Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential
-
Muhammad Riaz
, Muhammad Ajmal, Atif Naseem
, Nusrat Jabeen , Zahoor H. Farooqi , Khalid Mahmood , Abid Ali , Lubna Rasheed und Ahmad Nauman Shah Saqib
Abstract
Poly(N-isopropyl acrylamide-co-2-acrylamido methyl propane sulfonic acid) hydrogel was prepared and used as matrix for the fabrication of nickel and copper nanoparticles. Nickel and copper nanoparticles were fabricated via in situ reduction of Ni (II) and Cu (II) ions within the hydrogel matrix. The manufactured hydrogel and its corresponding composites with Ni and Cu nanoparticles were characterized by FTIR, XRD, EDX, TEM, and TGA. Thermal stability of hydrogel was found to be increased upon fabricating with metal nanoparticles. The hydrogel showed ability to absorb water 63 times of its weight in dried form. The Ni and Cu nanoparticles were observed to be well dispersed, spherical in shape and most of them were having diameters in the range of 12.5 to 38.8 nm and 58 to 102 nm, respectively. The as-prepared hydrogel-nickel and hydrogel-Cu nanocomposite were used as catalysts for the reduction of a toxic pollutant 4-nitrophenol. At 25 °C, the reduction of 4-NP was found to proceed with apparent rate constant (kapp) of 0.107 and 0.122 min−1 in the presence of composite containing Ni and Cu nanoparticles, respectively. However, kapp was increased with corresponding increase in temperature and its maximum value was found to be 0.815 min−1 at 88 °C with catalyst containing Ni nanoparticles. The formation of well dispersed Ni and Cu nanoparticles in the prepared hydrogel reflected that this hydrogel system can act as efficient stabilizing agent along with acting as a reactor medium. Recycling potential of catalysts was studied for five successive cycles.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Liu, D. X., Mu, J., Yao, Q., Bai, Y., Qian, F., Liang, F., Shi, F. N., Gao, J. SN Appl. Sci. 2019, 1, 184; https://doi.org/10.1007/s42452-019-0188-y.Suche in Google Scholar
2. Dong, Z., Le, X., Dong, C., Zhang, W., Li, X., Ma, J. Appl. Catal., B 2015, 162, 372; https://doi.org/10.1016/j.apcatb.2014.07.009.Suche in Google Scholar
3. Vellaichamy, B., Prakash, P., Thomas, J. Ultrason. Sonochem. 2018, 48, 362; https://doi.org/10.1016/j.ultsonch.2018.05.012.Suche in Google Scholar PubMed
4. Rashed, M. N., Ed. Organic pollutants-monitoring, risk and treatment; BoD–Books on Demand, 2013; p. 167.10.5772/55953Suche in Google Scholar
5. Tijani, J. O., Fatoba, O. O., Madzivire, G., Petrik, L. F. Water Air Soil Pollut. 2014, 225, 1; https://doi.org/10.1007/s11270-014-2102-y.Suche in Google Scholar
6. Santi, C., Cortes, S., D’Acqui, L., Sparvoli, E., Pushparaj, B. Bioresour. Technol. 2008, 99, 1945; https://doi.org/10.1016/j.biortech.2007.03.022.Suche in Google Scholar PubMed
7. Ye, S., Chen, Y., Yao, X., Zhang, J. Chemosphere 2021, 273, 128503; https://doi.org/10.1016/j.chemosphere.2020.128503.Suche in Google Scholar PubMed
8. Ma, M., Yang, Y., Li, W., Feng, R., Li, Z., Lyu, P., Ma, Y. J. Mater. Sci. 2019, 54, 323; https://doi.org/10.1007/s10853-018-2868-1.Suche in Google Scholar
9. Yan, Z., Fu, L., Zuo, X., Yang, H. Appl. Catal., B 2018, 226, 23; https://doi.org/10.1016/j.apcatb.2017.12.040.Suche in Google Scholar
10. Ajmal, M., Siddiq, M., Al-Lohedan, H., Sahiner, N. RSC Adv. 2014, 4, 59562; https://doi.org/10.1039/c4ra11667d.Suche in Google Scholar
11. Revathy, T., Dhanapal, K., Dhanavel, S., Narayanan, V., Stephen, A. J. Alloys Compd. 2018, 735, 1703; https://doi.org/10.1016/j.jallcom.2017.11.264.Suche in Google Scholar
