Home Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites
Article
Licensed
Unlicensed Requires Authentication

Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites

  • Junaid Raza , Abdul Hamid , Muhammad Khan EMAIL logo , Fakhar Hussain , Amir Zada EMAIL logo , Li Tiehu , Amjad Ali , Perveen Fazil and Zainul Wahab
Published/Copyright: August 17, 2022

Abstract

Two series, A and B, of PVC based nanocomposite polymer membranes (nCPMs) were prepared using PbO only and PbO/graphite mixture as a filler by solution casting method. Seven samples with varying compositions (5–35%) of filler particles were prepared for each series and were compared by thickness measurements, porosity, water uptake, swelling degree, ionic conductivity, ion exchange capacity (IEC), membrane potential and transport number. The maximum values for these characteristics were observed as 0.402 mm, 0.77, 141.3%, 0.11, 0.0033 Scm−1, 8.6 milli-eq.g−1, 0.19 V and 0.01391 for series-A composites whereas that of 0.367 mm, 0.83, 63.4%, 0.019, 0.00981 Scm−1, 5.21 milli-eq.g−1, 0.13 V and 0.0108 for series-B nCPMs respectively. The SEM images of membranes showed greater voids produced in the series-B compared to series-A composites. The maximum Ionic conductivity, IEC, membrane potential and transport number were observed for membrane with 25% PbO/graphite, 20% PbO and 35% PbO particles respectively.


Corresponding authors: Muhammad Khan, School of Materials Science and Engineering, Northwestern Polytechnical University, Xian, 710072, P.R. China; and Department of Chemistry, University of Okara, Punjab, Pakistan, E-mail: ; and Amir Zada, Department of Chemistry, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan, E-mail:

Acknowledgments

We are also very thankful to the School of Materials Science and Engineering, Northwestern Polytechnical University, Xian, P.R. of China and Higher Education Commission (HEC) Pakistan for their financial support.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research has been Financially Supported for the Postdoctoral study by the Shaanxi Province and Natural Science Foundation of China under the (Grant No: 2016JQ5108).

  3. Conflict of interest statement: On behalf of all authors, the corresponding author declared that this work is the original work of authors, and all standards were followed accordingly and there is no conflict of interest.

References

1. Zada, A., Khan, M., Hussain, Z., Shah, M.I. A., Ateeq, M., Ullah, M., Ali, N., Shaheen, S., Yasmeen, H., Shah, S. N. A., Dang, A. Z. Phys. Chem. 2022, 236, 53–66; https://doi.org/10.1515/zpch-2020-1778.Search in Google Scholar

2. Zhang, Z., Zada, A., Cui, N., Liu, N., Liu, M., Yang, Y., Jiang, D., Jiang, J., Liu, S. Crystals 2021, 11, 981; https://doi.org/10.3390/cryst11080981.Search in Google Scholar

3. Saeed, K., Khan, I., Ahad, M., Shah, T., Sadiq, M., Zada, A., Zada, N., Appl. Water Sci. 2021, 11, 105. https://doi.org/10.1007/s13201-021-01442-0.Search in Google Scholar

4. Xu, M., Zada, A., Yan, R., Li, H., Sun, N., Qu, Y. Phys. Chem. Chem. Phys. 2020, 22, 4526–4532; https://doi.org/10.1039/C9CP05147C.Search in Google Scholar

5. Liu, S., Zada, A., Yu, X., Liu, F., Jin, G. Chemosphere 2022, 307, 135717; https://doi.org/10.1016/j.chemosphere.2022.135717.Search in Google Scholar PubMed

6. Dang, A., Sun, Y., Liu, Y., Xia, Y., Liu, X., Gao, Y., Wu, S., Li, T., Zada, A., Ye, F. ACS Appl. Energy Mater. 2022, 5, 9158–9172; https://doi.org/10.1021/acsaem.2c01738.Search in Google Scholar

7. Hussain, Z., Zada, A., Hussain, K., Naz, M. Y., Salam, N. M. A., Ibrahim, K. A. Asia Pac. J. Chem. Eng. 2020, 2021e2610; https://doi.org/10.1002/apj.2610.Search in Google Scholar

8. Musa, M. T., Shaari, N., Kamarudin, S. K. Int. J. Energy Res. 2021, 45, 1309–1346; https://doi.org/10.1002/er.5874.Search in Google Scholar

9. Dang, A., Sun, Y., Fang, C., Li, T., Liu, X., Xia, Y., Ye, F., Zada, A., Khan, M. Appl. Surf. Sci. 2022, 581, 152432; https://doi.org/10.1016/j.apsusc.2022.152432.Search in Google Scholar

