Startseite Desulfurization of coal using SnO2/TiO2 nanocomposite immobilized on glass beads under solar light irradiation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Desulfurization of coal using SnO2/TiO2 nanocomposite immobilized on glass beads under solar light irradiation

  • Zubair Ahmed , Ijaz A. Bhatti , Nyla Amjed , Muhammad Mohsin , Shahid Iqbal , Maryam Al Huwayz , Norah Alwadai , Arif Nazir und Munawar Iqbal EMAIL logo
Veröffentlicht/Copyright: 3. Juli 2023

Abstract

Coal is one of the important sources of energies and its combustion produce sulfur dioxide in the atmosphere, which needs desulphurization to avoids the pollution issue. Coal desulfurization was performed using SnO2/TiO2 nanocomposite under solar light irradiation. The SnO2/TiO2 was synthesized by co-precipitation method and deposited on glass beads. The prepared SnO2/TiO2 was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transfer infrared spectroscopy (FT-IR) techniques. The SnO2/TiO2 nanocomposite desulfurization efficiency was performed under solar light irradiation and process variables, i.e., irradiation time, H2O2 and pH were optimized for maximum desulfurization of coal. The SnO2/TiO2 nanocomposite showed promising efficiency and 60 % sulfur removal was achieved under optimum conditions. Based on efficiency, the SnO2/TiO2 nanocomposite has potential for the desulphurization of coal under solar light exposure, which will make the process highly economical feasible.


Corresponding author: Munawar Iqbal, Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan, E-mail:

Acknowledgments

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R439), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R439), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest.

References

1. Nazir, A., Zahra, F., Sabri, M. U., Ghaffar, A., Ather, A. Q., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2021, 235, 265–279; https://doi.org/10.1515/zpch-2019-1455.Suche in Google Scholar

2. Weber, R., Mancini, M. Z. Phys. Chem. 2015, 229, 619–641; https://doi.org/10.1515/zpch-2014-0597.Suche in Google Scholar

3. Jafarinejad, S. Chem. Int. 2017, 3, 241.Suche in Google Scholar

4. Jafarinejad, S. Chem. Int. 2017, 3, 368–377.Suche in Google Scholar

5. Jafarinejad, S. Chem. Int. 2016, 2, 242–253.Suche in Google Scholar

6. Bukhari, A., Atta, M., Nazir, A., Shahab, M. R., Kanwal, Q., Iqbal, M., Albalawi, H., Alwadai, N. Z. Phys. Chem. 2022, 236, 659–671; https://doi.org/10.1515/zpch-2021-3096.Suche in Google Scholar

7. Shaheen, M., Bhatti, I. A., Ashar, A., Mohsin, M., Nisar, J., Almoneef, M. M., Iqbal, M. Z. Phys. Chem. 2021, 235, 1395–1412; https://doi.org/10.1515/zpch-2020-1741.Suche in Google Scholar

8. Ghafoor, A., Bibi, I., Ata, S., Majid, F., Kamal, S., Rehman, F., Iqbal, S., Aamir, M., Slimani, Y., Iqbal, M., Mailk, A. Z. Phys. Chem. 2021, 235, 1413–1431; https://doi.org/10.1515/zpch-2020-1747.Suche in Google Scholar

9. Noreen, S., Ismail, S., Ibrahim, S. M., Kusuma, H. S., Nazir, A., Yaseen, M., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2020, 235, 1055–1075; https://doi.org/10.1515/zpch-2019-1599.Suche in Google Scholar

10. Jamil, A., Bokhari, T. H., Iqbal, M., Zuber, M., Bukhari, I. H. Z. Phys. Chem. 2020, 234, 129–143; https://doi.org/10.1515/zpch-2019-0006.Suche in Google Scholar

11. Demirbas, A., Balat, M. Energy Sources 2004, 26, 541–550; https://doi.org/10.1080/00908310490429669.Suche in Google Scholar

12. Amjed, N., Bhatti, I. A., Nazir, A., Iqbal, M. Energy Sources, Part A Recovery, Util. Environ. Eff. 2017, 39, 1043–1049; https://doi.org/10.1080/15567036.2017.1286529.Suche in Google Scholar

13. Amjed, N., Iqbal, M., Bhatti, I. A., Nazir, A. Energy Sources, Part A Recovery, Util. Environ. Eff. 2017, 39, 1235–1241; https://doi.org/10.1080/15567036.2017.1319439.Suche in Google Scholar

14. Amjed, N., Bhatti, I. A., Arif, K., Iqbal, M., Nazir, A., Zahid, M. Pol. J. Environ. Stud. 2018, 27, 987–992; https://doi.org/10.15244/pjoes/70632.Suche in Google Scholar

