GO-Ag-NPs as a promising agent for biomedical, catalytic, electrochemical detection and water treatment technologies; a comprehensive review
-
Hafiz Amir Nadeem
and Umer Younas
Abstract
This comprehensive review article discusses the potential applications of graphene oxide-silver nanoparticles (GO-Ag NPs) in various fields, including biomedical, catalytic, electrochemical detection, and wastewater treatment technologies. GO-Ag NPs have gained significant attention due to their unique properties, such as excellent electrical, mechanical, and thermal conductivity, as well as their protective capabilities. The review summarizes the different starting materials and reducing agents that have been used to produce GO-Ag NPs with particle sizes ranging from 2 to 90 nm. Furthermore, the article highlights the various applications of GO-Ag NPs, such as their use in drug delivery, bioimaging, and cancer therapy. Additionally, the review discusses the potential of GO-Ag NPs in catalysis, electrochemical detection, and wastewater treatment. Overall, this review provides a comprehensive overview of the potential uses of GO-Ag NPs and emphasizes the need for further research to develop more straightforward methods for their production and application.
-
Research funding: None declared.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Conflict of interest statement: The authors declare that they have no conflict of interest.
References
1. Zhou, X., Huang, X., Qi, X., Wu, S., Xue, C., Boey, F. Y. C., Yan, Q., Chen, P., Zhang, H. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J. Phys. Chem. C 2009, 113, 10842–10846; https://doi.org/10.1021/jp903821n.Search in Google Scholar
2. Kumar, S. V., Huang, N., Lim, H., Marlinda, A., Harrison, I., Chia, C. One-step size-controlled synthesis of functional graphene oxide/silver nanocomposites at room temperature. Chem. Eng. J. 2013, 219, 217–224; https://doi.org/10.1016/j.cej.2012.09.063.Search in Google Scholar
3. Golsheikh, A. M., Huang, N., Lim, H., Zakaria, R., Yin, C. Y. One-step electrodeposition synthesis of silver-nanoparticle-decorated graphene on indium-tin-oxide for enzymeless hydrogen peroxide detection. Carbon 2013, 62, 405–412; https://doi.org/10.1016/j.carbon.2013.06.025.Search in Google Scholar
4. Guo, Y., Yang, X., Ruan, K., Kong, J., Dong, M., Zhang, J., Gu, J., Guo, Z. Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 25465–25473; https://doi.org/10.1021/acsami.9b10161.Search in Google Scholar PubMed
5. Zhang, Y., Yuan, X., Wang, Y., Chen, Y. One-pot photochemical synthesis of graphene composites uniformly deposited with silver nanoparticles and their high catalytic activity towards the reduction of 2-nitroaniline. J. Mater. Chem. 2012, 22, 7245–7251; https://doi.org/10.1039/c2jm16455h.Search in Google Scholar
6. Shao, W., Liu, X., Min, H., Dong, G., Feng, Q., Zuo, S. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Appl. Mater. Interfaces 2015, 7, 6966–6973; https://doi.org/10.1021/acsami.5b00937.Search in Google Scholar PubMed
7. Zhao, R., Lv, M., Li, Y., Sun, M., Kong, W., Wang, L., Song, S., Fan, C., Jia, L., Qiu, S., Sun, Y., Song, H. Stable nanocomposite based on PEGylated and silver nanoparticles loaded graphene oxide for long-term antibacterial activity. ACS Appl. Mater. Interfaces 2017, 9, 15328–15341; https://doi.org/10.1021/acsami.7b03987.Search in Google Scholar PubMed
8. Yang, Y.-K., He, C. E., He, W. J., Yu, L. J., Peng, R. G., Xie, X. L., Wang, X. B., Mai, Y. W. Reduction of silver nanoparticles onto graphene oxide nanosheets with N, N-dimethylformamide and SERS activities of GO/Ag composites. J. Nanoparticle Res. 2011, 13, 5571–5581; https://doi.org/10.1007/s11051-011-0550-5.Search in Google Scholar
9. Orth, E. S., Fonsaca, J. E., Domingues, S. H., Mehl, H., Oliveira, M. M., Zarbin, A. J. Targeted thiolation of graphene oxide and its utilization as precursor for graphene/silver nanoparticles composites. Carbon 2013, 61, 543–550; https://doi.org/10.1016/j.carbon.2013.05.032.Search in Google Scholar
10. Bai, W., Nie, F., Zheng, J., Sheng, Q. Novel silver nanoparticle–manganese oxyhydroxide–graphene oxide nanocomposite prepared by modified silver mirror reaction and its application for electrochemical sensing. ACS Appl. Mater. Interfaces 2014, 6, 5439–5449; https://doi.org/10.1021/am500641d.Search in Google Scholar PubMed
11. Yuan, X., Wang, H., Wu, Y., Zeng, G., Chen, X., Leng, L., Wu, Z., Li, H. One‐pot self‐assembly and photoreduction synthesis of silver nanoparticle‐decorated reduced graphene oxide/MIL‐125 (Ti) photocatalyst with improved visible light photocatalytic activity. Appl. Organomet. Chem. 2016, 30, 289–296; https://doi.org/10.1002/aoc.3430.Search in Google Scholar
12. Mao, A., Zhang, D., Jin, X., Gu, X., Wei, X., Yang, G., Liu, X. Synthesis of graphene oxide sheets decorated by silver nanoparticles in organic phase and their catalytic activity. J. Phys. Chem. Solids 2012, 73, 982–986; https://doi.org/10.1016/j.jpcs.2012.03.013.Search in Google Scholar
13. Yuan, W., Gu, Y., Li, L. Green synthesis of graphene/Ag nanocomposites. Appl. Surf. Sci. 2012, 261, 753–758; https://doi.org/10.1016/j.apsusc.2012.08.094.Search in Google Scholar
14. Yuan, Y.-G., Gurunathan, S. Combination of graphene oxide–silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells. Int. J. Nanomed. 2017, 12, 6537; https://doi.org/10.2147/ijn.s125281.Search in Google Scholar PubMed PubMed Central
15. Golsheikh, A. M., Huang, N. M., Lim, H. N., Zakaria, R. One-pot sonochemical synthesis of reduced graphene oxide uniformly decorated with ultrafine silver nanoparticles for non-enzymatic detection of H2O2 and optical detection of mercury ions. RSC Adv. 2014, 4, 36401–36411; https://doi.org/10.1039/c4ra05998k.Search in Google Scholar
16. Li, S.-K., Yan, Y. X., Wang, J. L., Yu, S. H. Bio-inspired in situ growth of monolayer silver nanoparticles on graphene oxide paper as multifunctional substrate. Nanoscale 2013, 5, 12616–12623; https://doi.org/10.1039/c3nr03857b.Search in Google Scholar PubMed
17. Chettri, P., Vendamani, V., Tripathi, A., Singh, M. K., Pathak, A. P., Tiwari, A. Green synthesis of silver nanoparticle-reduced graphene oxide using Psidium guajava and its application in SERS for the detection of methylene blue. Appl. Surf. Sci. 2017, 406, 312–318; https://doi.org/10.1016/j.apsusc.2017.02.073.Search in Google Scholar
18. Kaur, B., Pandiyan, T., Satpati, B., Srivastava, R. Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode. Colloids Surf. B Biointerfaces 2013, 111, 97–106; https://doi.org/10.1016/j.colsurfb.2013.05.023.Search in Google Scholar PubMed
19. Zainy, M., Huang, N., Vijay Kumar, S., Lim, H., Chia, C., Harrison, I. Simple and scalable preparation of reduced graphene oxide–silver nanocomposites via rapid thermal treatment. Mater. Lett. 2012, 89, 180–183; https://doi.org/10.1016/j.matlet.2012.08.101.Search in Google Scholar
20. Nia, P. M., Lorestani, F., Meng, W. P., Alias, Y. A novel non-enzymatic H2O2 sensor based on polypyrrole nanofibers–silver nanoparticles decorated reduced graphene oxide nano composites. Appl. Surf. Sci. 2015, 332, 648–656; https://doi.org/10.1016/j.apsusc.2015.01.189.Search in Google Scholar
21. Wang, X., Huang, P., Feng, L., He, M., Guo, S., Shen, G., Cui, D. Green controllable synthesis of silver nanomaterials on graphene oxide sheets via spontaneous reduction. RSC Adv. 2012, 2, 3816–3822; https://doi.org/10.1039/c2ra00008c.Search in Google Scholar
22. Tang, X.-Z., Li, X., Cao, Z., Yang, J., Wang, H., Pu, X., Yu, Z. Z. Synthesis of graphene decorated with silver nanoparticles by simultaneous reduction of graphene oxide and silver ions with glucose. Carbon 2013, 59, 93–99; https://doi.org/10.1016/j.carbon.2013.02.058.Search in Google Scholar
23. Das, M. R., Sarma, R. K., Borah, S. C., Kumari, R., Saikia, R., Deshmukh, A. B., Shelke, M. V., Sengupta, P., Szunerits, S., Boukherroub, R. The synthesis of citrate-modified silver nanoparticles in an aqueous suspension of graphene oxide nanosheets and their antibacterial activity. Colloids Surf. B Biointerfaces 2013, 105, 128–136; https://doi.org/10.1016/j.colsurfb.2012.12.033.Search in Google Scholar PubMed
24. Tang, X.-Z., Cao, Z., Zhang, H. B., Liu, J., Yu, Z. Z. Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach. Chem. Commun. 2011, 47, 3084–3086; https://doi.org/10.1039/c0cc05613h.Search in Google Scholar PubMed
25. Dutta, S., Ray, C., Sarkar, S., Pradhan, M., Negishi, Y., Pal, T. Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion. ACS Appl. Mater. Interfaces 2013, 5, 8724–8732; https://doi.org/10.1021/am4025017.Search in Google Scholar PubMed
