Startseite Synthesis of doped metal sulfide nanoparticles and their graphene reinforced nanohybrid for Pb(II) detection
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis of doped metal sulfide nanoparticles and their graphene reinforced nanohybrid for Pb(II) detection

  • Ghulam Nazik , Muhammad Aadil EMAIL logo , Sonia Zulfiqar , Warda Hassan , Abdur Rahman , Sobhy M. Ibrahim , Khalida Naseem , Tahir Ali Sheikh und Muhammad Nadeem Akhtar EMAIL logo
Veröffentlicht/Copyright: 12. Juli 2023

Abstract

This paper explores different techniques to combine and improve the electrochemical sensing activities of the transition metal chalcogenide. The transition metal chalcogenide was doped with a suitable dopant to tune the band structure. Surface-assisted nanotechnology was used to enrich the superficial properties of the doped material. Lastly, the nanostructured doped materials were physically mixed with the graphene nanoplates (GNPs) to improve the flow of charges and the stability of the electrochemistry. The most electrically conductive and common metal sulfides in nature were chosen and prepared using a cheap and easy wet-route method. Crystal structure, chemical functionality, texture, composition, and thermal stability of undoped, doped, and composite materials were determined using physicochemical techniques such as X-ray diffraction, FTIR, SEM, EDX, and TGA. N2-adsorption-desorption, current-voltage, and impedance studies show that the composite sample’s surface area, electrical conductivity, and charge transport properties are superior to those of the undoped and doped samples. Regarding electrochemical applications, the composite material supported a glassy carbon electrode (Co–Cu2S/Gr@GCE) with excellent Pb(II) ion sensing activity. Moreover, the sensitivity, detection, and quantification limits of the modified electrode for Pb(II) detection were computed to be 88.68 μAμMcm−2, 0.091 μM, and 0.30 μM, respectively. The key features developed in the metal sulfide for its enhancement of electrochemical sensing activity are a high surface area, good conductivity, and fast electron transport by adopting nanotechnology, metal doping, and composite formation methodologies. Based on the results of the experiments, we can say that using multiple inputs to integrate the feature we want is an excellent way to make electrochemical systems for the next generation.


Corresponding authors: Muhammad Aadil, Department of Chemistry, Rahim Yar Khan Campus, The Islamia University of Bahawalpur, Rahim Yar Khan, 64200, Pakistan, E-mail: ; and Muhammad Nadeem Akhtar, Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan, E-mail:

Acknowledgments

This work was supported by Researchers Supporting Project number (RSP2023R100), King Saud University, Riyadh, Saudi Arabia. The authors are thankful to the Institute of Chemistry, Baghdad-ul-Jadeed Campus, and Department of Chemistry, Rahim Yar Khan-Campus, The Islamia University of Bahawalpur, Bahawalpur and Higher Education Commission, Islamabad, Pakistan. Prof. Dr. Sonia Zulfiqar is highly thankful for the support provided by the Statutory City of Ostrava, Czechia through Research Grant “Global Experts”.

  1. Author contributions: Ghulam Nazik: Experimental work. Sonia Zulfiqar: Methodology, Formal analysis, Review and Editing. Warda Hassan: Writing- original draft. Abdur Rahman: Electrochemical investigations. Sobhy Ibrahim: Structural studies, formal analysis and reviewing. Khalida Naseem: Scietific correction and Conceptualization. Tahir Ali Sheikh: Proof reading, scientific analysis and editing. Muhammad Nadeem Akhtar: Designed the whole project/Supervised. Muhammad Aadil: Co-supervised the work.

  2. Research funding: This work was supported by Researchers Supporting Project number (RSP2023R100), King Saud University, Riyadh, Saudi Arabia.