15. Munir, M., Saeed, M., Ahmad, M., Waseem, A., Sultana, S., Zafar, M., Srinivasan, G. R. Energy Sources, Part A Recovery, Util. Environ. Eff. 2019, 44, 1–16.10.1080/15567036.2019.1691289Suche in Google Scholar

16. Khedri, B., Mostafaei, M., Safieddin Ardebili, S. M. Energy Sources, Part A Recovery, Util. Environ. Eff. 2019, 41, 2377–2395; https://doi.org/10.1080/15567036.2018.1563246.Suche in Google Scholar

17. Slimani, Y., Selmi, A., Hannachi, E., Almessiere, M., Mumtaz, M., Baykal, A., Ercan, I. J. Mater. Sci.: Mater. Electron. 2019, 30, 13509–13518; https://doi.org/10.1007/s10854-019-01718-x.Suche in Google Scholar

18. Abbas, G., Bhatti, I. A., Amjed, N., Zeshan, M., Ibrahim, S. M., Nazir, A., Iqbal, M. Z. Phys. Chem. 2023, 237, 413–432; https://doi.org/10.1515/zpch-2022-0088.Suche in Google Scholar

19. Kausar, A., Bhatti, H. N., Iqbal, M. Z. Phys. Chem. 2021, 235, 281–294; https://doi.org/10.1515/zpch-2019-1418.Suche in Google Scholar

20. uz Zaman, Q., Anwar, S., Mehmood, F., Nawaz, R., Masood, N., Nazir, A., Iqbal, M., Nazir, S., Sultan, K. Z. Phys. Chem. 2020, 235, 1041–1053; https://doi.org/10.1515/zpch-2020-1640.Suche in Google Scholar

21. Sharif, S., uz Zaman, Q., Hassan, F., Javaid, S., Arif, K., Mansha, M. Z., Ehsan, N., Nazir, S., Gul, R., Iqbal, M. Z. Phys. Chem. 2020, 235, 467–481; https://doi.org/10.1515/zpch-2019-1532.Suche in Google Scholar

22. Iqbal, M., Shar, G. A., Ibrahim, S. M., Iftikhar, S., Asif, M., Khan, M. I., Kusuma, H. S., Yaseen, M., Nazir, A. Z. Phys. Chem. 2020, 235, 1209–1226; https://doi.org/10.1515/zpch-2019-1562.Suche in Google Scholar

23. Hassan, A., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2020, 235, 1077–1097; https://doi.org/10.1515/zpch-2020-1680.Suche in Google Scholar

24. Ata, S., Tabassum, A., Bibi, I., Majid, F., Sultan, M., Ghafoor, S., Bhatti, M. A., Qureshi, N., Iqbal, M. Z. Phys. Chem. 2019, 233, 1377–1409; https://doi.org/10.1515/zpch-2018-1205.Suche in Google Scholar

25. Ata, S., Tabassum, A., Bibi, I., Ghafoor, S., Ahad, A., Bhatti, M. A., Islam, A., Rizvi, H., Iqbal, M. Z. Phys. Chem. 2019, 233, 995–1017; https://doi.org/10.1515/zpch-2018-1203.Suche in Google Scholar

26. Ahmad, M., Abbas, G., Haider, R., Jalal, F., Shar, G. A., Soomro, G. A., Qureshi, N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1469–1484; https://doi.org/10.1515/zpch-2018-1201.Suche in Google Scholar

27. Blessi, S., Anand, S., Manikandan, A., Sonia, M. M. L., Vinosel, V. M., Slimani, Y., Almessiere, M., Baykal, A. J. Mater. Sci.: Mater. Electron. 2021, 32, 7630–7646; https://doi.org/10.1007/s10854-021-05479-4.Suche in Google Scholar

28. Blessi, S., Anand, S., Manikandan, A., Sonia, M. M. L., Vinosel, V. M., Slimani, Y., Almessiere, M., Baykal, A. J. Mater. Sci.: Mater. Electron. 2021, 32, 4132–4145; https://doi.org/10.1007/s10854-020-05155-z.Suche in Google Scholar

29. Slimani, Y., Hannachi, E., Ekicibil, A., Almessiere, M. A., Ben Azzouz, F. J. Alloys Compd. 2019, 781, 664–673; https://doi.org/10.1016/j.jallcom.2018.12.062.Suche in Google Scholar

30. Hannachi, E., Slimani, Y., Ben Azzouz, F., Ekicibil, A. Ceram. Int. 2018, 44, 18836–18843; https://doi.org/10.1016/j.ceramint.2018.07.118.Suche in Google Scholar

31. Senthilkumar, V., Vickraman, P., Jayachandran, M., Sanjeeviraja, C. J. Dispersion Sci. Technol. 2010, 31, 1178–1181; https://doi.org/10.1080/01932690903223856.Suche in Google Scholar

