Startseite Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential

  • Muhammad Riaz , Muhammad Ajmal EMAIL logo , Atif Naseem , Nusrat Jabeen , Zahoor H. Farooqi , Khalid Mahmood , Abid Ali , Lubna Rasheed und Ahmad Nauman Shah Saqib
Veröffentlicht/Copyright: 1. November 2022

Abstract

Poly(N-isopropyl acrylamide-co-2-acrylamido methyl propane sulfonic acid) hydrogel was prepared and used as matrix for the fabrication of nickel and copper nanoparticles. Nickel and copper nanoparticles were fabricated via in situ reduction of Ni (II) and Cu (II) ions within the hydrogel matrix. The manufactured hydrogel and its corresponding composites with Ni and Cu nanoparticles were characterized by FTIR, XRD, EDX, TEM, and TGA. Thermal stability of hydrogel was found to be increased upon fabricating with metal nanoparticles. The hydrogel showed ability to absorb water 63 times of its weight in dried form. The Ni and Cu nanoparticles were observed to be well dispersed, spherical in shape and most of them were having diameters in the range of 12.5 to 38.8 nm and 58 to 102 nm, respectively. The as-prepared hydrogel-nickel and hydrogel-Cu nanocomposite were used as catalysts for the reduction of a toxic pollutant 4-nitrophenol. At 25 °C, the reduction of 4-NP was found to proceed with apparent rate constant (kapp) of 0.107 and 0.122 min−1 in the presence of composite containing Ni and Cu nanoparticles, respectively. However, kapp was increased with corresponding increase in temperature and its maximum value was found to be 0.815 min−1 at 88 °C with catalyst containing Ni nanoparticles. The formation of well dispersed Ni and Cu nanoparticles in the prepared hydrogel reflected that this hydrogel system can act as efficient stabilizing agent along with acting as a reactor medium. Recycling potential of catalysts was studied for five successive cycles.


Corresponding author: Muhammad Ajmal, Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Liu, D. X., Mu, J., Yao, Q., Bai, Y., Qian, F., Liang, F., Shi, F. N., Gao, J. SN Appl. Sci. 2019, 1, 184; https://doi.org/10.1007/s42452-019-0188-y.Suche in Google Scholar

2. Dong, Z., Le, X., Dong, C., Zhang, W., Li, X., Ma, J. Appl. Catal., B 2015, 162, 372; https://doi.org/10.1016/j.apcatb.2014.07.009.Suche in Google Scholar

3. Vellaichamy, B., Prakash, P., Thomas, J. Ultrason. Sonochem. 2018, 48, 362; https://doi.org/10.1016/j.ultsonch.2018.05.012.Suche in Google Scholar PubMed

4. Rashed, M. N., Ed. Organic pollutants-monitoring, risk and treatment; BoD–Books on Demand, 2013; p. 167.10.5772/55953Suche in Google Scholar

5. Tijani, J. O., Fatoba, O. O., Madzivire, G., Petrik, L. F. Water Air Soil Pollut. 2014, 225, 1; https://doi.org/10.1007/s11270-014-2102-y.Suche in Google Scholar

6. Santi, C., Cortes, S., D’Acqui, L., Sparvoli, E., Pushparaj, B. Bioresour. Technol. 2008, 99, 1945; https://doi.org/10.1016/j.biortech.2007.03.022.Suche in Google Scholar PubMed

7. Ye, S., Chen, Y., Yao, X., Zhang, J. Chemosphere 2021, 273, 128503; https://doi.org/10.1016/j.chemosphere.2020.128503.Suche in Google Scholar PubMed

8. Ma, M., Yang, Y., Li, W., Feng, R., Li, Z., Lyu, P., Ma, Y. J. Mater. Sci. 2019, 54, 323; https://doi.org/10.1007/s10853-018-2868-1.Suche in Google Scholar

9. Yan, Z., Fu, L., Zuo, X., Yang, H. Appl. Catal., B 2018, 226, 23; https://doi.org/10.1016/j.apcatb.2017.12.040.Suche in Google Scholar

10. Ajmal, M., Siddiq, M., Al-Lohedan, H., Sahiner, N. RSC Adv. 2014, 4, 59562; https://doi.org/10.1039/c4ra11667d.Suche in Google Scholar