26. Liu, S., Tian, J., Wang, L., Sun, X. A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Carbon 2011, 49, 3158–3164; https://doi.org/10.1016/j.carbon.2011.03.036.Search in Google Scholar
27. Shen, J., Shi, M., Yan, B., Ye, M. One-pot hydrothermal synthesis of Ag-reduced graphene oxide composite with ionic liquid. J. Mater. Chem. 2011, 21, 7795–7801; https://doi.org/10.1039/c1jm10671f.Search in Google Scholar
28. Han, Y., Luo, Z., Yuwen, L., Tian, J., Zhu, X., Wang, L. Synthesis of silver nanoparticles on reduced graphene oxide under microwave irradiation with starch as an ideal reductant and stabilizer. Appl. Surf. Sci. 2013, 266, 188–193; https://doi.org/10.1016/j.apsusc.2012.11.132.Search in Google Scholar
29. Yang, B., Liu, Z., Guo, Z., Zhang, W., Wan, M., Qin, X., Zhong, H. In situ green synthesis of silver–graphene oxide nanocomposites by using tryptophan as a reducing and stabilizing agent and their application in SERS. Appl. Surf. Sci. 2014, 316, 22–27; https://doi.org/10.1016/j.apsusc.2014.07.084.Search in Google Scholar
30. Çiplak, Z., Yildiz, N., Çalimli, A. Investigation of graphene/Ag nanocomposites synthesis parameters for two different synthesis methods. Fullerenes, Nanotub. Carbon Nanostruct. 2015, 23, 361–370; https://doi.org/10.1080/1536383x.2014.894025.Search in Google Scholar
31. Bozkurt, P. A. Sonochemical green synthesis of Ag/graphene nanocomposite. Ultrason. Sonochem. 2017, 35, 397–404; https://doi.org/10.1016/j.ultsonch.2016.10.018.Search in Google Scholar PubMed
32. Zhang, D., Liu, X., Wang, X. Green synthesis of graphene oxide sheets decorated by silver nanoprisms and their anti-bacterial properties. J. Inorg. Biochem. 2011, 105, 1181–1186; https://doi.org/10.1016/j.jinorgbio.2011.05.014.Search in Google Scholar PubMed
33. Cui, S., Mao, S., Wen, Z., Chang, J., Zhang, Y., Chen, J. Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection. Analyst 2013, 138, 2877–2882; https://doi.org/10.1039/c3an36922f.Search in Google Scholar PubMed
34. Hui, K., Dinh, D., Tsang, C., Cho, Y., Zhou, W., Hong, X., Chun, H. H. Green synthesis of dimension-controlled silver nanoparticle–graphene oxide with in situ ultrasonication. Acta Mater. 2014, 64, 326–332; https://doi.org/10.1016/j.actamat.2013.10.045.Search in Google Scholar
35. Ikhsan, N. I., Rameshkumar, P., Pandikumar, A., Mehmood Shahid, M., Huang, N. M., Vijay Kumar, S., Lim, H. N. Facile synthesis of graphene oxide–silver nanocomposite and its modified electrode for enhanced electrochemical detection of nitrite ions. Talanta 2015, 144, 908–914; https://doi.org/10.1016/j.talanta.2015.07.050.Search in Google Scholar PubMed
36. Jiao, T., Guo, H., Zhang, Q., Peng, Q., Tang, Y., Yan, X., Li, B. Reduced graphene oxide-based silver nanoparticle-containing composite hydrogel as highly efficient dye catalysts for wastewater treatment. Sci. Rep. 2015, 5, 1–12; https://doi.org/10.1038/srep11873.Search in Google Scholar PubMed PubMed Central
37. Murphy, S., Huang, L., Kamat, P. V. Reduced graphene oxide–silver nanoparticle composite as an active SERS material. J. Phys. Chem. C 2013, 117, 4740–4747; https://doi.org/10.1021/jp3108528.Search in Google Scholar
38. Das, M. R., Sarma, R. K., Saikia, R., Kale, V. S., Shelke, M. V., Sengupta, P. Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf. B Biointerfaces 2011, 83, 16–22; https://doi.org/10.1016/j.colsurfb.2010.10.033.Search in Google Scholar PubMed
39. Ma, J., Zhang, J., Xiong, Z., Yong, Y., Zhao, X. S. Preparation, characterization and antibacterial properties of silver-modified graphene oxide. J. Mater. Chem. 2011, 21, 3350–3352; https://doi.org/10.1039/c0jm02806a.Search in Google Scholar
40. Xu, W.-P., Zhang, L. C., Li, J. P., Lu, Y., Li, H. H., Ma, Y. N., Wang, W. D., Yu, S. H. Facile synthesis of silver@ graphene oxide nanocomposites and their enhanced antibacterial properties. J. Mater. Chem. 2011, 21, 4593–4597; https://doi.org/10.1039/c0jm03376f.Search in Google Scholar
41. Li, C., Wang, X., Chen, F., Zhang, C., Zhi, X., Wang, K., Cui, D. The antifungal activity of graphene oxide–silver nanocomposites. Biomaterials 2013, 34, 3882–3890; https://doi.org/10.1016/j.biomaterials.2013.02.001.Search in Google Scholar PubMed
42. Liu, C., Shen, J., Yeung, K. W. K., Tjong, S. C. Development and antibacterial performance of novel polylactic acid-graphene oxide-silver nanoparticle hybrid nanocomposite mats prepared by electrospinning. ACS Biomater. Sci. Eng. 2017, 3, 471–486; https://doi.org/10.1021/acsbiomaterials.6b00766.Search in Google Scholar PubMed
43. Ocsoy, I., Temiz, M., Celik, C., Altinsoy, B., Yilmaz, V., Duman, F. A green approach for formation of silver nanoparticles on magnetic graphene oxide and highly effective antimicrobial activity and reusability. J. Mol. Liq. 2017, 227, 147–152; https://doi.org/10.1016/j.molliq.2016.12.015.Search in Google Scholar
44. Prasad, K., Lekshmi, G. S., Ostrikov, K., Lussini, V., Blinco, J., Mohandas, M., Vasilev, K., Bottle, S., Bazaka, K., Ostrikov, K. Synergic bactericidal effects of reduced graphene oxide and silver nanoparticles against Gram-positive and Gram-negative bacteria. Sci. Rep. 2017, 7, 1–11; https://doi.org/10.1038/s41598-017-01669-5.Search in Google Scholar PubMed PubMed Central
45. Dubey, S. P., Dwivedi, A. D., Kim, I. C., Sillanpaa, M., Kwon, Y. N., Lee, C. Synthesis of graphene–carbon sphere hybrid aerogel with silver nanoparticles and its catalytic and adsorption applications. Chem. Eng. J. 2014, 244, 160–167; https://doi.org/10.1016/j.cej.2014.01.042.Search in Google Scholar
46. Lorestani, F., Shahnavaz, Z., Mn, P., Alias, Y., Manan, N. S. One-step hydrothermal green synthesis of silver nanoparticle-carbon nanotube reduced-graphene oxide composite and its application as hydrogen peroxide sensor. Sensor. Actuator. B Chem. 2015, 208, 389–398; https://doi.org/10.1016/j.snb.2014.11.074.Search in Google Scholar
47. Bao, Q., Zhang, D., Qi, P. Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J. Colloid Interface Sci. 2011, 360, 463–470; https://doi.org/10.1016/j.jcis.2011.05.009.Search in Google Scholar PubMed
48. Kim, B.-K., Jo, Y.-L., Shim, J. J. Preparation and antibacterial activity of silver nanoparticles-decorated graphene composites. J. Supercrit. Fluids 2012, 72, 28–35; https://doi.org/10.1016/j.supflu.2012.08.005.Search in Google Scholar
49. Gurunathan, S., Han, J. W., Park, J. H., Kim, E. S., Choi, Y. J., Kwon, D. N., Kim, J. H. Reduced graphene oxide–silver nanoparticle nanocomposite: a potential anticancer nanotherapy. Int. J. Nanomed. 2015, 10, 6257; https://doi.org/10.2147/ijn.s92449.Search in Google Scholar
50. Shen, J., Shi, M., Yan, B., Ma, H., Hu, Y., Ye, M. Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res. 2010, 3, 339–349; https://doi.org/10.1007/s12274-010-1037-x.Search in Google Scholar
51. Xu, C., Wang, X. J. S. Fabrication of flexible metal‐nanoparticle films using graphene oxide sheets as substrates. Small 2009, 5, 2212–2217; https://doi.org/10.1002/smll.200900548.Search in Google Scholar PubMed
52. Wang, C., Zhao, M., Li, J., Yu, J., Sun, S., Ge, S., Guo, X., Xie, F., Jiang, B., Wujcik, E. K., Huang, Y., Wang, N., Guo, Z. Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 2017, 131, 263–271; https://doi.org/10.1016/j.polymer.2017.10.049.Search in Google Scholar
53. Liu, L., Liu, J., Wang, Y., Yan, X., Sun, D. D. Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity. New J. Chem. 2011, 35, 1418–1423; https://doi.org/10.1039/c1nj20076c.Search in Google Scholar
54. Dinh, D., Hui, K., Hui, K., Cho, Y., Zhou, W., Hong, X., Chun, H. H. Green synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films. Appl. Surf. Sci. 2014, 298, 62–67; https://doi.org/10.1016/j.apsusc.2014.01.101.Search in Google Scholar
55. Cai, X., Lin, M., Tan, S., Mai, W., Zhang, Y., Liang, Z., Lin, Z., Zhang, X. The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity. Carbon 2012, 50, 3407–3415; https://doi.org/10.1016/j.carbon.2012.02.002.Search in Google Scholar
56. Li, J., Kuang, D., Feng, Y., Zhang, F., Xu, Z., Liu, M., Wang, D. Green synthesis of silver nanoparticles–graphene oxide nanocomposite and its application in electrochemical sensing oftryptophan. Biosens. Bioelectron. 2013, 42, 198–206; https://doi.org/10.1016/j.bios.2012.10.029.Search in Google Scholar PubMed
57. de Faria, A. F., Martinez, D. S. T., Meira, S. M. M., de Moraes, A. C. M., Brandelli, A., Filho, A. G. S., Alves, O. L. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf. B Biointerfaces 2014, 113, 115–124; https://doi.org/10.1016/j.colsurfb.2013.08.006.Search in Google Scholar PubMed