32. Larin, A., Womble, P., Dobrokhotov, V. Sensors 2016, 16, 1373; https://doi.org/10.3390/s16091373.Suche in Google Scholar PubMed PubMed Central

33. Amer, M. W., Awwad, A. M. Chem. Int. 2021, 7, 1–8.Suche in Google Scholar

34. Al-Fa’ouri, A. M., Abu-Kharma, M. H., Awwad, A. M. Chem. Int. 2021, 7, 155–162.Suche in Google Scholar

35. Rajakumar, G., Rahuman, A. A., Roopan, S. M., Khanna, V. G., Elango, G., Kamaraj, C., Zahir, A. A., Velayutham, K. Spectrochim. Acta Mol. Biomol. Spectrosc. 2012, 91, 23–29; https://doi.org/10.1016/j.saa.2012.01.011.Suche in Google Scholar PubMed

36. Emiroglu, S., Barsan, N., Weimar, U., Hoffmann, V. Thin Solid Films 2001, 391, 176–185; https://doi.org/10.1016/s0040-6090(01)00979-8.Suche in Google Scholar

37. Aziz, M., Abbas, S. S., Baharom, W. R. W., Mahmud, W. Z. W. Mater. Lett. 2012, 74, 62–64; https://doi.org/10.1016/j.matlet.2012.01.073.Suche in Google Scholar

38. Fang, L., Zu, X., Li, Z., Zhu, S., Liu, C., Zhou, W., Wang, L. J. Alloys Compd. 2008, 454, 261–267; https://doi.org/10.1016/j.jallcom.2006.12.014.Suche in Google Scholar

39. Awwad, A. M., Amer, M. W., Salem, N. M., Abdeen, A. O. Chem. Int. 2020, 6, 151–159.Suche in Google Scholar

40. Al Banna, L. S., Salem, N. M., Jaleel, G. A., Awwad, A. M. Chem. Int. 2020, 6, 137–143.Suche in Google Scholar

41. Yi, S., Su, Y., Qi, B., Su, Z., Wan, Y. Sep. Purif. Technol. 2010, 71, 252–262; https://doi.org/10.1016/j.seppur.2009.12.005.Suche in Google Scholar

42. Iqbal, M., Bhatti, I. A. J. Hazard Mater. 2015, 299, 351–360; https://doi.org/10.1016/j.jhazmat.2015.06.045.Suche in Google Scholar PubMed

43. Ayach, A., Fakhi, S., Malek, O. A., Faiz, Z., El Aouidi, S., Bouih, A., Benmansour, M., Aadjour, M., El Batal, Y., Vioque, I. Chem. Int. 2021, 7, 123–138.Suche in Google Scholar

44. Ukpaka, C., Wami, E. Chem. Int. 2017, 3, 494–507.Suche in Google Scholar

45. Abulude, F. O., Ogunmola, D. N., Alabi, M. M., Abdulrasheed, Y. Chem. Int. 2018, 4, 136–145.Suche in Google Scholar

46. Pervaiz, M., Butt, K. M., Raza, M. A., Rasheed, A., Ahmad, S., Adnan, A., Iqbal, M. Chem. Int. 2015, 1, 99–102.Suche in Google Scholar

47. Hamilton-Amachree, A., Iroha, N. B. Chem. Int. 2020, 6, 110–121.Suche in Google Scholar

48. Zhou, X., Wang, T., Liu, H., Gao, X., Wang, C., Wang, G. ChemSusChem 2021, 14, 492–511; https://doi.org/10.1002/cssc.202002144.Suche in Google Scholar PubMed

49. Hannachi, E., Slimani, Y., Ekicibil, A., Manikandan, A., Ben Azzouz, F. Mater. Chem. Phys. 2019, 235, 121721; https://doi.org/10.1016/j.matchemphys.2019.121721.Suche in Google Scholar

50. Ansari, M. A., Albetran, H. M., Alheshibri, M. H., Timoumi, A., Algarou, N. A., Akhtar, S., Slimani, Y., Almessiere, M. A., Alahmari, F. S., Baykal, A., Low, I. M. Antibiotics 2020, 9, 572; https://doi.org/10.3390/antibiotics9090572.Suche in Google Scholar PubMed PubMed Central

51. Blessi, S., Manikandan, A., Anand, S., Sonia, M. M. L., Vinosel, V. M., Paulraj, P., Slimani, Y., Almessiere, M. A., Iqbal, M., Guner, S., Baykal, A. Mater. Chem. Phys. 2021, 273, 125122; https://doi.org/10.1016/j.matchemphys.2021.125122.Suche in Google Scholar

Received: 2022-05-25
Accepted: 2023-06-18
Published Online: 2023-07-03
Published in Print: 2023-08-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2022-0084/html
Button zum nach oben scrollen