11. Revathy, T., Dhanapal, K., Dhanavel, S., Narayanan, V., Stephen, A. J. Alloys Compd. 2018, 735, 1703; https://doi.org/10.1016/j.jallcom.2017.11.264.Suche in Google Scholar

12. Mitsudome, T., Mikami, Y., Funai, H., Mizugaki, T., Jitsukawa, K., Kaneda, K. Angew. Chem. Int. Ed. 2008, 47, 138; https://doi.org/10.1002/anie.200703161.Suche in Google Scholar PubMed

13. Waszczuk, P., Barnard, T. M., Rice, C., Masel, R. I., Wieckowski, A. Electrochem. Commun. 2002, 4, 599; https://doi.org/10.1016/s1388-2481(02)00420-4.Suche in Google Scholar

14. Lang, H., Maldonado, S., Stevenson, K. J., Chandler, B. D. J. Am. Chem. Soc. 2004, 126, 12949; https://doi.org/10.1021/ja046542o.Suche in Google Scholar PubMed

15. Zhu, J., Zhang, X., Qin, Z., Zhang, L., Ye, Y., Cao, M., Gao, L., Jiao, T. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125889; https://doi.org/10.1016/j.colsurfa.2020.125889.Suche in Google Scholar

16. Deraedt, C., Ye, R., Ralston, W. T., Toste, F. D., Somorjai, G. A. J. Am. Chem. Soc. 2017, 139, 18084; https://doi.org/10.1021/jacs.7b10768.Suche in Google Scholar PubMed

17. Barman, S. R., Nain, A., Jain, S., Punjabi, N., Mukherji, S., Satija, J. J. Mater. Chem. B 2018, 6, 2368; https://doi.org/10.1039/c7tb03344c.Suche in Google Scholar PubMed

18. Yang, Q., Li, L., Zhao, F., Wang, Y., Ye, Z., Hua, C., Liu, Z., Bohinc, K., Guo, X. Nanomaterials 2020, 10, 799; https://doi.org/10.3390/nano10040799.Suche in Google Scholar PubMed PubMed Central

19. Pocoví-Martínez, S., Cassano, D., Voliani, V. ACS Appl. Nano Mater. 2018, 1, 1836; https://doi.org/10.1021/acsanm.8b00247.Suche in Google Scholar

20. Gao, Z., Zhang, Y., Li, D., Werth, C. J., Zhang, Y., Zhou, X. J. Hazard Mater. 2015, 286, 425; https://doi.org/10.1016/j.jhazmat.2015.01.005.Suche in Google Scholar PubMed

21. Xu, P., Cen, C., Chen, N., Lin, H., Wang, Q., Xu, N., Tang, J., Teng, Z. J. Colloid Interface Sci. 2018, 526, 194; https://doi.org/10.1016/j.jcis.2018.04.045.Suche in Google Scholar PubMed

22. Robinson, D. A., Liu, Y., Edwards, M. A., Vitti, N. J., Oja, S. M., Zhang, B., White, H. S. J. Am. Chem. Soc. 2017, 139, 16923; https://doi.org/10.1021/jacs.7b09842.Suche in Google Scholar PubMed

23. Clasky, A. J., Watchorn, J. D., Chen, P. Z., Gu, F. X. Acta Biomater. 2021, 122, 1; https://doi.org/10.1016/j.actbio.2020.12.030.Suche in Google Scholar PubMed

24. Wu, X. Q., Wu, X. W., Huang, Q., Shen, J. S., Zhang, H. W. Appl. Surf. Sci. 2015, 331, 210; https://doi.org/10.1016/j.apsusc.2015.01.077.Suche in Google Scholar

25. Pandey, N., Shukla, S., Singh, N. Nanocomposites 2017, 3, 47; https://doi.org/10.1080/20550324.2017.1329983.Suche in Google Scholar

26. Thakur, S., Verma, A., Sharma, B., Chaudhary, J., Tamulevicius, S., Thakur, V. K. Curr. Opin. Green Sustain. Chem. 2018, 13, 32; https://doi.org/10.1016/j.cogsc.2018.03.011.Suche in Google Scholar