  3. Conflict of interest statement: The authors declare no competing interests.

  4. Consent for publication: All authors have read and approved this manuscript.

  5. Consent to participate: Not applicable.

  6. Ethical approval: Research does not involve Human Participants or/and Animals.

  7. Data availability: Data will be available on reasonable request.

References

1. Gumpu, M. B., Sethuraman, S., Krishnan, U. M., Rayappan, J. B. B. Sensor. Actuator. B Chem. 2015, 213, 515–533; https://doi.org/10.1016/j.snb.2015.02.122.Suche in Google Scholar

2. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., Beeregowda, K. N. Interdiscipl. Toxicol. 2014, 7, 60–72; https://doi.org/10.2478/intox-2014-0009.Suche in Google Scholar PubMed PubMed Central

3. Khan, S. B., Rahman, M. M., Asiri, A. M., Marwani, H. M., Bawaked, S. M., Alamry, K. A. New J. Chem. 2013, 37, 2888–2893; https://doi.org/10.1039/c3nj00298e.Suche in Google Scholar

4. Assaifan, A. K., Hezam, M., Al-Gawati, M. A., Alzahrani, K. E., Alswieleh, A., Arunachalam, P., Al-Mayouf, A., Alodhayb, A., Albrithen, H. Sens. Actuators, A 2021, 329, 112833; https://doi.org/10.1016/j.sna.2021.112833.Suche in Google Scholar

5. Mohammed, A. S., Kapri, A., Goel, R. Heavy metal pollution: source, impact, and remedies. In Biomanagement of Metal-Contaminated Soils; Springer, 2011; pp. 1–28. https://citations.springernature.com/item?doi=10.1007/978-94-007-1914-9_1.10.1007/978-94-007-1914-9_1Suche in Google Scholar

6. Rahman, M. M., Khan, S. B., Asiri, A. M., Marwani, H. M., Qusti, A. H. Compos. B Eng. 2013, 54, 215–223; https://doi.org/10.1016/j.compositesb.2013.05.018.Suche in Google Scholar

7. Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., Sadeghi, M. Front. Pharmacol. 2021, 12, 643972.10.3389/fphar.2021.643972Suche in Google Scholar PubMed PubMed Central

8. Awual, M. R., Hasan, M. M., Iqbal, J., Islam, A., Islam, M. A., Asiri, A. M., Rahman, M. M. Microchem. J. 2020, 154, 104585; https://doi.org/10.1016/j.microc.2019.104585.Suche in Google Scholar

9. Velusamy, S., Roy, A., Sundaram, S., Kumar Mallick, T. Chem. Rec. 2021, 21, 1570–1610; https://doi.org/10.1002/tcr.202000153.Suche in Google Scholar PubMed

10. Hung, Y.-L., Hsiung, T.-M., Chen, Y.-Y., Huang, Y.-F., Huang, C.-C. J. Phys. Colloid Chem. 2010, 114, 16329–16334; https://doi.org/10.1021/jp1061573.Suche in Google Scholar

11. Yang, Q., Chen, H., Hu, J., Huang, K., Hou, X. Anal. Chem. 2021, 94, 593–599; https://doi.org/10.1021/acs.analchem.1c03357.Suche in Google Scholar PubMed

12. Bontidean, I., Berggren, C., Johansson, G., Csöregi, E., Mattiasson, B., Lloyd, J. R., Jakeman, K. J., Brown, N. L. Anal. Chem. 1998, 70, 4162–4169; https://doi.org/10.1021/ac9803636.Suche in Google Scholar PubMed

13. Štenclová, P., Vyskočil, V., Szabó, O., Ižák, T., Potocký, Š., Kromka, A. Vacuum 2019, 170, 108953; https://doi.org/10.1016/j.vacuum.2019.108953.Suche in Google Scholar

14. Lu, Y., Liang, X., Niyungeko, C., Zhou, J., Xu, J., Tian, G. Talanta 2018, 178, 324–338; https://doi.org/10.1016/j.talanta.2017.08.033.Suche in Google Scholar PubMed

15. Liu, Y., Deng, Y., Dong, H., Liu, K., He, N. Sci. China Chem. 2017, 60, 329–337; https://doi.org/10.1007/s11426-016-0253-2.Suche in Google Scholar

16. Chen, K., Wang, J., Kang, J., Lu, X., Zhao, X., Chu, K. Appl. Catal. B Environ. 2023, 324, 122241; https://doi.org/10.1016/j.apcatb.2022.122241.Suche in Google Scholar