58. Castellanos-Espinoza, R., Fernández-Tavizón, S., Sierra-Gómez, U., Elizalde-Peña, E., Luna-Bárcenas, G., Baldenegro-Pérez, L., Olvera, L. I., González-Gutiérrez, L., Ramos-Castillo, C., Arjona, N., España-Sánchez, B. Green modification of Graphene oxide nanosheets under specific pH conditions. Appl. Surf. Sci. 2023, 623, 156953; https://doi.org/10.1016/j.apsusc.2023.156953.Search in Google Scholar
59. Mahmoudi, E., Ng, L. Y., Ba-Abbad, M. M., Mohammad, A. Novel nanohybrid polysulfone membrane embedded with silver nanoparticles on graphene oxide nanoplates. Chem. Eng. J. 2015, 277, 1–10; https://doi.org/10.1016/j.cej.2015.04.107.Search in Google Scholar
60. Jeon, E. K., Seo, E., Lee, E., Lee, W., Um, M. K., Kim, B. S. Mussel-inspired green synthesis of silver nanoparticles on graphene oxide nanosheets for enhanced catalytic applications. Chem. Commun. 2013, 49, 3392–3394; https://doi.org/10.1039/c3cc00115f.Search in Google Scholar PubMed
61. Bhunia, S. K., Jana, N. R. Reduced graphene oxide-silver nanoparticle composite as visible light photocatalyst for degradation of colorless endocrine disruptors. ACS Appl. Mater. Interfaces 2014, 6, 20085–20092; https://doi.org/10.1021/am505677x.Search in Google Scholar PubMed
62. Zhu, M., Chen, P., Liu, M. Graphene oxide enwrapped Ag/AgX (X= Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS Nano 2011, 5, 4529–4536; https://doi.org/10.1021/nn200088x.Search in Google Scholar PubMed
63. Ikhsan, N. I., Rameshkumar, P., Huang, N. M. Controlled synthesis of reduced graphene oxide supported silver nanoparticles for selective and sensitive electrochemical detection of 4-nitrophenol. Electrochim. Acta 2016, 192, 392–399; https://doi.org/10.1016/j.electacta.2016.02.005.Search in Google Scholar
64. Hareesh, K., Joshi, R., D.v. S., Bhoraskar, V., Dhole, S. Anchoring of Ag-Au alloy nanoparticles on reduced graphene oxide sheets for the reduction of 4-nitrophenol. Appl. Surf. Sci. 2016, 389, 1050–1055; https://doi.org/10.1016/j.apsusc.2016.08.034.Search in Google Scholar
65. Nasrollahzadeh, M., Atarod, M., Jaleh, B., Gandomirouzbahani, M. In situ green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, Congo red and methylene blue. Ceram. Int. 2016, 42, 8587–8596; https://doi.org/10.1016/j.ceramint.2016.02.088.Search in Google Scholar
66. Liu, S., Tian, J., Wang, L., Sun, X. Microwave-assisted rapid synthesis of Ag nanoparticles/graphene nanosheet composites and their application for hydrogen peroxide detection. J. Nanoparticle Res. 2011, 13, 4539–4548; https://doi.org/10.1007/s11051-011-0410-3.Search in Google Scholar
67. Sahraei, R., Ghaemy, M. Synthesis of modified gum tragacanth/graphene oxide composite hydrogel for heavy metal ions removal and preparation of silver nanocomposite for antibacterial activity. Carbohydr. Polym. 2017, 157, 823–833; https://doi.org/10.1016/j.carbpol.2016.10.059.Search in Google Scholar PubMed
68. Yuan, L., Jiang, L., Liu, J., Xia, Z., Wang, S., Sun, G. Facile synthesis of silver nanoparticles supported on three dimensional graphene oxide/carbon black composite and its application for oxygen reduction reaction. Electrochim. Acta 2014, 135, 168–174; https://doi.org/10.1016/j.electacta.2014.04.137.Search in Google Scholar
69. Ouadil, B., Cherkaoui, O., Safi, M., Zahouily, M. Surface modification of knit polyester fabric for mechanical, electrical and UV protection properties by coating with graphene oxide, graphene and graphene/silver nanocomposites. Appl. Surf. Sci. 2017, 414, 292–302; https://doi.org/10.1016/j.apsusc.2017.04.068.Search in Google Scholar
70. Jiao, T., Zhao, H., Zhou, J., Zhang, Q., Luo, X., Hu, J., Peng, Q., Yan, X. Self-assembly reduced graphene oxide nanosheet hydrogel fabrication by anchorage of chitosan/silver and its potential efficient application toward dye degradation for wastewater treatments. ACS Sustainable Chem. Eng. 2015, 3, 3130–3139; https://doi.org/10.1021/acssuschemeng.5b00695.Search in Google Scholar
71. Pasricha, R., Gupta, S., Srivastava, A. K. A facile and novel synthesis of Ag–graphene‐based nanocomposites. Small 2009, 5, 2253–2259; https://doi.org/10.1002/smll.200900726.Search in Google Scholar PubMed
72. Lee, W.-J., Youn, Y. N., Yun, Y. H., Yoon, S. D. Physical properties of chemically modified starch (RS4)/PVA blend films—part 1. J. Polym. Environ. 2007, 15, 35–42; https://doi.org/10.1007/s10924-006-0040-5.Search in Google Scholar
73. Sondi, I., Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182; https://doi.org/10.1016/j.jcis.2004.02.012.Search in Google Scholar PubMed
74. Zhang, M., Zhao, Y., Yan, L., Peltier, R., Hui, W., Yao, X., Cui, Y., Chen, X., Sun, H., Wang, Z. Interfacial engineering of bimetallic Ag/Pt nanoparticles on reduced graphene oxide matrix for enhanced antimicrobial activity. ACS Appl. Mater. Interfaces 2016, 8, 8834–8840; https://doi.org/10.1021/acsami.6b01396.Search in Google Scholar PubMed
75. Ceckova, M., Vackova, Z., Radilova, H., Libra, A., Buncek, M., Staud, F. Effect of ABCG2 on cytotoxicity of platinum drugs: interference of EGFP. Toxicol. in Vitro 2008, 22, 1846–1852; https://doi.org/10.1016/j.tiv.2008.09.001.Search in Google Scholar PubMed
76. Akhavan, O., Ghaderi, E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J. Phys. Chem. C 2009, 113, 20214–20220; https://doi.org/10.1021/jp906325q.Search in Google Scholar
77. Roe, D., Karandikar, B., Bonn-Savage, N., Gibbins, B., Roullet, J. B. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J. Antimicrob. Chemother. 2008, 61, 869–876; https://doi.org/10.1093/jac/dkn034.Search in Google Scholar PubMed
78. Markowska, K., Grudniak, A. M., Wolska, K. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim. Pol. 2013, 60, 523–530; https://doi.org/10.18388/abp.2013_2016.Search in Google Scholar
79. Hu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D., Huang, Q., Fan, C. Graphene-based antibacterial paper. ACS Nano 2010, 4, 4317–4323; https://doi.org/10.1021/nn101097v.Search in Google Scholar PubMed
80. Ye, S., Majumdar, P., Chisholm, B., Stafslien, S., Chen, Z. Antifouling and antimicrobial mechanism of tethered quaternary ammonium salts in a cross-linked poly (dimethylsiloxane) matrix studied using sum frequency generation vibrational spectroscopy. Langmuir 2010, 26, 16455–16462; https://doi.org/10.1021/la1001539.Search in Google Scholar PubMed
81. Liu, S., Zeng, T. H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R., Kong, J., Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 2011, 5, 6971–6980; https://doi.org/10.1021/nn202451x.Search in Google Scholar PubMed
82. Alsuwait, R. B., Souiyah, M., Momohjimoh, I., Ganiyu, S. A., Bakare, A. O. Recent development in the processing, properties, and applications of epoxy-based natural fiber polymer biocomposites. Polymers 2022, 15, 145; https://doi.org/10.3390/polym15010145.Search in Google Scholar PubMed PubMed Central
83. Tan, S. Z., Zhang, K. H., Zhang, L. L., Xie, Y. S., Liu, Y. L. Preparation and characterization of the antibacterial Zn2+ or/and Ce3+ loaded montmorillonites. Chin. J. Chem. 2008, 26, 865–869; https://doi.org/10.1002/cjoc.200890160.Search in Google Scholar
84. Hu, B., Wang, S. B., Wang, K., Zhang, M., Yu, S. H. Microwave-assisted rapid facile “green” synthesis of uniform silver nanoparticles: self-assembly into multilayered films and their optical properties. J. Phys. Chem. C 2008, 112, 11169–11174; https://doi.org/10.1021/jp801267j.Search in Google Scholar
85. Ng, L., Sherburne, R., Taylor, D. E., Stiles, M. E. Morphological forms and viability of Campylobacter species studied by electron microscopy. J. Bacteriol. 1985, 164, 338–343; https://doi.org/10.1128/jb.164.1.338-343.1985.Search in Google Scholar PubMed PubMed Central
86. Kar, S., Bagchi, B., Kundu, B., Bhandary, S., Basu, R., Nandy, P., Das, S. Synthesis and characterization of Cu/Ag nanoparticle loaded mullite nanocomposite system: a potential candidate for antimicrobial and therapeutic applications. Biochim. Biophys. Acta Gen. Subj. 2014, 1840, 3264–3276; https://doi.org/10.1016/j.bbagen.2014.05.012.Search in Google Scholar PubMed
87. Shaheen, S., Saeed, Z., Ahmad, A., Pervaiz, M., Younas, U., Mahmood Khan, R. R., Luque, R., Rajendran, S. Green synthesis of graphene-based metal nanocomposite for electro and photocatalytic activity; recent advancement and future prospective. Chemosphere 2023, 311, 136982; https://doi.org/10.1016/j.chemosphere.2022.136982.Search in Google Scholar PubMed