27. Zohuriaan-Mehr, M. J., Kabiri, K. Iran. Polym. J. 2008, 17, 451.Suche in Google Scholar

28. Tran, VV., Park, D., Lee, Y. C. Environ. Sci. Pollut. Res. 2018, 25, 24569; https://doi.org/10.1007/s11356-018-2605-y.Suche in Google Scholar PubMed

29. Qi, X., Lin, L., Shen, L., Li, Z., Qin, T., Qian, Y., Wu, X., Wei, X., Gong, Q., Shen, J. ACS Sustain. Chem. Eng. 2019, 7, 11014; https://doi.org/10.1021/acssuschemeng.9b02139.Suche in Google Scholar

30. Chung, B. G., Lee, K. H., Khademhosseini, A., Lee, S. H. Lab Chip 2012, 12, 45; https://doi.org/10.1039/c1lc20859d.Suche in Google Scholar PubMed

31. Narayanaswamy, R., Torchilin, V. P. Molecules 2019, 24, 603; https://doi.org/10.3390/molecules24030603.Suche in Google Scholar PubMed PubMed Central

32. El-Hoshoudy, A., Mohammedy, M., Ramzi, M., Desouky, S., Attia, A. J. Mol. Liq. 2019, 277, 142.10.1016/j.molliq.2018.12.073Suche in Google Scholar

33. Chen, L., Zhu, X., Fu, M., Zhao, H., Li, G., Zuo, J. Colloids Surf. A Physicochem. Eng. Asp. 2019, 570, 251; https://doi.org/10.1016/j.colsurfa.2019.03.025.Suche in Google Scholar

34. Dong, C. M., Liu, G. Polym. Chem. 2013, 4, 46; https://doi.org/10.1039/c2py20441j.Suche in Google Scholar

35. Shah, R. A., Frazar, E. M., Hilt, J. Z. Curr. Opin. Chem. Eng. 2020, 30, 103; https://doi.org/10.1016/j.coche.2020.08.007.Suche in Google Scholar PubMed PubMed Central

36. Chevry, M., Menuel, S., Leger, B., Noel, S., Monflier, E., Hapiot, F. New J. Chem. 2019, 43, 9865; https://doi.org/10.1039/c8nj06081a.Suche in Google Scholar

37. Niu, Y., Guo, T., Yuan, X., Zhao, Y., Ren, L. Soft Matter 2018, 14, 1227; https://doi.org/10.1039/c7sm02251d.Suche in Google Scholar PubMed

38. Niu, Y., Yuan, X., Zhao, Y., Zhang, W., Ren, L. Macromol. Chem. Phys. 2017, 218, 1600540; https://doi.org/10.1002/macp.201600540.Suche in Google Scholar

39. Rajabi, M., McConnell, M., Cabral, J., Ali, M. A. Carbohydr. Polym. 2021, 260, 117768; https://doi.org/10.1016/j.carbpol.2021.117768.Suche in Google Scholar PubMed

40. Veiga, A. S., Schneider, J. P. Peptide Sci. 2013, 100, 637; https://doi.org/10.1002/bip.22412.Suche in Google Scholar PubMed PubMed Central

41. Kureha, T., Nagase, Y., Suzuki, D. ACS Omega 2018, 3, 6158; https://doi.org/10.1021/acsomega.8b00819.Suche in Google Scholar PubMed PubMed Central

42. Cyganowski, P., Jermakowicz-Bartkowiak, D., Jamroz, P., Pohl, P., Dzimitrowicz, A. Colloids Surf. A Physicochem. Eng. Asp. 2019, 582, 123886.10.1016/j.colsurfa.2019.123886Suche in Google Scholar

43. Li, X., Dong, F., Zhang, L., Xu, Q., Zhu, X., Liang, S., Hu, L., Xie, H. Chem. Eng. J. 2019, 372, 516; https://doi.org/10.1016/j.cej.2019.04.123.Suche in Google Scholar

44. Feng, Y., Yin, J., Liu, S., Wang, Y., Li, B., Jiao, T. ACS Omega 2020, 5, 3725; https://doi.org/10.1021/acsomega.9b04408.Suche in Google Scholar PubMed PubMed Central

45. Berillo, D., Cundy, A. Carbohydr. Polym. 2018, 192, 166; https://doi.org/10.1016/j.carbpol.2018.03.038.Suche in Google Scholar PubMed