12. Mitsudome, T., Mikami, Y., Funai, H., Mizugaki, T., Jitsukawa, K., Kaneda, K. Angew. Chem. Int. Ed. 2008, 47, 138; https://doi.org/10.1002/anie.200703161.Suche in Google Scholar PubMed
13. Waszczuk, P., Barnard, T. M., Rice, C., Masel, R. I., Wieckowski, A. Electrochem. Commun. 2002, 4, 599; https://doi.org/10.1016/s1388-2481(02)00420-4.Suche in Google Scholar
14. Lang, H., Maldonado, S., Stevenson, K. J., Chandler, B. D. J. Am. Chem. Soc. 2004, 126, 12949; https://doi.org/10.1021/ja046542o.Suche in Google Scholar PubMed
15. Zhu, J., Zhang, X., Qin, Z., Zhang, L., Ye, Y., Cao, M., Gao, L., Jiao, T. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125889; https://doi.org/10.1016/j.colsurfa.2020.125889.Suche in Google Scholar
16. Deraedt, C., Ye, R., Ralston, W. T., Toste, F. D., Somorjai, G. A. J. Am. Chem. Soc. 2017, 139, 18084; https://doi.org/10.1021/jacs.7b10768.Suche in Google Scholar PubMed
17. Barman, S. R., Nain, A., Jain, S., Punjabi, N., Mukherji, S., Satija, J. J. Mater. Chem. B 2018, 6, 2368; https://doi.org/10.1039/c7tb03344c.Suche in Google Scholar PubMed
18. Yang, Q., Li, L., Zhao, F., Wang, Y., Ye, Z., Hua, C., Liu, Z., Bohinc, K., Guo, X. Nanomaterials 2020, 10, 799; https://doi.org/10.3390/nano10040799.Suche in Google Scholar PubMed PubMed Central
19. Pocoví-Martínez, S., Cassano, D., Voliani, V. ACS Appl. Nano Mater. 2018, 1, 1836; https://doi.org/10.1021/acsanm.8b00247.Suche in Google Scholar
20. Gao, Z., Zhang, Y., Li, D., Werth, C. J., Zhang, Y., Zhou, X. J. Hazard Mater. 2015, 286, 425; https://doi.org/10.1016/j.jhazmat.2015.01.005.Suche in Google Scholar PubMed
21. Xu, P., Cen, C., Chen, N., Lin, H., Wang, Q., Xu, N., Tang, J., Teng, Z. J. Colloid Interface Sci. 2018, 526, 194; https://doi.org/10.1016/j.jcis.2018.04.045.Suche in Google Scholar PubMed
22. Robinson, D. A., Liu, Y., Edwards, M. A., Vitti, N. J., Oja, S. M., Zhang, B., White, H. S. J. Am. Chem. Soc. 2017, 139, 16923; https://doi.org/10.1021/jacs.7b09842.Suche in Google Scholar PubMed
23. Clasky, A. J., Watchorn, J. D., Chen, P. Z., Gu, F. X. Acta Biomater. 2021, 122, 1; https://doi.org/10.1016/j.actbio.2020.12.030.Suche in Google Scholar PubMed
24. Wu, X. Q., Wu, X. W., Huang, Q., Shen, J. S., Zhang, H. W. Appl. Surf. Sci. 2015, 331, 210; https://doi.org/10.1016/j.apsusc.2015.01.077.Suche in Google Scholar
25. Pandey, N., Shukla, S., Singh, N. Nanocomposites 2017, 3, 47; https://doi.org/10.1080/20550324.2017.1329983.Suche in Google Scholar
26. Thakur, S., Verma, A., Sharma, B., Chaudhary, J., Tamulevicius, S., Thakur, V. K. Curr. Opin. Green Sustain. Chem. 2018, 13, 32; https://doi.org/10.1016/j.cogsc.2018.03.011.Suche in Google Scholar
27. Zohuriaan-Mehr, M. J., Kabiri, K. Iran. Polym. J. 2008, 17, 451.Suche in Google Scholar
28. Tran, VV., Park, D., Lee, Y. C. Environ. Sci. Pollut. Res. 2018, 25, 24569; https://doi.org/10.1007/s11356-018-2605-y.Suche in Google Scholar PubMed
29. Qi, X., Lin, L., Shen, L., Li, Z., Qin, T., Qian, Y., Wu, X., Wei, X., Gong, Q., Shen, J. ACS Sustain. Chem. Eng. 2019, 7, 11014; https://doi.org/10.1021/acssuschemeng.9b02139.Suche in Google Scholar
30. Chung, B. G., Lee, K. H., Khademhosseini, A., Lee, S. H. Lab Chip 2012, 12, 45; https://doi.org/10.1039/c1lc20859d.Suche in Google Scholar PubMed
31. Narayanaswamy, R., Torchilin, V. P. Molecules 2019, 24, 603; https://doi.org/10.3390/molecules24030603.Suche in Google Scholar PubMed PubMed Central
32. El-Hoshoudy, A., Mohammedy, M., Ramzi, M., Desouky, S., Attia, A. J. Mol. Liq. 2019, 277, 142.10.1016/j.molliq.2018.12.073Suche in Google Scholar
33. Chen, L., Zhu, X., Fu, M., Zhao, H., Li, G., Zuo, J. Colloids Surf. A Physicochem. Eng. Asp. 2019, 570, 251; https://doi.org/10.1016/j.colsurfa.2019.03.025.Suche in Google Scholar