17. Tariq, R., Zulfiqar, S., Somaily, H. H., Warsi, M. F., Ayman, I., Wajid, F., Akhtar, M., Aadil, M. Surface. Interfac. 2022, 34, 102350; https://doi.org/10.1016/j.surfin.2022.102350.Suche in Google Scholar

18. Alburaih, H., Aadil, M., Hassan, W., Amaral, L. S., Ejaz, S. R., Aman, S., Alsafari, I. A. Synth. Met. 2022, 287, 117093; https://doi.org/10.1016/j.synthmet.2022.117093.Suche in Google Scholar

19. Rafiq, S., Aadil, M., Warsi, M. F., Yousaf, S., Alotaibi, M. T., El-Bahy, S. M., Shahid, M. Ceram. Int. 2022, 48, 14596–14605; https://doi.org/10.1016/j.ceramint.2022.01.353.Suche in Google Scholar

20. Rahman, A., Aadil, M., Akhtar, M., Warsi, M. F., Jamil, A., Shakir, I., Shahid, M. Ceram. Int. 2020, 46, 13517–13526; https://doi.org/10.1016/j.ceramint.2020.02.136.Suche in Google Scholar

21. Aadil, M., Zulfiqar, S., Sabeeh, H., Warsi, M. F., Shahid, M., Alsafari, I. A., Shakir, I. Ceram. Int. 2020, 46, 17836–17845; https://doi.org/10.1016/j.ceramint.2020.04.090.Suche in Google Scholar

22. Chen, K., Zhang, G., Li, X., Zhao, X., Chu, K. Nano Res. 2022, 16, 5857–5863; https://doi.org/10.1007/s12274-023-5384-9.Suche in Google Scholar

23. Chu, K., Li, Q.-Q., Cheng, Y.-H., Liu, Y.-P. ACS Appl. Mater. Interfaces 2020, 12, 11789–11796; https://doi.org/10.1021/acsami.0c00860.Suche in Google Scholar PubMed

24. Sabeeh, H., Aadil, M., Zulfiqar, S., Rasheed, A., Al-Khalli, N. F., Agboola, P. O., Haider, S., Warsi, M. F., Shakir, I. Ceram. Int. 2021, 47, 13613–13621; https://doi.org/10.1016/j.ceramint.2021.01.220.Suche in Google Scholar

25. Sabeeh, H., Aadil, M., Zulfiqar, S., Ayeman, I., Shakir, I., Agboola, P. O., Haider, S., Warsi, M. F. J. Cluster Sci. 2021, 1–9.Suche in Google Scholar

26. Ashraf, N., Aadil, M., Zulfiqar, S., Sabeeh, H., Khan, M. A., Shakir, I., Agboola, P. O., Warsi, M. F. ChemistrySelect 2020, 5, 8129–8136; https://doi.org/10.1002/slct.202001305.Suche in Google Scholar

27. Aadil, M., Zulfiqar, S., Shahid, M., Agboola, P. O., Al-Khalli, N. F., Warsi, M. F., Shakir, I. Electrochim. Acta 2021, 383, 138332; https://doi.org/10.1016/j.electacta.2021.138332.Suche in Google Scholar

28. Li, X., Chen, K., Lu, X., Ma, D., Chu, K. Chem. Eng. J. 2023, 454, 140333; https://doi.org/10.1016/j.cej.2022.140333.Suche in Google Scholar

29. Aadil, M., Shaheen, W., Warsi, M. F., Shahid, M., Khan, M. A., Ali, Z., Haider, S., Shakir, I. J. Alloys Compd. 2016, 689, 648–654; https://doi.org/10.1016/j.jallcom.2016.08.029.Suche in Google Scholar

30. Aadil, M., Zulfiqar, S., Agboola, P. O., Aboud, M. F. A., Shakir, I., Warsi, M. F. Synth. Met. 2021, 272, 116645; https://doi.org/10.1016/j.synthmet.2020.116645.Suche in Google Scholar