88. Kim, Y.-K., Na, H. K., Lee, Y. W., Jang, H., Han, S. W., Min, D. H. The direct growth of gold rods on graphene thin films. Chem. Commun. 2010, 46, 3185–3187; https://doi.org/10.1039/c002002h.Search in Google Scholar PubMed
89. Gnana Kumar, G., Justice Babu, K., Nahm, K. S., Hwang, Y. J. A facile one-pot green synthesis of reduced graphene oxide and its composites for non-enzymatic hydrogen peroxide sensor applications. RSC Adv. 2014, 4, 7944–7951; https://doi.org/10.1039/c3ra45596c.Search in Google Scholar
90. Liu, Y., Liu, C.-Y., Liu, Y. Investigation on fluorescence quenching of dyes by graphite oxide and graphene. Appl. Surf. Sci. 2011, 257, 5513–5518; https://doi.org/10.1016/j.apsusc.2010.12.136.Search in Google Scholar
91. Rai, M., Yadav, A., Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83; https://doi.org/10.1016/j.biotechadv.2008.09.002.Search in Google Scholar PubMed
92. Yoo, D.-H., Cuong, T. V., Pham, V. H., Chung, J. S., Khoa, N. T., Kim, E. J., Hahn, S. H. Enhanced photocatalytic activity of graphene oxide decorated on TiO2 films under UV and visible irradiation. Curr. Appl. Phys. 2011, 11, 805–808; https://doi.org/10.1016/j.cap.2010.11.077.Search in Google Scholar
93. Zhong, L., Gan, S., Fu, X., Li, F., Han, D., Guo, L., Niu, L. Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic H2O2 biosensor. Electrochim. Acta 2013, 89, 222–228; https://doi.org/10.1016/j.electacta.2012.10.161.Search in Google Scholar
94. Su, S., Zhang, C., Yuwen, L., Chao, J., Zuo, X., Liu, X., Song, C., Fan, C., Wang, L. Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 18735–18741; https://doi.org/10.1021/am5043092.Search in Google Scholar PubMed
95. Perera, S. D., Mariano, R. G., Vu, K., Nour, N., Seitz, O., Chabal, Y., Balkus, K. J. Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2012, 2, 949–956; https://doi.org/10.1021/cs200621c.Search in Google Scholar
96. Teeguarden, J. G., Hinderliter, P. M., Orr, G., Thrall, B. D., Pounds, J. G. Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol. Sci. 2007, 95, 300–312; https://doi.org/10.1093/toxsci/kfl165.Search in Google Scholar PubMed
97. Mazloum-Ardakani, M., Hosseinzadeh, L., Taleat, Z. Synthesis and electrocatalytic effect of Ag@Pt core-shell nanoparticles supported on reduced graphene oxide for sensitive and simple label-free electrochemical aptasensor. Biosens. Bioelectron. 2015, 74, 30–36; https://doi.org/10.1016/j.bios.2015.05.072.Search in Google Scholar PubMed
98. Hu, Z., Tong, G., Nian, Q., Xu, R., Saei, M., Chen, F., Chen, C., Zhang, M., Guo, H., Xu, J. Laser sintered single layer graphene oxide reinforced titanium matrix nanocomposites. Composites, Part B 2016, 93, 352–359; https://doi.org/10.1016/j.compositesb.2016.03.043.Search in Google Scholar
99. Kim, K., Lee, H. S. Effect of Ag and Au nanoparticles on the SERS of 4-aminobenzenethiol assembled on powdered copper. J. Phys. Chem. B 2005, 109, 18929–18934; https://doi.org/10.1021/jp052665z.Search in Google Scholar PubMed
100. Mittal, A., Mittal, J., Malviya, A., Kaur, D., Gupta, V. Adsorption of hazardous dye crystal violet from wastewater by waste materials. J. Colloid Interface Sci. 2010, 343, 463–473; https://doi.org/10.1016/j.jcis.2009.11.060.Search in Google Scholar PubMed
101. Chen, X., Huang, X., Zheng, C., Liu, Y., Xu, T., Liu, J. Preparation of different sized nano-silver loaded on functionalized graphene oxide with highly effective antibacterial properties. J. Mater. Chem. B 2015, 3, 7020–7029; https://doi.org/10.1039/c5tb00280j.Search in Google Scholar PubMed
102. Lee, J., Novoselov, K. S., Shin, H. S. Interaction between metal and graphene: dependence on the layer number of graphene. ACS Nano 2011, 5, 608–612; https://doi.org/10.1021/nn103004c.Search in Google Scholar PubMed
103. Gupta, V. K., Jain, R., Radhapyari, K., Jadon, N., Agarwal, S. Voltammetric techniques for the assay of pharmaceuticals—a review. Anal. Biochem. 2011, 408, 179; https://doi.org/10.1016/j.ab.2010.09.027.Search in Google Scholar PubMed
104. Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., Férey, G. A new photoactive crystalline highly porous titanium (IV) dicarboxylate. J. Am. Chem. Soc. 2009, 131, 10857–10859; https://doi.org/10.1021/ja903726m.Search in Google Scholar PubMed
105. Zhang, X., Fan, X., Yan, C., Li, H., Zhu, Y., Li, X., Yu, L. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. ACS Appl. Mater. Interfaces 2012, 4, 1543–1552; https://doi.org/10.1021/am201757v.Search in Google Scholar PubMed
106. Yu, T., Zeng, J., Lim, B., Xia, Y. Aqueous‐phase synthesis of Pt/CeO2 hybrid nanostructures and their catalytic properties. Adv. Mater. 2010, 22, 5188–5192; https://doi.org/10.1002/adma.201002763.Search in Google Scholar PubMed
107. Perreault, F., de Faria, A. F., Nejati, S., Elimelech, M. Antimicrobial properties of graphene oxide nanosheets: why size matters. ACS Nano 2015, 9, 7226–7236; https://doi.org/10.1021/acsnano.5b02067.Search in Google Scholar PubMed
108. Kaniyankandy, S., Nuwad, J., Thinaharan, C., Dey, G. K., Pillai, C. G. S. Electrodeposition of silver nanodendrites. Nanotechnology 2007, 18, 125610; https://doi.org/10.1088/0957-4484/18/12/125610.Search in Google Scholar
109. Bai, R. G., Muthoosamy, K., Shipton, F. N., Pandikumar, A., Rameshkumar, P., Huang, N. M., Manickam, S. The biogenic synthesis of a reduced graphene oxide–silver (RGO–Ag) nanocomposite and its dual applications as an antibacterial agent and cancer biomarker sensor. RSC Adv. 2016, 6, 36576–36587; https://doi.org/10.1039/c6ra02928k.Search in Google Scholar
110. Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., Dash, D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 2007, 18, 225103; https://doi.org/10.1088/0957-4484/18/22/225103.Search in Google Scholar PubMed
111. Kvítek, L., Panáček, A., Soukupová, J., Kolář, M., Večeřová, R., Prucek, R., Holecová, M., Zbořil, R. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J. Phys. Chem. C 2008, 112, 5825–5834; https://doi.org/10.1021/jp711616v.Search in Google Scholar
112. Xie, X., Mao, C., Liu, X., Zhang, Y., Cui, Z., Yang, X., Yeung, K. W. K., Pan, H., Chu, P. K., Wu, S. Synergistic bacteria killing through photodynamic and physical actions of graphene oxide/Ag/collagen coating. ACS Appl. Mater. Interfaces 2017, 9, 26417–26428; https://doi.org/10.1021/acsami.7b06702.Search in Google Scholar PubMed
113. Liu, H., Lv, M., Deng, B., Li, J., Yu, M., Huang, Q., Fan, C. Laundering durable antibacterial cotton fabrics grafted with pomegranate-shaped polymer wrapped in silver nanoparticle aggregations. Sci. Rep. 2014, 4, 1–9; https://doi.org/10.1038/srep05920.Search in Google Scholar PubMed PubMed Central
114. Wang, Y., Ding, X., Chen, Y., Guo, M., Zhang, Y., Guo, X., Gu, H. Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections. Biomaterials 2016, 101, 207–216; https://doi.org/10.1016/j.biomaterials.2016.06.004.Search in Google Scholar PubMed
115. de Faria, A. F., Perreault, F., Shaulsky, E., Arias Chavez, L. H., Elimelech, M. Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide-silver nanocomposites. ACS Appl. Mater. Interfaces 2015, 7, 12751–12759; https://doi.org/10.1021/acsami.5b01639.Search in Google Scholar PubMed
116. Akhavan, O., Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010, 4, 5731–5736; https://doi.org/10.1021/nn101390x.Search in Google Scholar PubMed
117. Liu, S., Hu, M., Zeng, T. H., Wu, R., Jiang, R., Wei, J., Wang, L., Kong, J., Chen, Y. Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir 2012, 28, 12364–12372; https://doi.org/10.1021/la3023908.Search in Google Scholar PubMed
118. Gurunathan, S., Woong Han, J., Abdal Daye, A., Eppakayala, V., Kim, J. H. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomed. 2012, 7, 5901; https://doi.org/10.2147/ijn.s37397.Search in Google Scholar PubMed PubMed Central
119. Ruiz, O. N., Fernando, K. A. S., Wang, B., Brown, N. A., Luo, P. G., McNamara, N. D., Vangsness, M., Sun, Y. P., Bunker, C. E. Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano 2011, 5, 8100–8107; https://doi.org/10.1021/nn202699t.Search in Google Scholar PubMed
120. Carpio, I. E. M., Santos, C. M., Wei, X., Rodrigues, D. F. Toxicity of a polymer–graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale 2012, 4, 4746–4756; https://doi.org/10.1039/c2nr30774j.Search in Google Scholar PubMed
121. Krishnamoorthy, K., Veerapandian, M., Zhang, L. H., Yun, K., Kim, S. J. Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J. Phys. Chem. C 2012, 116, 17280–17287; https://doi.org/10.1021/jp3047054.Search in Google Scholar
122. Chen, J., Peng, H., Wang, X., Shao, F., Yuan, Z., Han, H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 2014, 6, 1879–1889; https://doi.org/10.1039/c3nr04941h.Search in Google Scholar PubMed