34. Dong, C. M., Liu, G. Polym. Chem. 2013, 4, 46; https://doi.org/10.1039/c2py20441j.Suche in Google Scholar
35. Shah, R. A., Frazar, E. M., Hilt, J. Z. Curr. Opin. Chem. Eng. 2020, 30, 103; https://doi.org/10.1016/j.coche.2020.08.007.Suche in Google Scholar PubMed PubMed Central
36. Chevry, M., Menuel, S., Leger, B., Noel, S., Monflier, E., Hapiot, F. New J. Chem. 2019, 43, 9865; https://doi.org/10.1039/c8nj06081a.Suche in Google Scholar
37. Niu, Y., Guo, T., Yuan, X., Zhao, Y., Ren, L. Soft Matter 2018, 14, 1227; https://doi.org/10.1039/c7sm02251d.Suche in Google Scholar PubMed
38. Niu, Y., Yuan, X., Zhao, Y., Zhang, W., Ren, L. Macromol. Chem. Phys. 2017, 218, 1600540; https://doi.org/10.1002/macp.201600540.Suche in Google Scholar
39. Rajabi, M., McConnell, M., Cabral, J., Ali, M. A. Carbohydr. Polym. 2021, 260, 117768; https://doi.org/10.1016/j.carbpol.2021.117768.Suche in Google Scholar PubMed
40. Veiga, A. S., Schneider, J. P. Peptide Sci. 2013, 100, 637; https://doi.org/10.1002/bip.22412.Suche in Google Scholar PubMed PubMed Central
41. Kureha, T., Nagase, Y., Suzuki, D. ACS Omega 2018, 3, 6158; https://doi.org/10.1021/acsomega.8b00819.Suche in Google Scholar PubMed PubMed Central
42. Cyganowski, P., Jermakowicz-Bartkowiak, D., Jamroz, P., Pohl, P., Dzimitrowicz, A. Colloids Surf. A Physicochem. Eng. Asp. 2019, 582, 123886.10.1016/j.colsurfa.2019.123886Suche in Google Scholar
43. Li, X., Dong, F., Zhang, L., Xu, Q., Zhu, X., Liang, S., Hu, L., Xie, H. Chem. Eng. J. 2019, 372, 516; https://doi.org/10.1016/j.cej.2019.04.123.Suche in Google Scholar
44. Feng, Y., Yin, J., Liu, S., Wang, Y., Li, B., Jiao, T. ACS Omega 2020, 5, 3725; https://doi.org/10.1021/acsomega.9b04408.Suche in Google Scholar PubMed PubMed Central
45. Berillo, D., Cundy, A. Carbohydr. Polym. 2018, 192, 166; https://doi.org/10.1016/j.carbpol.2018.03.038.Suche in Google Scholar PubMed
46. Bogireddy, N. K. R., Sahare, P., Pal, U., Méndez, S. F. O., Gomez, L. M., Agarwal, V. Chem. Eng. J. 2020, 388, 124237; https://doi.org/10.1016/j.cej.2020.124237.Suche in Google Scholar
47. Haleem, A., Chen, J., Guo, X. X., Wang, J. Y., Li, H. J., Li, P. Y., Chen, S. Q., He, W. D. Polymer 2020, 193, 122352; https://doi.org/10.1016/j.polymer.2020.122352.Suche in Google Scholar
48. Zhao, L., Li, Q., Su, Y., Yue, Q., Gao, B. Int. J. Hydrogen Energy 2017, 42, 6746; https://doi.org/10.1016/j.ijhydene.2017.02.092.Suche in Google Scholar
49. Pandey, A., Manivannan, R. Recent Pat. Nanomed. 2015, 5, 33; https://doi.org/10.2174/1877912305666150417232717.Suche in Google Scholar
50. Pinedo-Guerrero, Z. H., Hernández-Fuentes, A. D., Ortega-Ortiz, H., Benavides-Mendoza, A., Cadenas-Pliego, G. Molecules 2017, 22, 926; https://doi.org/10.3390/molecules22060926.Suche in Google Scholar PubMed PubMed Central
51. Abdollahi, Z., Zare, E. N., Salimi, F., Goudarzi, I., Tay, F. R., Makvandi, P. Int. J. Mol. Sci. 2021, 22, 2531; https://doi.org/10.3390/ijms22052531.Suche in Google Scholar PubMed PubMed Central
52. Zhang, J., Yan, Z., Fu, L., Zhang, Y., Yang, H., Ouyang, J., Chen, D. Appl. Clay Sci. 2018, 166, 166; https://doi.org/10.1016/j.clay.2018.09.026.Suche in Google Scholar
53. Pandey, S., Mishra, S. B. Carbohydr. Polym. 2014, 113, 525; https://doi.org/10.1016/j.carbpol.2014.07.047.Suche in Google Scholar PubMed
54. Hashimi, A. S., Nohan, M. A. N. M., Chin, S. X., Zakaria, S., Chia, C. H. Nanomaterials 2019, 9, 936; https://doi.org/10.3390/nano9070936.Suche in Google Scholar PubMed PubMed Central