31. Lee, S., Oh, J., Kim, D., Piao, Y. Talanta 2016, 160, 528–536; https://doi.org/10.1016/j.talanta.2016.07.034.Suche in Google Scholar PubMed

32. Akhtar, M., Tahir, A., Zulfiqar, S., Hanif, F., Warsi, M. F., Agboola, P. O., Shakir, I. Synth. Met. 2020, 265, 116410; https://doi.org/10.1016/j.synthmet.2020.116410.Suche in Google Scholar

33. Zhuang, Y., Zhao, M., He, Y., Cheng, F., Chen, S. J. Electroanal. Chem. 2018, 826, 90–95; https://doi.org/10.1016/j.jelechem.2018.08.016.Suche in Google Scholar

34. Yukird, J., Kongsittikul, P., Qin, J., Chailapakul, O., Rodthongkum, N. Synth. Met. 2018, 245, 251–259; https://doi.org/10.1016/j.synthmet.2018.09.012.Suche in Google Scholar

35. Mousavi-Kamazani, M., Zarghami, Z., Salavati-Niasari, M. J. Phys. Colloid Chem. 2016, 120, 2096–2108; https://doi.org/10.1021/acs.jpcc.5b11566.Suche in Google Scholar

36. Zhang, Y., Xing, C., Liu, Y., Spadaro, M. C., Wang, X., Li, M., Xiao, K., Zhang, T., Guardia, P., Lim, K. H., Moghaddam, A. O., Llorca, J., Arbiol, J., Ibáñez, M., Cabot, A. Nano Energy 2021, 85, 105991; https://doi.org/10.1016/j.nanoen.2021.105991.Suche in Google Scholar

37. Aadil, M., Rahman, A., Zulfiqar, S., Alsafari, I. A., Shahid, M., Shakir, I., Agboola, P. O., Haider, S., Warsi, M. F. Adv. Powder Technol. 2021, 32, 940–950; https://doi.org/10.1016/j.apt.2021.01.040.Suche in Google Scholar

38. Aadil, M., Nazik, G., Zulfiqar, S., Shakir, I., Aboud, M. F. A., Agboola, P. O., Haider, S., Warsi, M. F. Ceram. Int. 2021, 47, 9225–9233; https://doi.org/10.1016/j.ceramint.2020.12.048.Suche in Google Scholar

39. Abdi, M., Mahdikhah, V., Sheibani, S. Opt. Mater. 2020, 102, 109803; https://doi.org/10.1016/j.optmat.2020.109803.Suche in Google Scholar

40. Wang, S., Li, J., Fu, Y., Zhuang, Z., Liu, Z. Microchem. J. 2021, 166, 106251; https://doi.org/10.1016/j.microc.2021.106251.Suche in Google Scholar

41. Bashir, S., Jamil, A., Khan, M. S., Alazmi, A., Abuilaiwi, F. A., Shahid, M. J. Alloys Compd. 2022, 913, 165214; https://doi.org/10.1016/j.jallcom.2022.165214.Suche in Google Scholar

42. Bashir, S., Habib, A., Jamil, A., Alazmi, A., Shahid, M. Adv. Powder Technol. 2022, 33, 103482; https://doi.org/10.1016/j.apt.2022.103482.Suche in Google Scholar

43. Alburaih, H. A., Aadil, M., Mubeen, S., Hassan, W., Rabia Ejaz, S., Anwar, A., Aman, S., Alsafari, I. A. FlatChem 2022, 34, 100380; https://doi.org/10.1016/j.flatc.2022.100380.Suche in Google Scholar

44. Rahman, M. M., Khan, S. B., Marwani, H. M., Asiri, A. M., Alamry, K. A., Rub, M. A., Khan, A., Khan, A. A. P., Qusti, A. H. J. Ind. Eng. Chem. 2014, 20, 1071–1078; https://doi.org/10.1016/j.jiec.2013.06.044.Suche in Google Scholar

45. Mokhov, E. N. Doping of SiC Crystals During Sublimation Growth and Diffusion. IntechOpen: London, UK, 2018.Suche in Google Scholar

