google Scholar
11. Demirbas, A., Balat, M. Energy Sources 2004, 26, 541–550; https://doi.org/10.1080/00908310490429669.Suche in Google Scholar
12. Amjed, N., Bhatti, I. A., Nazir, A., Iqbal, M. Energy Sources, Part A Recovery, Util. Environ. Eff. 2017, 39, 1043–1049; https://doi.org/10.1080/15567036.2017.1286529.Suche in Google Scholar
13. Amjed, N., Iqbal, M., Bhatti, I. A., Nazir, A. Energy Sources, Part A Recovery, Util. Environ. Eff. 2017, 39, 1235–1241; https://doi.org/10.1080/15567036.2017.1319439.Suche in Google Scholar
14. Amjed, N., Bhatti, I. A., Arif, K., Iqbal, M., Nazir, A., Zahid, M. Pol. J. Environ. Stud. 2018, 27, 987–992; https://doi.org/10.15244/pjoes/70632.Suche in Google Scholar
15. Munir, M., Saeed, M., Ahmad, M., Waseem, A., Sultana, S., Zafar, M., Srinivasan, G. R. Energy Sources, Part A Recovery, Util. Environ. Eff. 2019, 44, 1–16.10.1080/15567036.2019.1691289Suche in Google Scholar
16. Khedri, B., Mostafaei, M., Safieddin Ardebili, S. M. Energy Sources, Part A Recovery, Util. Environ. Eff. 2019, 41, 2377–2395; https://doi.org/10.1080/15567036.2018.1563246.Suche in Google Scholar
17. Slimani, Y., Selmi, A., Hannachi, E., Almessiere, M., Mumtaz, M., Baykal, A., Ercan, I. J. Mater. Sci.: Mater. Electron. 2019, 30, 13509–13518; https://doi.org/10.1007/s10854-019-01718-x.Suche in Google Scholar
18. Abbas, G., Bhatti, I. A., Amjed, N., Zeshan, M., Ibrahim, S. M., Nazir, A., Iqbal, M. Z. Phys. Chem. 2023, 237, 413–432; https://doi.org/10.1515/zpch-2022-0088.Suche in Google Scholar
19. Kausar, A., Bhatti, H. N., Iqbal, M. Z. Phys. Chem. 2021, 235, 281–294; https://doi.org/10.1515/zpch-2019-1418.Suche in Google Scholar
20. uz Zaman, Q., Anwar, S., Mehmood, F., Nawaz, R., Masood, N., Nazir, A., Iqbal, M., Nazir, S., Sultan, K. Z. Phys. Chem. 2020, 235, 1041–1053; https://doi.org/10.1515/zpch-2020-1640.Suche in Google Scholar
21. Sharif, S., uz Zaman, Q., Hassan, F., Javaid, S., Arif, K., Mansha, M. Z., Ehsan, N., Nazir, S., Gul, R., Iqbal, M. Z. Phys. Chem. 2020, 235, 467–481; https://doi.org/10.1515/zpch-2019-1532.Suche in Google Scholar
22. Iqbal, M., Shar, G. A., Ibrahim, S. M., Iftikhar, S., Asif, M., Khan, M. I., Kusuma, H. S., Yaseen, M., Nazir, A. Z. Phys. Chem. 2020, 235, 1209–1226; https://doi.org/10.1515/zpch-2019-1562.Suche in Google Scholar
23. Hassan, A., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2020, 235, 1077–1097; https://doi.org/10.1515/zpch-2020-1680.Suche in Google Scholar
24. Ata, S., Tabassum, A., Bibi, I., Majid, F., Sultan, M., Ghafoor, S., Bhatti, M. A., Qureshi, N., Iqbal, M. Z. Phys. Chem. 2019, 233, 1377–1409; https://doi.org/10.1515/zpch-2018-1205.Suche in Google Scholar
25. Ata, S., Tabassum, A., Bibi, I., Ghafoor, S., Ahad, A., Bhatti, M. A., Islam, A., Rizvi, H., Iqbal, M. Z. Phys. Chem. 2019, 233, 995–1017; https://doi.org/10.1515/zpch-2018-1203.Suche in Google Scholar
26. Ahmad, M., Abbas, G., Haider, R., Jalal, F., Shar, G. A., Soomro, G. A., Qureshi, N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1469–1484; https://doi.org/10.1515/zpch-2018-1201.Suche in Google Scholar
27. Blessi, S., Anand, S., Manikandan, A., Sonia, M. M. L., Vinosel, V. M., Slimani, Y., Almessiere, M., Baykal, A. J. Mater. Sci.: Mater. Electron. 2021, 32, 7630–7646; https://doi.org/10.1007/s10854-021-05479-4.Suche in Google Scholar