10. Shah, M. Z., Guan, Z.-H., Din, A. U., Ali, A., Rehman, A. U., Jan, K., Faisal, S., Saud, S., Adnan, M., Wahid, F. Sci. Rep. 2021, 11, 1–14.10.1038/s41598-020-79139-8Search in Google Scholar PubMed PubMed Central

11. Li, G., Zhu, D., Jia, W., Zhang, F. E-Polymers 2021, 21, 921–929; https://doi.org/10.1515/epoly-2021-0078.Search in Google Scholar

12. Kulikowska, J. W., Wolska, J., Koroniak, H. Phys. Sci. Rev. 2017, 2, 20170018; https://doi.org/10.1515/psr-2017-0018.Search in Google Scholar

13. Khan, M., Tiehu, L., Zaidi, S. B. A., Javed, E., Hussain, A., Hayat, A., Zada, A., Alei, D., Ullah, A. Polym. Int. 2021, 70, 1733–1740; https://doi.org/10.1002/pi.6274.Search in Google Scholar

14. Khan, W. A., Arain, M. B., Bibi, H., Tuzen, M., Shah, N., Zada, A. Z. Phys. Chem. 2021, 235, 1113–1128; https://doi.org/10.1515/zpch-2020-1761.Search in Google Scholar

15. Putri, Y. M. T. A., Gunlazuardi, J., Yulizar, Y., Wibowo, R., Einaga, Y., Ivandini, T. A. Open Chem. 2021, 19, 1116–1133; https://doi.org/10.1515/chem-2021-0100.Search in Google Scholar

16. Hamid, A., Khan, M., Hussain, F., Zada, A., Li, T., Alei, D., Ali, A. Z. Phys. Chem. 2021, 235, 1791–1810; https://doi.org/10.1515/zpch-2020-1763.Search in Google Scholar

17. Hayat, A., Sohail, M., Iqbal, W., Taha, T.A., Alenad, A. M., Al-Sehemi, A. G., Ullah, S., Alghamdi, N. A., Alhadhrami, A., Ajmal, Z., Palamanit, A., Nawawi, W.I., AlSalem, H. S., Ali, H., Zada, A., Amin, M. A. J. Sci. Adv. Mater. Dev. 2022, 100483; https://doi.org/10.1016/j.jsamd.2022.100483.Search in Google Scholar

18. Feng, K., Hou, L., Tang, B., Wu, P. Phys. Chem. Chem. Phys. 2015, 17, 9106–9115; https://doi.org/10.1039/C5CP00203F.Search in Google Scholar PubMed

19. Wu, G., Lin, S.-J., Hsu, I., Su, J.-Y., Chen, D. W. Polymers 2019, 11, 1177; https://doi.org/10.3390/polym11071177.Search in Google Scholar PubMed PubMed Central

20. Ahmed, S., Arshad, T., Zada, A., Afzal, A., Khan, M., Hussain, A., Hassan, M., Ali, M., Xu, S. Membranes 2021, 11, 450; https://doi.org/10.3390/membranes11060450.Search in Google Scholar PubMed PubMed Central

21. Cui, N., Zada, A., Song, J., Yang, Y., Liu, M., Wang, Y., Wu, Yu., Qi, K., Selvaraj, R., Liu, S., Jin, G. Desalination Water Treat. 2021, 245, 247–254; https://doi.org/10.5004/dwt.2021.27976.Search in Google Scholar

22. Deyab, M. A., Al-Qhatani, M. M. Z. Phys. Chem. 2022, 236, 67–77; https://doi.org/10.1515/zpch-2021-3050.Search in Google Scholar

23. Khan, M., Li, T., Hayat, A., Zada, A., Ali, T., Uddin, I., Hayat, A., Khan, M., Ullah, A., Hussain, A., Zhao, T. Int. J. Energy Res. 2021, 45, 14306–14337; https://doi.org/10.1002/er.6747.Search in Google Scholar

24. Raza, J., Hamid, A., Khan, M., Hussain, F., Tiehu, L., Fazil, P., Zada, A., Wahab, Z., Ali, A. Z. Phys. Chem. 2022, 236, 619–636; https://doi.org/10.1515/zpch-2021-3152.Search in Google Scholar

25. Khan, M., Hayat, A., Mane, S. K. B., Li, T., Shaishta, N., Alei, D., Zhao, T. K., Ullah, A., Zada, A., Rehman, A. U., Khan, W. U. Int. J. Hydrogen Energy 2020, 4553, 29070–29081; https://doi.org/10.1016/j.ijhydene.2020.07.274.Search in Google Scholar

26. Hamid, A., Khan, M., Hayat, A., Raza, J., Zada, A., Ullah, A., Raziq, F., Li, T., Hussain, F. Spectrochim. Acta Mol. Biomol. Spectrosc. 2020, 235, 118303; https://doi.org/10.1016/j.saa.2020.118303.Search in Google Scholar PubMed