46. Kousar, T., Aadil, M., Zulfiqar, S., Warsi, M. F., Ejaz, S. R., Elnaggar, A. Y., Fallatah, A. M., El-Bahy, S. M., Mahmood, F. Ceram. Int. 2022, 48, 11858–11868; https://doi.org/10.1016/j.ceramint.2022.01.057.Suche in Google Scholar

47. Ahmad, I., Shah, S. M., Zafar, M. N., Ashiq, M. N., Tang, W., Jabeen, U. Ceram. Int. 2021, 47, 3760–3771; https://doi.org/10.1016/j.ceramint.2020.09.233.Suche in Google Scholar

48. Aadil, M., Zulfiqar, S., Shahid, M., Agboola, P. O., Haider, S., Warsi, M. F., Shakir, I. J. Electroanal. Chem. 2021, 884, 115070; https://doi.org/10.1016/j.jelechem.2021.115070.Suche in Google Scholar

49. Aadil, M., Hassan, W., Somaily, H. H., Ejaz, S. R., Abass, R. R., Jasem, H., Hachim, S. K., Adhab, A. H., Abood, E. S., Alsafari, I. A. J. Alloys Compd. 2022, 920, 165876; https://doi.org/10.1016/j.jallcom.2022.165876.Suche in Google Scholar

50. Hemathangam, S., Thanapathy, G., Muthukumaran, S. J. Mater. Sci. Mater. Electron. 2016, 27, 2042–2048; https://doi.org/10.1007/s10854-015-3989-9.Suche in Google Scholar

51. Pouvreau, M., Greathouse, J. A., Cygan, R. T., Kalinichev, A. G. J. Phys. Colloid Chem. 2019, 123, 11628–11638; https://doi.org/10.1021/acs.jpcc.9b00514.Suche in Google Scholar

52. Shahid, M., Bashir, S., Afzal, A., Ibn Shamsah, S. M., Jamil, A. Ceram. Int. 2022, 48, 2566–2576; https://doi.org/10.1016/j.ceramint.2021.10.039.Suche in Google Scholar

53. Jabeen, S., Aadil, M., Williams, J., Awan, M., Iqbal, J., Zulfiqar, S., Nazar, N. Ceram. Int. 2021, 47, 22345–22355; https://doi.org/10.1016/j.ceramint.2021.03.205.Suche in Google Scholar

54. Shakir, I., Sarfraz, M., Ali, Z., Aboud, M. F. A., Agboola, P. O. J. Alloys Compd. 2016, 660, 450–455; https://doi.org/10.1016/j.jallcom.2015.11.055.Suche in Google Scholar

55. Zafar, K., Aadil, M., Shahi, M. N., Sabeeh, H., Nazar, M. F., Iqbal, M., Yousuf, M. A. AAAFM Energy Mater. 2020, 01, 36–44.10.24911/AAAFM/Energy/23-1567670091Suche in Google Scholar

56. Sabir, M., Ramzan, M., Imran, M., Ejaz, S. R., Anwar, A., Ahmad, S., Aamir, M., Aadil, M. Ceram. Int. 2022, 48, 9134–9145; https://doi.org/10.1016/j.ceramint.2021.12.098.Suche in Google Scholar

57. Alazmi, A. Ceram. Int. 2022, 48, 17499–17509; https://doi.org/10.1016/j.ceramint.2022.03.014.Suche in Google Scholar

58. Bashir, S., Jamil, A., Amin, R., Ul-hasan, I., Alazmi, A., Shahid, M. J. Solid State Chem. 2022, 312, 123217; https://doi.org/10.1016/j.jssc.2022.123217.Suche in Google Scholar

59. Ambrosi, A., Chua, C. K., Bonanni, A., Pumera, M. Chem. Rev. 2014, 114, 7150–7188; https://doi.org/10.1021/cr500023c.Suche in Google Scholar PubMed

60. Ali, A., Aadil, M., Rasheed, A., Hameed, I., Ajmal, S., Shakir, I., Warsi, M. F. Synth. Met. 2020, 265, 116408; https://doi.org/10.1016/j.synthmet.2020.116408.Suche in Google Scholar