123. Nine, M. J., Cole, M. A., Tran, D. N. H., Losic, D. Graphene: a multipurpose material for protective coatings. J. Mater. Chem. A 2015, 3, 12580–12602; https://doi.org/10.1039/c5ta01010a.Search in Google Scholar
124. Mühling, M., Bradford, A., Readman, J. W., Somerfield, P. J., Handy, R. D. An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment. Mar. Environ. Res. 2009, 68, 278–283; https://doi.org/10.1016/j.marenvres.2009.07.001.Search in Google Scholar PubMed
125. de Faria, A. F., de Moraes, A. C. M., Marcato, P. D., Martinez, D. S. T., Durán, N., Filho, A. G. S., Brandelli, A., Alves, O. L. Eco-friendly decoration of graphene oxide with biogenic silver nanoparticles: antibacterial and antibiofilm activity. J. Nanoparticle Res. 2014, 16, 2110; https://doi.org/10.1007/s11051-013-2110-7.Search in Google Scholar
126. Agnihotri, S., Mukherji, S., Mukherji, S. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Nanoscale 2013, 5, 7328–7340; https://doi.org/10.1039/c3nr00024a.Search in Google Scholar PubMed
127. Marta, B., Potara, M., Iliut, M., Jakab, E., Radu, T., Imre-Lucaci, F., Katona, G., Popescu, O., Astilean, S. Designing chitosan–silver nanoparticles–graphene oxide nanohybrids with enhanced antibacterial activity against Staphylococcus aureus. Colloids Surf. A Physicochem. Eng. Asp. 2015, 487, 113–120; https://doi.org/10.1016/j.colsurfa.2015.09.046.Search in Google Scholar
128. Yuan, Y. G., Gurunathan, S. Combination of graphene oxide-silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells Int J Nanomedicine. Int. J. Nanomed. 2017, 12, 6537–6558; https://doi.org/10.2147/ijn.s125281.Search in Google Scholar PubMed PubMed Central
129. Liao, L., Liu, J., Dreaden, E. C., Morton, S. W., Shopsowitz, K. E., Hammond, P. T., Johnson, J. A. A convergent synthetic platform for single-nanoparticle combination cancer therapy: ratiometric loading and controlled release of cisplatin, doxorubicin, and camptothecin. J. Am. Chem. Soc. 2014, 136, 5896–5899; https://doi.org/10.1021/ja502011g.Search in Google Scholar PubMed PubMed Central
130. Pathak, R. K., Dhar, S. A nanoparticle cocktail: temporal release of predefined drug combinations. J. Am. Chem. Soc. 2015, 137, 8324–8327; https://doi.org/10.1021/jacs.5b03078.Search in Google Scholar PubMed
131. Pathak, R. K., Dhar, S. Combined chemo-anti-inflammatory prodrugs and nanoparticles. Synlett 2016, 27, 1607–1612; https://doi.org/10.1055/s-0035-1561440.Search in Google Scholar
132. Nasrollahzadeh, M., Babaei, F., Mohammad Sajadi, S., Ehsani, A. Green synthesis, optical properties and catalytic activity of silver nanoparticles in the synthesis of N-monosubstituted ureas in water. Spectrochim. Acta Mol. Biomol. Spectrosc. 2014, 132, 423–429; https://doi.org/10.1016/j.saa.2014.04.186.Search in Google Scholar PubMed
133. Maji, S. K., Dutta, A. K., Srivastava, D. N., Paul, P., Mondal, A., Adhikary, B., Adhikary, U. Electrocatalytic activity of silver nanoparticles modified glassy carbon electrode as amperometric sensor for hydrogen peroxide. J. Nanosci. Nanotechnol. 2013, 13, 4969–4974; https://doi.org/10.1166/jnn.2013.7594.Search in Google Scholar PubMed
134. Wu, T., Zhang, L., Gao, J., Liu, Y., Gao, C., Yan, J. Fabrication of graphene oxide decorated with Au–Ag alloy nanoparticles and its superior catalytic performance for the reduction of 4-nitrophenol. J. Mater. Chem. A 2013, 1, 7384–7390; https://doi.org/10.1039/c3ta10684e.Search in Google Scholar
135. Ye, W., Yu, J., Zhou, Y., Gao, D., Wang, D., Wang, C., Xue, D. Green synthesis of Pt–Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4-nitrophenol reduction. Appl. Catal. B Environ. 2016, 181, 371–378; https://doi.org/10.1016/j.apcatb.2015.08.013.Search in Google Scholar
136. Guo, M., He, J., Li, Y., Ma, S., Sun, X. One-step synthesis of hollow porous gold nanoparticles with tunable particle size for the reduction of 4-nitrophenol. J. Hazard. Mater. 2016, 310, 89–97; https://doi.org/10.1016/j.jhazmat.2016.02.016.Search in Google Scholar PubMed
137. Mei, L.-P., Wang, R., Song, P., Feng, J. J., Wang, Z. G., Chen, J. R., Wang, A. J. One-pot solvothermal synthesis of bimetallic yolk–shell Ni@ PtNi nanocrystals supported on reduced graphene oxide and their excellent catalytic properties for p-nitrophenol reduction. New J. Chem. 2016, 40, 2315–2320; https://doi.org/10.1039/c5nj02923f.Search in Google Scholar
138. Liu, Q., Xu, Y. R., Wang, A. J., Feng, J. J. One-step melamine-assisted synthesis of graphene-supported AuPt@ Au nanocrystals for enhanced catalytic reduction of p-nitrophenol. RSC Adv. 2015, 5, 96028–96033; https://doi.org/10.1039/c5ra21645a.Search in Google Scholar
139. Du, X., He, J., Zhu, J., Sun, L., An, S. Ag-deposited silica-coated Fe3O4 magnetic nanoparticles catalyzed reduction of p-nitrophenol. Appl. Surf. Sci. 2012, 258, 2717–2723; https://doi.org/10.1016/j.apsusc.2011.10.122.Search in Google Scholar
140. Noh, J.-H., Meijboom, R. Catalytic evaluation of dendrimer-templated Pd nanoparticles in the reduction of 4-nitrophenol using Langmuir–Hinshelwood kinetics. Appl. Surf. Sci. 2014, 320, 400–413; https://doi.org/10.1016/j.apsusc.2014.09.058.Search in Google Scholar
141. Liu, J.-H., Wang, A. Q., Chi, Y. S., Lin, H. P., Mou, C. Y. Synergistic effect in an Au–Ag alloy nanocatalyst: CO oxidation. J. Phys. Chem. B 2005, 109, 40–43; https://doi.org/10.1021/jp044938g.Search in Google Scholar PubMed
142. Neppolian, B., Wang, C., Ashokkumar, M. Sonochemically synthesized mono and bimetallic Au-Ag reduced graphene oxide based nanocomposites with enhanced catalytic activity. Ultrason. Sonochem. 2014, 21, 1948–1953; https://doi.org/10.1016/j.ultsonch.2014.02.006.Search in Google Scholar PubMed
143. Ji, Z., Shen, X., Yang, J., Zhu, G., Chen, K. A novel reduced graphene oxide/Ag/CeO2 ternary nanocomposite: green synthesis and catalytic properties. Appl. Catal. B Environ. 2014, 144, 454–461; https://doi.org/10.1016/j.apcatb.2013.07.052.Search in Google Scholar
144. Zhu, C., Wang, P., Wang, L., Han, L., Dong, S. Facile synthesis of two-dimensional graphene/SnO2/Pt ternary hybrid nanomaterials and their catalytic properties. Nanoscale 2011, 3, 4376–4382; https://doi.org/10.1039/c1nr10634a.Search in Google Scholar PubMed
145. An, C., Peng, S., Sun, Y. Facile synthesis of sunlight‐driven AgCl: Ag plasmonic nanophotocatalyst. Adv. Mater. 2010, 22, 2570–2574; https://doi.org/10.1002/adma.200904116.Search in Google Scholar PubMed
146. Bi, Y., Ye, J. Direct conversion of commercial silver foils into high aspect ratio AgBr nanowires with enhanced photocatalytic properties. Chem. Eur J. 2010, 16, 10327–10331; https://doi.org/10.1002/chem.201001002.Search in Google Scholar PubMed
147. Wang, P., Huang, B., Lou, Z., Zhang, X., Qin, X., Dai, Y., Zheng, Z., Wang, X. Synthesis of highly efficient Ag@ AgCl plasmonic photocatalysts with various structures. Chem. Eur J. 2010, 16, 538–544; https://doi.org/10.1002/chem.200901954.Search in Google Scholar PubMed
148. Wang, P., Huang, B., Qin, X., Zhang, X., Dai, Y., Wei, J., Whangbo, M. H. Ag@ AgCl: a highly efficient and stable photocatalyst active under visible light. Angew. Chem. 2008, 47, 7931–7933; https://doi.org/10.1002/ange.200802483.Search in Google Scholar
149. Wang, P., Huang, B., Qin, X., Zhang, X., Dai, Y., Whangbo, M. H. Ag/AgBr/WO3·H2O: visible-light photocatalyst for bacteria destruction. Inorg. Chem. 2009, 48, 10697–10702; https://doi.org/10.1021/ic9014652.Search in Google Scholar PubMed
150. Wang, P., Huang, B., Zhang, Q., Zhang, X., Qin, X., Dai, Y., Zhan, J., Yu, J., Liu, H., Lou, Z. Highly efficient visible light plasmonic photocatalyst Ag@ Ag (Br, I). Chem. Eur J. 2010, 16, 10042–10047; https://doi.org/10.1002/chem.200903361.Search in Google Scholar PubMed
151. Wang, P., Huang, B., Zhang, X., Qin, X., Dai, Y., Jin, H., Wei, J., Whangbo, M. H. Composite semiconductor H2WO4·H2O/AgCl as an efficient and stable photocatalyst under visible light. Chem. Eur J. 2008, 14, 10543–10546; https://doi.org/10.1002/chem.200801733.Search in Google Scholar PubMed
152. Wang, P., Huang, B., Zhang, X., Qin, X., Jin, H., Dai, Y., Wang, Z., Wei, J., Zhan, J., Wang, S., Wang, J., Whangbo, M. H. Highly efficient visible‐light plasmonic photocatalyst Ag@ AgBr. Chem. Eur. J. 2009, 15, 1821–1824; https://doi.org/10.1002/chem.200802327.Search in Google Scholar PubMed
153. Yu, J., Dai, G., Huang, B. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays. J. Phys. Chem. C 2009, 113, 16394–16401; https://doi.org/10.1021/jp905247j.Search in Google Scholar