46. Bogireddy, N. K. R., Sahare, P., Pal, U., Méndez, S. F. O., Gomez, L. M., Agarwal, V. Chem. Eng. J. 2020, 388, 124237; https://doi.org/10.1016/j.cej.2020.124237.Suche in Google Scholar

47. Haleem, A., Chen, J., Guo, X. X., Wang, J. Y., Li, H. J., Li, P. Y., Chen, S. Q., He, W. D. Polymer 2020, 193, 122352; https://doi.org/10.1016/j.polymer.2020.122352.Suche in Google Scholar

48. Zhao, L., Li, Q., Su, Y., Yue, Q., Gao, B. Int. J. Hydrogen Energy 2017, 42, 6746; https://doi.org/10.1016/j.ijhydene.2017.02.092.Suche in Google Scholar

49. Pandey, A., Manivannan, R. Recent Pat. Nanomed. 2015, 5, 33; https://doi.org/10.2174/1877912305666150417232717.Suche in Google Scholar

50. Pinedo-Guerrero, Z. H., Hernández-Fuentes, A. D., Ortega-Ortiz, H., Benavides-Mendoza, A., Cadenas-Pliego, G. Molecules 2017, 22, 926; https://doi.org/10.3390/molecules22060926.Suche in Google Scholar PubMed PubMed Central

51. Abdollahi, Z., Zare, E. N., Salimi, F., Goudarzi, I., Tay, F. R., Makvandi, P. Int. J. Mol. Sci. 2021, 22, 2531; https://doi.org/10.3390/ijms22052531.Suche in Google Scholar PubMed PubMed Central

52. Zhang, J., Yan, Z., Fu, L., Zhang, Y., Yang, H., Ouyang, J., Chen, D. Appl. Clay Sci. 2018, 166, 166; https://doi.org/10.1016/j.clay.2018.09.026.Suche in Google Scholar

53. Pandey, S., Mishra, S. B. Carbohydr. Polym. 2014, 113, 525; https://doi.org/10.1016/j.carbpol.2014.07.047.Suche in Google Scholar PubMed

54. Hashimi, A. S., Nohan, M. A. N. M., Chin, S. X., Zakaria, S., Chia, C. H. Nanomaterials 2019, 9, 936; https://doi.org/10.3390/nano9070936.Suche in Google Scholar PubMed PubMed Central

Received: 2022-07-21
Accepted: 2022-10-20
Published Online: 2022-11-01
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Original Papers
  3. Suppression of steel corrosion via some gemini cationic surfactant-based Schiff base: experimental and theoretical investigations
  4. Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential
  5. Eco-benign preparation of biosorbent using Momordica Charantia for the efficient removal of Cr(VI) ions from wastewater
  6. Oil mediated green synthesis of nano silver in the presence of surfactants for catalytic and food preservation application
  7. Adsorption properties of metal functionalized fullerene (C59Au, C59Hf, C59Ag, and C59Ir) nanoclusters for application as a biosensor for hydroxyurea (HXU): insight from theoretical computation
  8. Evaluation of diethylenetriaminepentaacetic acid modified chitosan immobilized in amino-carbmated alginate matrix as a low cost adsorbent for effective Cu(II) recovery
  9. Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract
  10. Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites
  11. Optical and topographic characteristics of silver films deposited from a colloidal solution on polyelectrolytes for IgG-FITC fluorescence analysis
  12. The three pyridazines, three naphthyridines and two azoles: effect of the position of the second heteroatom on pKaH of their eight conjugate acids
  13. Theoretical study on the origins of sildenafil tautomers’ relative stability
  14. Application of the Lennard-Jones potential for calculating the surface tension and the formation enthalpy of a binary solution
  15. Ultrasonic supported dye removal by a novel biomass
  16. A novel synthesis of graphene oxide-titanium dioxide (GO-TiO2) and graphene oxide-zinc oxide (GO-ZnO) nanocomposites and their application as effective, reusable photocatalysts for degradation of methylene blue (MB) dye
  17. Review Article
  18. Photocatalytic hydrogen generation using TiO2: a state-of-the-art review
Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2022-0107/html?lang=de
Button zum nach oben scrollen