61. Herder, M., Eisenreich, F., Bonasera, A., Grafl, A., Grubert, L., Pätzel, M., Schwarz, J., Hecht, S. Chem. Eur J. 2017, 23, 3743–3754; https://doi.org/10.1002/chem.201605511.Suche in Google Scholar PubMed

62. Khalid, M. U., Katubi, K. M., Zulfiqar, S., Alrowaili, Z. A., Aadil, M., Al-Buriahi, M. S., Shahid, M., Warsi, M. F. Fuel 2023, 343, 127946; https://doi.org/10.1016/j.fuel.2023.127946.Suche in Google Scholar

63. Hu, J.-Y., Li, Z., Zhai, C.-Y., Wang, J.-F., Zeng, L.-X., Zhu, M.-S. Rare Met. 2021, 40, 1727–1737; https://doi.org/10.1007/s12598-020-01659-z.Suche in Google Scholar

64. Sun, Y.-F., Sun, J.-H., Wang, J., Pi, Z.-X., Wang, L.-C., Yang, M., Huang, X.-J. Anal. Chim. Acta 2019, 1063, 64–74; https://doi.org/10.1016/j.aca.2019.03.008.Suche in Google Scholar PubMed

65. Awual, M. R., Hasan, M. M., Islam, A., Rahman, M. M., Asiri, A. M., Khaleque, M. A., Sheikh, M. C. J. Clean. Prod. 2019, 231, 214–223; https://doi.org/10.1016/j.jclepro.2019.05.125.Suche in Google Scholar

66. Kokab, T., Manzoor, A., Aftab, S., Aslam, F., Jan Iftikhar, F., Masood Siddiqi, H., Shah, A. Inorg. Chem. Commun. 2022, 138, 109261; https://doi.org/10.1016/j.inoche.2022.109261.Suche in Google Scholar

67. Awual, M. R., Islam, A., Hasan, M. M., Rahman, M. M., Asiri, A. M., Khaleque, M. A., Chanmiya, M. Sheikh J. Clean. Prod. 2019, 224, 920–929; https://doi.org/10.1016/j.jclepro.2019.03.241.Suche in Google Scholar

68. Khan, A. A. P., Khan, A., Rahman, M. M., Asiri, A. M., Oves, M. Int. J. Biol. Macromol. 2016, 89, 198–205; https://doi.org/10.1016/j.ijbiomac.2016.04.064.Suche in Google Scholar PubMed

69. Rahman, M. M., Khan, S. B., Marwani, H. M., Asiri, A. M. Microchim. Acta 2015, 182, 579–588; https://doi.org/10.1007/s00604-014-1361-z.Suche in Google Scholar

70. Aqlan, F. M., Alam, M. M., Asiri, A. M., Zayed, M. E. M., Al-Eryani, D. A., Al-Zahrani, F. A. M., El-Shishtawy, R. M., Uddin, J., Rahman, M. M. J. Mol. Liq. 2019, 281, 401–406; https://doi.org/10.1016/j.molliq.2019.02.109.Suche in Google Scholar

71. Rahman, M. M., Hussain, M. M., Arshad, M. N., Asiri, A. M. RSC Adv. 2020, 10, 5316–5327; https://doi.org/10.1039/c9ra09080k.Suche in Google Scholar PubMed PubMed Central

72. Khan, A. A. P., Khan, A., Asiri, A. M., Alam, M. M., Rahman, M. M., Shaban, M. Int. J. Environ. Sci. Technol. 2019, 16, 8461–8470; https://doi.org/10.1007/s13762-019-02447-8.Suche in Google Scholar

73. Wei, Y., Qian, T., Liu, J., Guo, X., Gong, Q., Liu, Z., Tian, B., Qiao, J. J. Materiomics 2019, 5, 252–257; https://doi.org/10.1016/j.jmat.2019.01.006.Suche in Google Scholar

Received: 2023-05-05
Accepted: 2023-06-25
Published Online: 2023-07-12
Published in Print: 2023-08-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0252/html
Button zum nach oben scrollen