154. Zang, Y., Farnood, R. Photocatalytic activity of AgBr/TiO2 in water under simulated sunlight irradiation. Appl. Catal. B Environ. 2008, 79, 334–340; https://doi.org/10.1016/j.apcatb.2007.10.019.Search in Google Scholar
155. Lu, Y., Chen, W. Size effect of silver nanoclusters on their catalytic activity for oxygen electro-reduction. J. Power Sources 2012, 197, 107–110; https://doi.org/10.1016/j.jpowsour.2011.09.033.Search in Google Scholar
156. Zhao, C., Xu, X., Chen, J., Wang, G., Yang, F. Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system. Desalination 2014, 340, 59–66; https://doi.org/10.1016/j.desal.2014.02.022.Search in Google Scholar
157. Maham, M., Nasrollahzadeh, M., Sajadi, S. M., Nekoei, M. Biosynthesis of Ag/reduced graphene oxide/Fe(3)O(4) using Lotus garcinii leaf extract and its application as a recyclable nanocatalyst for the reduction of 4-nitrophenol and organic dyes. J. Colloid Interface Sci. 2017, 497, 33–42; https://doi.org/10.1016/j.jcis.2017.02.064.Search in Google Scholar PubMed
158. Gholivand, M. B., Pashabadi, A., Azadbakht, A., Menati, S. A nano-structured Ni (II)–ACDA modified gold nanoparticle self-assembled electrode for electrocatalytic oxidation and determination of tryptophan. Electrochim. Acta 2011, 56, 4022–4030; https://doi.org/10.1016/j.electacta.2011.02.009.Search in Google Scholar
159. Zhao, W., Wang, H., Qin, X., Wang, X., Zhao, Z., Miao, Z., Chen, L., Shan, M., Fang, Y., Chen, Q. A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode. Talanta 2009, 80, 1029–1033; https://doi.org/10.1016/j.talanta.2009.07.055.Search in Google Scholar PubMed
160. Fang, M., Chen, Z., Wang, S., Lu, H. The deposition of iron and silver nanoparticles in graphene–polyelectrolyte brushes. Nanotechnology 2012, 23, 085704; https://doi.org/10.1088/0957-4484/23/8/085704.Search in Google Scholar PubMed
161. Song, Y., Cui, K., Wang, L., Chen, S. The electrodeposition of Ag nanoparticles on a type I collagen-modified glassy carbon electrode and their applications as a hydrogen peroxide sensor. Nanotechnology 2009, 20, 105501; https://doi.org/10.1088/0957-4484/20/10/105501.Search in Google Scholar PubMed
162. Lu, W., Chang, G., Luo, Y., Liao, F., Sun, X. Method for effective immobilization of Ag nanoparticles/graphene oxide composites on single-stranded DNA modified gold electrode for enzymeless H2O2 detection. J. Mater. Sci. 2011, 46, 5260–5266; https://doi.org/10.1007/s10853-011-5464-1.Search in Google Scholar
163. Guo, Y., Sun, X., Liu, Y., Wang, W., Qiu, H., Gao, J. One pot preparation of reduced graphene oxide (RGO) or Au (Ag) nanoparticle-RGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation. Carbon 2012, 50, 2513–2523; https://doi.org/10.1016/j.carbon.2012.01.074.Search in Google Scholar
164. Yu, A., Wang, Q., Yong, J., Mahon, P. J., Malherbe, F., Wang, F., Zhang, H., Wang, J. Silver nanoparticle–carbon nanotube hybrid films: preparation and electrochemical sensing. Electrochim. Acta 2012, 74, 111–116; https://doi.org/10.1016/j.electacta.2012.04.024.Search in Google Scholar
165. Campbell, F. W., Belding, S. R., Baron, R., Xiao, L., Compton, R. G. Hydrogen peroxide electroreduction at a silver-nanoparticle array: investigating nanoparticle size and coverage effects. J. Phys. Chem. C 2009, 113, 9053–9062; https://doi.org/10.1021/jp900233z.Search in Google Scholar
166. Mahmoudian, M., Alias, Y., Basirun, W., Moradi Golsheikh, A., Jamali-Sheini, F. Synthesis of polypyrrole coated manganese nanowires and their application in hydrogen peroxide detection. Mater. Chem. Phys. 2013, 141, 298–303; https://doi.org/10.1016/j.matchemphys.2013.05.014.Search in Google Scholar
167. Li, L., Du, Z., Liu, S., Hao, Q., Wang, Y., Li, Q., Wang, T. A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta 2010, 82, 1637–1641; https://doi.org/10.1016/j.talanta.2010.07.020.Search in Google Scholar PubMed
168. Liu, X., Xu, X., Zhu, H., Yang, X. Synthesis of graphene nanosheets with incorporated silver nanoparticles for enzymeless hydrogen peroxide detection. Anal. Methods 2013, 5, 2298–2304; https://doi.org/10.1039/c3ay26458k.Search in Google Scholar
169. Luo, Y., Lu, W., Chang, G., Liao, F., Sun, X. One-step preparation of Ag nanoparticle–decorated coordination polymer nanobelts and their application for enzymeless H2O2 detection. Electrochim. Acta 2011, 56, 8371–8374; https://doi.org/10.1016/j.electacta.2011.07.024.Search in Google Scholar
170. Lu, W., Luo, Y., Chang, G., Sun, X. Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection. Biosens. Bioelectron. 2011, 26, 4791–4797; https://doi.org/10.1016/j.bios.2011.06.008.Search in Google Scholar PubMed
171. Welch, C., Banks, C. E., Simm, A. O., Compton, R. G. Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Anal. Bioanal. Chem. 2005, 382, 12–21; https://doi.org/10.1007/s00216-005-3205-5.Search in Google Scholar PubMed
172. Han, Y., Zheng, J., Dong, S. A novel nonenzymatic hydrogen peroxide sensor based on Ag–MnO2–MWCNTs nanocomposites. Electrochim. Acta 2013, 90, 35–43; https://doi.org/10.1016/j.electacta.2012.11.117.Search in Google Scholar
173. Tian, Y., Wang, F., Liu, Y., Pang, F., Zhang, X. Green synthesis of silver nanoparticles on nitrogen-doped graphene for hydrogen peroxide detection. Electrochim. Acta 2014, 146, 646–653; https://doi.org/10.1016/j.electacta.2014.08.133.Search in Google Scholar
174. Zhu, X., Yuri, I., Gan, X., Suzuki, I., Li, G. Electrochemical study of the effect of nano-zinc oxide on microperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation. Biosens. Bioelectron. 2007, 22, 1600–1604; https://doi.org/10.1016/j.bios.2006.07.007.Search in Google Scholar PubMed
175. Varela-Rizo, H., Martín-Gullón, I., Terrones, M. Hybrid films with graphene oxide and metal nanoparticles could now replace indium tin oxide. ACS Nano 2012, 6, 4565–4572; https://doi.org/10.1021/nn302221q.Search in Google Scholar PubMed
176. Kakaei, K., Dorraji, M. One-pot synthesis of Palladium Silver nanoparticles decorated reduced graphene oxide and their application for ethanol oxidation in alkaline media. Electrochim. Acta 2014, 143, 207–215; https://doi.org/10.1016/j.electacta.2014.07.134.Search in Google Scholar
177. Nguyen, S. T., Yang, Y., Wang, X. Ethanol electro-oxidation activity of Nb-doped-TiO2 supported PdAg catalysts in alkaline media. Appl. Catal. B Environ. 2012, 113, 261–270; https://doi.org/10.1016/j.apcatb.2011.11.046.Search in Google Scholar
178. Lu, G., Ocola, L. E., Chen, J. Room‐temperature gas sensing based on electron transfer between discrete tin oxide nanocrystals and multiwalled carbon nanotubes. Adv. Mater. 2009, 21, 2487–2491; https://doi.org/10.1002/adma.200803536.Search in Google Scholar
179. Mulvihill, M., Tao, A., Benjauthrit, K., Arnold, J., Yang, P. Surface‐enhanced Raman spectroscopy for trace arsenic detection in contaminated water. Angew. Chem., Int. Ed. 2008, 47, 6456–6460; https://doi.org/10.1002/anie.200800776.Search in Google Scholar PubMed
180. Mosier-Boss, P., Lieberman, S. Detection of anions by normal Raman spectroscopy and surface-enhanced Raman spectroscopy of cationic-coated substrates. Appl. Spectrosc. 2003, 57, 1129–1137; https://doi.org/10.1366/00037020360695991.Search in Google Scholar PubMed
181. Zhang, T., Lang, Q., Yang, D., Li, L., Zeng, L., Zheng, C., Li, T., Wei, M., Liu, A. Simultaneous voltammetric determination of nitrophenol isomers at ordered mesoporous carbon modified electrode. Electrochim. Acta 2013, 106, 127–134; https://doi.org/10.1016/j.electacta.2013.05.055.Search in Google Scholar
182. Mocak, J., Bond, A. M., Mitchell, S., Scollary, G. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltammetric and stripping techniques. Pure Appl. Chem. 1997, 69, 297–328; https://doi.org/10.1351/pac199769020297.Search in Google Scholar
183. Luo, Z., Yuwen, L., Han, Y., Tian, J., Zhu, X., Weng, L., Wang, L. Reduced graphene oxide/PAMAM-silver nanoparticles nanocomposite modified electrode for direct electrochemistry of glucose oxidase and glucose sensing. Biosens. Bioelectron. 2012, 36, 179–185; https://doi.org/10.1016/j.bios.2012.04.009.Search in Google Scholar PubMed
184. Wang, K., Liu, Q., Guan, Q. M., Wu, J., Li, H. N., Yan, J. J. Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals. Biosens. Bioelectron. 2011, 26, 2252–2257; https://doi.org/10.1016/j.bios.2010.09.043.Search in Google Scholar PubMed
185. Yola, M. L., Gupta, V. K., Eren, T., Atar, N. A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim. Acta 2014, 120, 204–211; https://doi.org/10.1016/j.electacta.2013.12.086.Search in Google Scholar