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Suppression of steel corrosion via some gemini cationic surfactant-based Schiff base: experimental and theoretical investigations
- Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential
- Eco-benign preparation of biosorbent using Momordica Charantia for the efficient removal of Cr(VI) ions from wastewater
- Oil mediated green synthesis of nano silver in the presence of surfactants for catalytic and food preservation application
- Adsorption properties of metal functionalized fullerene (C59Au, C59Hf, C59Ag, and C59Ir) nanoclusters for application as a biosensor for hydroxyurea (HXU): insight from theoretical computation
- Evaluation of diethylenetriaminepentaacetic acid modified chitosan immobilized in amino-carbmated alginate matrix as a low cost adsorbent for effective Cu(II) recovery
- Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract
- Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites
- Optical and topographic characteristics of silver films deposited from a colloidal solution on polyelectrolytes for IgG-FITC fluorescence analysis
- The three pyridazines, three naphthyridines and two azoles: effect of the position of the second heteroatom on pKaH of their eight conjugate acids
- Theoretical study on the origins of sildenafil tautomers’ relative stability
- Application of the Lennard-Jones potential for calculating the surface tension and the formation enthalpy of a binary solution
- Ultrasonic supported dye removal by a novel biomass
- A novel synthesis of graphene oxide-titanium dioxide (GO-TiO2) and graphene oxide-zinc oxide (GO-ZnO) nanocomposites and their application as effective, reusable photocatalysts for degradation of methylene blue (MB) dye
- Review Article
- Photocatalytic hydrogen generation using TiO2: a state-of-the-art review
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Suppression of steel corrosion via some gemini cationic surfactant-based Schiff base: experimental and theoretical investigations
- Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential
- Eco-benign preparation of biosorbent using Momordica Charantia for the efficient removal of Cr(VI) ions from wastewater
- Oil mediated green synthesis of nano silver in the presence of surfactants for catalytic and food preservation application
- Adsorption properties of metal functionalized fullerene (C59Au, C59Hf, C59Ag, and C59Ir) nanoclusters for application as a biosensor for hydroxyurea (HXU): insight from theoretical computation
- Evaluation of diethylenetriaminepentaacetic acid modified chitosan immobilized in amino-carbmated alginate matrix as a low cost adsorbent for effective Cu(II) recovery
- Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract
- Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites
- Optical and topographic characteristics of silver films deposited from a colloidal solution on polyelectrolytes for IgG-FITC fluorescence analysis
- The three pyridazines, three naphthyridines and two azoles: effect of the position of the second heteroatom on pKaH of their eight conjugate acids
- Theoretical study on the origins of sildenafil tautomers’ relative stability
- Application of the Lennard-Jones potential for calculating the surface tension and the formation enthalpy of a binary solution
- Ultrasonic supported dye removal by a novel biomass
- A novel synthesis of graphene oxide-titanium dioxide (GO-TiO2) and graphene oxide-zinc oxide (GO-ZnO) nanocomposites and their application as effective, reusable photocatalysts for degradation of methylene blue (MB) dye
- Review Article
- Photocatalytic hydrogen generation using TiO2: a state-of-the-art review