28. Blessi, S., Anand, S., Manikandan, A., Sonia, M. M. L., Vinosel, V. M., Slimani, Y., Almessiere, M., Baykal, A. J. Mater. Sci.: Mater. Electron. 2021, 32, 4132–4145; https://doi.org/10.1007/s10854-020-05155-z.Suche in Google Scholar
29. Slimani, Y., Hannachi, E., Ekicibil, A., Almessiere, M. A., Ben Azzouz, F. J. Alloys Compd. 2019, 781, 664–673; https://doi.org/10.1016/j.jallcom.2018.12.062.Suche in Google Scholar
30. Hannachi, E., Slimani, Y., Ben Azzouz, F., Ekicibil, A. Ceram. Int. 2018, 44, 18836–18843; https://doi.org/10.1016/j.ceramint.2018.07.118.Suche in Google Scholar
31. Senthilkumar, V., Vickraman, P., Jayachandran, M., Sanjeeviraja, C. J. Dispersion Sci. Technol. 2010, 31, 1178–1181; https://doi.org/10.1080/01932690903223856.Suche in Google Scholar
32. Larin, A., Womble, P., Dobrokhotov, V. Sensors 2016, 16, 1373; https://doi.org/10.3390/s16091373.Suche in Google Scholar PubMed PubMed Central
33. Amer, M. W., Awwad, A. M. Chem. Int. 2021, 7, 1–8.Suche in Google Scholar
34. Al-Fa’ouri, A. M., Abu-Kharma, M. H., Awwad, A. M. Chem. Int. 2021, 7, 155–162.Suche in Google Scholar
35. Rajakumar, G., Rahuman, A. A., Roopan, S. M., Khanna, V. G., Elango, G., Kamaraj, C., Zahir, A. A., Velayutham, K. Spectrochim. Acta Mol. Biomol. Spectrosc. 2012, 91, 23–29; https://doi.org/10.1016/j.saa.2012.01.011.Suche in Google Scholar PubMed
36. Emiroglu, S., Barsan, N., Weimar, U., Hoffmann, V. Thin Solid Films 2001, 391, 176–185; https://doi.org/10.1016/s0040-6090(01)00979-8.Suche in Google Scholar
37. Aziz, M., Abbas, S. S., Baharom, W. R. W., Mahmud, W. Z. W. Mater. Lett. 2012, 74, 62–64; https://doi.org/10.1016/j.matlet.2012.01.073.Suche in Google Scholar
38. Fang, L., Zu, X., Li, Z., Zhu, S., Liu, C., Zhou, W., Wang, L. J. Alloys Compd. 2008, 454, 261–267; https://doi.org/10.1016/j.jallcom.2006.12.014.Suche in Google Scholar
39. Awwad, A. M., Amer, M. W., Salem, N. M., Abdeen, A. O. Chem. Int. 2020, 6, 151–159.Suche in Google Scholar
40. Al Banna, L. S., Salem, N. M., Jaleel, G. A., Awwad, A. M. Chem. Int. 2020, 6, 137–143.Suche in Google Scholar
41. Yi, S., Su, Y., Qi, B., Su, Z., Wan, Y. Sep. Purif. Technol. 2010, 71, 252–262; https://doi.org/10.1016/j.seppur.2009.12.005.Suche in Google Scholar
42. Iqbal, M., Bhatti, I. A. J. Hazard Mater. 2015, 299, 351–360; https://doi.org/10.1016/j.jhazmat.2015.06.045.Suche in Google Scholar PubMed
43. Ayach, A., Fakhi, S., Malek, O. A., Faiz, Z., El Aouidi, S., Bouih, A., Benmansour, M., Aadjour, M., El Batal, Y., Vioque, I. Chem. Int. 2021, 7, 123–138.Suche in Google Scholar
44. Ukpaka, C., Wami, E. Chem. Int. 2017, 3, 494–507.Suche in Google Scholar
45. Abulude, F. O., Ogunmola, D. N., Alabi, M. M., Abdulrasheed, Y. Chem. Int. 2018, 4, 136–145.Suche in Google Scholar
46. Pervaiz, M., Butt, K. M., Raza, M. A., Rasheed, A., Ahmad, S., Adnan, A., Iqbal, M. Chem. Int. 2015, 1, 99–102.Suche in Google Scholar
47. Hamilton-Amachree, A., Iroha, N. B. Chem. Int. 2020, 6, 110–121.Suche in Google Scholar
48. Zhou, X., Wang, T., Liu, H., Gao, X., Wang, C., Wang, G. ChemSusChem 2021, 14, 492–511; https://doi.org/10.1002/cssc.202002144.Suche in Google Scholar PubMed
49. Hannachi, E., Slimani, Y., Ekicibil, A., Manikandan, A., Ben Azzouz, F. Mater. Chem. Phys. 2019, 235, 121721; https://doi.org/10.1016/j.matchemphys.2019.121721.Suche in Google Scholar