186. Brett, A. M. O., Ghica, M. E. Electrochemical oxidation of quercetin. Electroanalysis 2003, 15, 1745–1750; https://doi.org/10.1002/elan.200302800.Search in Google Scholar
187. Mittal, A., Mittal, J., Malviya, A., Gupta, V. Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption. J. Colloid Interface Sci. 2009, 340, 16–26; https://doi.org/10.1016/j.jcis.2009.08.019.Search in Google Scholar PubMed
188. Jain, A., Gupta, V. K., Bhatnagar, A., Suhas. A comparative study of adsorbents prepared from industrial wastes for removal of dyes. Sep. Sci. Technol. 2003, 38, 463–481; https://doi.org/10.1081/ss-120016585.Search in Google Scholar
189. Gupta, V. K., Chandra, S., Mangla, R. Dicyclohexano-18-crown-6 as active material in PVC matrix membrane for the fabrication of cadmium selective potentiometric sensor. Electrochim. Acta 2002, 47, 1579–1586; https://doi.org/10.1016/s0013-4686(01)00895-7.Search in Google Scholar
190. Li, Y., Lu, Q., Wu, S., Wang, L., Shi, X. Hydrogen peroxide sensing using ultrathin platinum-coated gold nanoparticles with core@ shell structure. Biosens. Bioelectron. 2013, 41, 576–581; https://doi.org/10.1016/j.bios.2012.09.027.Search in Google Scholar PubMed
191. Wang, Z., Zhang, Y., Liu, S., Zhang, T. Preparation of Ag nanoparticles-SnO2 nanoparticles-reduced graphene oxide hybrids and their application for detection of NO2 at room temperature. Sensor. Actuator. B Chem. 2016, 222, 893–903; https://doi.org/10.1016/j.snb.2015.09.027.Search in Google Scholar
192. Mao, S., Cui, S., Lu, G., Yu, K., Wen, Z., Chen, J. Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals. J. Mater. Chem. 2012, 22, 11009–11013; https://doi.org/10.1039/c2jm30378g.Search in Google Scholar
193. Wu, T., Chen, M., Zhang, L., Xu, X., Liu, Y., Yan, J., Wang, W., Gao, J. Three-dimensional graphene-based aerogels prepared by a self-assembly process and its excellent catalytic and absorbing performance. J. Mater. Chem. A 2013, 1, 7612–7621; https://doi.org/10.1039/c3ta10989e.Search in Google Scholar
194. Elahifard, M. R., Rahimnejad, S., Haghighi, S., Gholami, M. R. Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria. J. Am. Chem. Soc. 2007, 129, 9552–9553; https://doi.org/10.1021/ja072492m.Search in Google Scholar PubMed
195. Kim, J. S., Kuk, E., Yu, K. N., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C. Y., Kim, Y. K., Lee, Y. S., Jeong, D. H., Cho, M. H. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101; https://doi.org/10.1016/j.nano.2006.12.001.Search in Google Scholar PubMed
196. Boas, M., Feldt-Rasmussen, U., Main, K. M. Thyroid effects of endocrine disrupting chemicals. Mol. Cell. Endocrinol. 2012, 355, 240–248; https://doi.org/10.1016/j.mce.2011.09.005.Search in Google Scholar PubMed
197. Kale, M. J., Avanesian, T., Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 2014, 4, 116–128; https://doi.org/10.1021/cs400993w.Search in Google Scholar
198. Lightcap, I. V., Kosel, T. H., Kamat, P. V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett. 2010, 10, 577–583; https://doi.org/10.1021/nl9035109.Search in Google Scholar PubMed
199. Mou, Z., Wu, Y., Sun, J., Yang, P., Du, Y., Lu, C. TiO2 nanoparticles-functionalized N-doped graphene with superior interfacial contact and enhanced charge separation for photocatalytic hydrogen generation. ACS Appl. Mater. Interfaces 2014, 6, 13798–13806; https://doi.org/10.1021/am503244w.Search in Google Scholar PubMed
200. Li, J., Liu, C. Y. Ag/Graphene Heterostructures: Synthesis, Characterization and Optical Properties; Wiley Online Library: Weinheim, Germany, 2010.10.1002/ejic.200901048Search in Google Scholar
201. Wang, J., Ruan, H., Li, W., Li, D., Hu, Y., Chen, J., Shao, Y., Zheng, Y. Highly efficient oxidation of gaseous benzene on novel Ag3VO4/TiO2 nanocomposite photocatalysts under visible and simulated solar light irradiation. J. Phys. Chem. C 2012, 116, 13935–13943; https://doi.org/10.1021/jp301355q.Search in Google Scholar
202. Yang, X., Cui, H., Li, Y., Qin, J., Zhang, R., Tang, H. Fabrication of Ag3PO4-graphene composites with highly efficient and stable visible light photocatalytic performance. ACS Catal. 2013, 3, 363–369; https://doi.org/10.1021/cs3008126.Search in Google Scholar
203. Shah, M. S. A. S., Zhang, K., Park, A. R., Kim, K. S., Park, N. G., Park, J. H., Yoo, P. J. Single-step solvothermal synthesis of mesoporous Ag–TiO2–reduced graphene oxide ternary composites with enhanced photocatalytic activity. Nanoscale 2013, 5, 5093–5101; https://doi.org/10.1039/c3nr00579h.Search in Google Scholar PubMed
204. Sim, L. C., Leong, K. H., Ibrahim, S., Saravanan, P. Graphene oxide and Ag engulfed TiO2 nanotube arrays for enhanced electron mobility and visible-light-driven photocatalytic performance. J. Mater. Chem. A 2014, 2, 5315–5322; https://doi.org/10.1039/c3ta14857b.Search in Google Scholar
205. Min, Y.-L., Zhang, K., Chen, Y. C., Zhang, Y. G. Enhanced photocatalytic performance of Bi2WO6 by graphene supporter as charge transfer channel. Sep. Purif. Technol. 2012, 86, 98–105; https://doi.org/10.1016/j.seppur.2011.10.025.Search in Google Scholar
206. Jiang, Y., Liu, D., Cho, M., Lee, S. S., Zhang, F., Biswas, P., Fortner, J. D. In situ photocatalytic synthesis of Ag nanoparticles (nAg) by crumpled graphene oxide composite membranes for filtration and disinfection applications. Environ. Sci. Technol. 2016, 50, 2514–2521; https://doi.org/10.1021/acs.est.5b04584.Search in Google Scholar PubMed
207. Jiang, Y., Wang, W. N., Liu, D., Nie, Y., Li, W., Wu, J., Zhang, F., Biswas, P., Fortner, J. D. Engineered crumpled graphene oxide nanocomposite membrane assemblies for advanced water treatment processes. Environ. Sci. Technol. 2015, 49, 6846–6854; https://doi.org/10.1021/acs.est.5b00904.Search in Google Scholar PubMed
208. Faria, A. F., Liu, C., Xie, M., Perreault, F., Nghiem, L. D., Ma, J., Elimelech, M. Thin-film composite forward osmosis membranes functionalized with graphene oxide–silver nanocomposites for biofouling control. J. Membr. Sci. 2017, 525, 146–156; https://doi.org/10.1016/j.memsci.2016.10.040.Search in Google Scholar
209. Chen, F., Yang, Q., Wang, S., Yao, F., Sun, J., Wang, Y., Zhang, C., Li, X., Niu, C., Wang, D., Zeng, G. Graphene oxide and carbon nitride nanosheets co-modified silver chromate nanoparticles with enhanced visible-light photoactivity and anti-photocorrosion properties towards multiple refractory pollutants degradation. Appl. Catal. B Environ. 2017, 209, 493–505; https://doi.org/10.1016/j.apcatb.2017.03.026.Search in Google Scholar
210. Zhu, Z., Lu, Z., Wang, D., Tang, X., Yan, Y., Shi, W., Wang, Y., Gao, N., Yao, X., Dong, H. Construction of high-dispersed Ag/Fe3O4/g-C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity. Appl. Catal. B Environ. 2016, 182, 115–122; https://doi.org/10.1016/j.apcatb.2015.09.029.Search in Google Scholar
211. Zhu, Y., Cai, W., Piner, R. D., Velamakanni, A., Ruoff, R. S. Transparent self-assembled films of reduced graphene oxide platelets. Appl. Phys. Lett. 2009, 95, 103104; https://doi.org/10.1063/1.3212862.Search in Google Scholar
212. Tien, H.-W., Huang, Y. L., Yang, S. Y., Wang, J. Y., Ma, C. C. M. The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films. Carbon 2011, 49, 1550–1560; https://doi.org/10.1016/j.carbon.2010.12.022.Search in Google Scholar
213. Shin, H. J., Kim, K. K., Benayad, A., Yoon, S., Park, H. K., Jung, I., Jin, M. H., Jeong, H., Kim, J. M., Choi, J., Lee, Y. H. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 2009, 19, 1987–1992; https://doi.org/10.1002/adfm.200900167.Search in Google Scholar
214. Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z., Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463–470; https://doi.org/10.1021/nn700375n.Search in Google Scholar PubMed
215. Eda, G., Lin, Y. Y., Miller, S., Chen, C. W., Su, W. F., Chhowalla, M. Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett. 2008, 92, 209; https://doi.org/10.1063/1.2937846.Search in Google Scholar
216. McCreary, K., Pi, K., Swartz, A. G., Han, W., Bao, W., Lau, C. N., Guinea, F., Katsnelson, M. I., Kawakami, R. K. Effect of cluster formation on graphene mobility. Phys. Rev. B 2010, 81, 115453; https://doi.org/10.1103/physrevb.81.115453.Search in Google Scholar
217. Gómez-Navarro, C., Weitz, R. T., Bittner, A. M., Scolari, M., Mews, A., Burghard, M., Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007, 7, 3499–3503; https://doi.org/10.1021/nl072090c.Search in Google Scholar PubMed
218. Wang, Y. Y., Ni, Z. H., Yu, T., Shen, Z. X., Wang, H. M., Wu, Y. H., Chen, W., Shen Wee, A. T. Raman studies of monolayer graphene: the substrate effect. J. Phys. Chem. C 2008, 112, 10637–10640; https://doi.org/10.1021/jp8008404.Search in Google Scholar
219. Hummers, W. S.Jr, Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339; https://doi.org/10.1021/ja01539a017.Search in Google Scholar
220. Mayavan, S., Sim, J.-B., Choi, S.-M. Easy synthesis of nitrogen-doped graphene–silver nanoparticle hybrids by thermal treatment of graphite oxide with glycine and silver nitrate. Carbon 2012, 50, 5148–5155; https://doi.org/10.1016/j.carbon.2012.06.055.Search in Google Scholar
221. Wang, S., Zhang, Y., Ma, H. L., Zhang, Q., Xu, W., Peng, J., Li, J., Yu, Z. Z., Zhai, M. Ionic-liquid-assisted facile synthesis of silver nanoparticle-reduced graphene oxide hybrids by gamma irradiation. Carbon 2013, 55, 245–252; https://doi.org/10.1016/j.carbon.2012.12.033.Search in Google Scholar
222. Lombardi, J. R., Birke, R. L. A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 2009, 42, 734–742; https://doi.org/10.1021/ar800249y.Search in Google Scholar PubMed
223. Meng, W., Hu, F., Zhang, L. Y., Jiang, X. H., Lu, L. D., Wang, X. SERS and DFT study of crystal violet. J. Mol. Struct. 2013, 1035, 326–331; https://doi.org/10.1016/j.molstruc.2012.10.066.Search in Google Scholar
224. Sun, L., Song, Y., Wang, L., Guo, C., Sun, Y., Liu, Z., Li, Z. Ethanol-induced formation of silver nanoparticle aggregates for highly active SERS substrates and application in DNA detection. J. Phys. Chem. C 2008, 112, 1415–1422; https://doi.org/10.1021/jp075550z.Search in Google Scholar
225. Xiao, T., Ye, Q., Sun, L. Hunting for the active sites of surface-enhanced Raman scattering: a new strategy based on single silver particles. J. Phys. Chem. B 1997, 101, 632–638; https://doi.org/10.1021/jp962135q.Search in Google Scholar
226. Liu, X., Cao, L., Song, W., Ai, K., Lu, L. Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy. ACS Appl. Mater. Interfaces 2011, 3, 2944–2952; https://doi.org/10.1021/am200737b.Search in Google Scholar PubMed
227. de Miguel, M., Álvaro, M., García, H. Graphene as a quencher of electronic excited states of photochemical probes. Langmuir 2012, 28, 2849–2857; https://doi.org/10.1021/la204023w.Search in Google Scholar PubMed
228. Choi, C. L., Alivisatos, A. P. From artificial atoms to nanocrystal molecules: preparation and properties of more complex nanostructures. Annu. Rev. Phys. Chem. 2010, 61, 369–389; https://doi.org/10.1146/annurev.physchem.012809.103311.Search in Google Scholar PubMed
229. Li, Y., Zhao, X., Zhang, P., Ning, J., Li, J., Su, Z., Wei, G. A facile fabrication of large-scale reduced graphene oxide–silver nanoparticle hybrid film as a highly active surface-enhanced Raman scattering substrate. J. Mater. Chem. C 2015, 3, 4126–4133; https://doi.org/10.1039/c5tc00196j.Search in Google Scholar
230. Huang, Q., Zhu, X. Rapid and large-scale synthesis of pitaya-like silver nanostructures as highly efficient surface-enhanced Raman scattering substrates. Talanta 2013, 105, 117–123; https://doi.org/10.1016/j.talanta.2012.11.067.Search in Google Scholar PubMed
231. Huang, Q., Wang, J., Wei, W., Yan, Q., Wu, C., Zhu, X. A facile and green method for synthesis of reduced graphene oxide/Ag hybrids as efficient surface enhanced Raman scattering platforms. J. Hazard. Mater. 2015, 283, 123–130; https://doi.org/10.1016/j.jhazmat.2014.09.021.Search in Google Scholar PubMed
232. Hsu, K.-C., Chen, D.-H. Microwave-assisted green synthesis of Ag/reduced graphene oxide nanocomposite as a surface-enhanced Raman scattering substrate with high uniformity. Nanoscale Res. Lett. 2014, 9, 1–9; https://doi.org/10.1186/1556-276x-9-193.Search in Google Scholar PubMed PubMed Central
233. Wen, C., Liao, F., Liu, S., Zhao, Y., Kang, Z., Zhang, X., Shao, M. Bi-functional ZnO–RGO–Au substrate: photocatalysts for degrading pollutants and SERS substrates for real-time monitoring. Chem. Commun. 2013, 49, 3049–3051; https://doi.org/10.1039/c3cc37877b.Search in Google Scholar PubMed
234. Qian, Z., Cheng, Y., Zhou, X., Wu, J., Xu, G. Fabrication of graphene oxide/Ag hybrids and their surface-enhanced Raman scattering characteristics. J. Colloid Interface Sci. 2013, 397, 103–107; https://doi.org/10.1016/j.jcis.2013.01.049.Search in Google Scholar PubMed
235. Li, F., Liu, Y., Qu, C. B., Xiao, H. M., Hua, Y., Sui, G. X., Fu, S. Y. Enhanced mechanical properties of short carbon fiber reinforced polyethersulfone composites by graphene oxide coating. Polymer 2015, 59, 155–165; https://doi.org/10.1016/j.polymer.2014.12.067.Search in Google Scholar
236. Chen, L., Wei, F., Liu, L., Cheng, W., Hu, Z., Wu, G., Du, Y., Zhang, C., Huang, Y. Grafting of silane and graphene oxide onto PBO fibers: multifunctional interphase for fiber/polymer matrix composites with simultaneously improved interfacial and atomic oxygen resistant properties. Compos. Sci. Technol. 2015, 106, 32–38; https://doi.org/10.1016/j.compscitech.2014.10.021.Search in Google Scholar
237. Chen, J., Zhao, D., Jin, X., Wang, C., Wang, D., Ge, H. Modifying glass fibers with graphene oxide: towards high-performance polymer composites. Compos. Sci. Technol. 2014, 97, 41–45; https://doi.org/10.1016/j.compscitech.2014.03.023.Search in Google Scholar
238. Henglein, A., Brancewicz, C. Absorption spectra and reactions of colloidal bimetallic nanoparticles containing mercury. Chem. Mater. 1997, 9, 2164–2167; https://doi.org/10.1021/cm970258x.Search in Google Scholar
239. Morris, T., Copeland, H., McLinden, E., Wilson, S., Szulczewski, G. The effects of mercury adsorption on the optical response of size-selected gold and silver nanoparticles. Langmuir 2002, 18, 7261–7264; https://doi.org/10.1021/la020229n.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Article
- GO-Ag-NPs as a promising agent for biomedical, catalytic, electrochemical detection and water treatment technologies; a comprehensive review
- Original Papers
- Role of the thermal regime in the defect formation of zinc oxide nanostructures prepared by the thermal decomposition process
- Facile synthesis of a ZnO/Fe2O3 heterostructure and its graphene-reinforced composite for boosting the photo-mineralization of crystal violet and phenol
- Desulfurization of coal using SnO2/TiO2 nanocomposite immobilized on glass beads under solar light irradiation
- Photocatalytic degradation of dyes in aqueous media by gum shellac stabilized selenium nanoparticles
- Eco-friendly extraction of cellulose from Ailanthus altissima for nanocellulose production: physico-chemical properties
- Inquisition of micellar and surface active properties of gemini surfactants in the presence of a dipeptide
- Investigating adsorptive potential of Raphanus caudatus leaves biomass for methyl orange dye: isotherm and kinetic study
- Thienylpicolinamidine derivatives as new dissolution inhibitors for carbon steels in HCl medium: experimental and theoretical studies
- Extraction and characterization of novel cellulose nanocrystals from Artemisia scoparia straw and their application in hydroxypropyl methyl cellulose (HPMC) films
- Synthesis of doped metal sulfide nanoparticles and their graphene reinforced nanohybrid for Pb(II) detection
Articles in the same Issue
- Frontmatter
- Review Article
- GO-Ag-NPs as a promising agent for biomedical, catalytic, electrochemical detection and water treatment technologies; a comprehensive review
- Original Papers
- Role of the thermal regime in the defect formation of zinc oxide nanostructures prepared by the thermal decomposition process
- Facile synthesis of a ZnO/Fe2O3 heterostructure and its graphene-reinforced composite for boosting the photo-mineralization of crystal violet and phenol
- Desulfurization of coal using SnO2/TiO2 nanocomposite immobilized on glass beads under solar light irradiation
- Photocatalytic degradation of dyes in aqueous media by gum shellac stabilized selenium nanoparticles
- Eco-friendly extraction of cellulose from Ailanthus altissima for nanocellulose production: physico-chemical properties
- Inquisition of micellar and surface active properties of gemini surfactants in the presence of a dipeptide
- Investigating adsorptive potential of Raphanus caudatus leaves biomass for methyl orange dye: isotherm and kinetic study
- Thienylpicolinamidine derivatives as new dissolution inhibitors for carbon steels in HCl medium: experimental and theoretical studies
- Extraction and characterization of novel cellulose nanocrystals from Artemisia scoparia straw and their application in hydroxypropyl methyl cellulose (HPMC) films
- Synthesis of doped metal sulfide nanoparticles and their graphene reinforced nanohybrid for Pb(II) detection