50. Ansari, M. A., Albetran, H. M., Alheshibri, M. H., Timoumi, A., Algarou, N. A., Akhtar, S., Slimani, Y., Almessiere, M. A., Alahmari, F. S., Baykal, A., Low, I. M. Antibiotics 2020, 9, 572; https://doi.org/10.3390/antibiotics9090572.Suche in Google Scholar PubMed PubMed Central
51. Blessi, S., Manikandan, A., Anand, S., Sonia, M. M. L., Vinosel, V. M., Paulraj, P., Slimani, Y., Almessiere, M. A., Iqbal, M., Guner, S., Baykal, A. Mater. Chem. Phys. 2021, 273, 125122; https://doi.org/10.1016/j.matchemphys.2021.125122.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review Article
- GO-Ag-NPs as a promising agent for biomedical, catalytic, electrochemical detection and water treatment technologies; a comprehensive review
- Original Papers
- Role of the thermal regime in the defect formation of zinc oxide nanostructures prepared by the thermal decomposition process
- Facile synthesis of a ZnO/Fe2O3 heterostructure and its graphene-reinforced composite for boosting the photo-mineralization of crystal violet and phenol
- Desulfurization of coal using SnO2/TiO2 nanocomposite immobilized on glass beads under solar light irradiation
- Photocatalytic degradation of dyes in aqueous media by gum shellac stabilized selenium nanoparticles
- Eco-friendly extraction of cellulose from Ailanthus altissima for nanocellulose production: physico-chemical properties
- Inquisition of micellar and surface active properties of gemini surfactants in the presence of a dipeptide
- Investigating adsorptive potential of Raphanus caudatus leaves biomass for methyl orange dye: isotherm and kinetic study
- Thienylpicolinamidine derivatives as new dissolution inhibitors for carbon steels in HCl medium: experimental and theoretical studies
- Extraction and characterization of novel cellulose nanocrystals from Artemisia scoparia straw and their application in hydroxypropyl methyl cellulose (HPMC) films
- Synthesis of doped metal sulfide nanoparticles and their graphene reinforced nanohybrid for Pb(II) detection
Artikel in diesem Heft
- Frontmatter
- Review Article
- GO-Ag-NPs as a promising agent for biomedical, catalytic, electrochemical detection and water treatment technologies; a comprehensive review
- Original Papers
- Role of the thermal regime in the defect formation of zinc oxide nanostructures prepared by the thermal decomposition process
- Facile synthesis of a ZnO/Fe2O3 heterostructure and its graphene-reinforced composite for boosting the photo-mineralization of crystal violet and phenol
- Desulfurization of coal using SnO2/TiO2 nanocomposite immobilized on glass beads under solar light irradiation
- Photocatalytic degradation of dyes in aqueous media by gum shellac stabilized selenium nanoparticles
- Eco-friendly extraction of cellulose from Ailanthus altissima for nanocellulose production: physico-chemical properties
- Inquisition of micellar and surface active properties of gemini surfactants in the presence of a dipeptide
- Investigating adsorptive potential of Raphanus caudatus leaves biomass for methyl orange dye: isotherm and kinetic study
- Thienylpicolinamidine derivatives as new dissolution inhibitors for carbon steels in HCl medium: experimental and theoretical studies
- Extraction and characterization of novel cellulose nanocrystals from Artemisia scoparia straw and their application in hydroxypropyl methyl cellulose (HPMC) films
- Synthesis of doped metal sulfide nanoparticles and their graphene reinforced nanohybrid for Pb(II) detection