27. Zada, A., Muhammad, P., Ahmad, W., Hussain, Z., Ali, S., Khan, M., Khan, Q., Maqbool, M. Adv. Funct. Mater. 2020, 30, 1906744; https://doi.org/10.1002/adfm.201906744.Search in Google Scholar

28. Chu, X., Qu, Y., Zada, A., Bai, L., Li, Z., Yang, F., Zhao, L., Zhang, G., Sun, X., Yang, Z., Jing, L. Adv. Sci. 2020, 7, 2001543; https://doi.org/10.1002/advs.202001543.Search in Google Scholar PubMed PubMed Central

29. Yasmeen, H., Zada, A., Ali, S., Khan, I., Ali, W., Khan, W., Khan, M., Anwar, N., Ali, A., Flores, A. M. H., Subhan, F. J. Chin. Chem. Soc. 2020, 67, 1611–1617; https://doi.org/10.1002/jccs.202000205.Search in Google Scholar

30. Madani, S. S., Yangjeh, A. H., Khaneghah, S. A., Chand, H., Krishnan, V., Zada, A. J. Taiwan Inst. Chem. Eng. 2021, 119, 177–186; https://doi.org/10.1016/j.jtice.2021.01.020.Search in Google Scholar

31. Zada, A., Khan, M., Qureshi, M. N., Liu, S., Wang, R. Front. Chem. 2020, 7, 941; https://doi.org/10.3389/fchem.2019.00941.Search in Google Scholar PubMed PubMed Central

32. Hayat, A., Sohail, M., Hamdy, M. S., Mane, S. K. B., Amin, M. A., Zada, A., Taha, T. A., Rahman, M. M., Palamanit, A., Medina, D. I., Khan, J., Nawawi, W. I. Mol. Catal. 2022, 518, 112064.10.1016/j.mcat.2021.112064Search in Google Scholar

33. Raziq, F., Aligayev, A., Shen, H., Ali, S., Shah, R., Ali, S., Bakhtiar, S. H., Ali, A., Zarshad, N., Zada, A., Xia, X., Zu, X., Khan, M., Wu, X., Kong, Q., Liu, C., Qiao, Q. Adv. Sci. 2021, 9, 2102530; https://doi.org/10.1002/advs.202102530.Search in Google Scholar PubMed PubMed Central

34. Zafar, Z., Yi, S., Li, J., Li, C., Zhu, Y., Zada, A., Yao, W., Liu, Z., Yue, X. Energy Environ. Mater. 2022, 5, 68–114; https://doi.org/10.1002/eem2.12171.Search in Google Scholar

35. Khan, M., Tiehu, L., Hussain, A., Raza, A., Zada, A., Dang, A., Khan, A. R., Ali, R., Hussain, H., Hussain, H., Wahab, Z., Imran, M. Diam. Relat. Mater. 2022, 126, 109077; https://doi.org/10.1016/j.diamond.2022.109077.Search in Google Scholar

36. Gaurav, K., Singh, R., Tiwari, B. K., Srivastava, R. J. Polym. Eng. 2019, 39, 360–367; https://doi.org/10.1515/polyeng-2018-0276.Search in Google Scholar

37. Subhan, F., Aslam, S., Yan, Z., Yaseen, M., Zada, A., Ikram, M. Separ. Purif. Technol. 2021, 265, 118532; https://doi.org/10.1016/j.seppur.2021.118532.Search in Google Scholar

38. Pavlidou, S., Papaspyrides, C. Prog. Polym. Sci. 2008, 33, 1119–1198; https://doi.org/10.1016/j.progpolymsci.2008.07.008.Search in Google Scholar

39. Ilyas, T., Raziq, F., Ali, S., Zada, A., Ilyas, N., Shah, R., Wang, Y., Qiao, L. Mater. Des. 2021, 204, 109674; https://doi.org/10.1016/j.matdes.2021.109674.Search in Google Scholar

40. Perez-Puyana, V., Felix, M., Cabrera, L., Romero, A., Guerrero, A. Iran. Polym. J. (Engl. Ed.) 2019, 28, 921–931; https://doi.org/10.1007/s13726-019-00755-x.Search in Google Scholar

41. Al-Hartomy, O. A., Al-Salamy, F., Al-Ghamdi, A. A., Abdel Fatah, M., Dishovsky, N., El-Tantawy, F. J. Appl. Polym. Sci. 2011, 120, 3628–3634; https://doi.org/10.1002/app.33547.Search in Google Scholar

42. Ali, S., Ali, S., Ismail, P. M., Shen, H., Zada, A., Ali, A., Ahmad, I., Shah, R., Khan, I., Chen, J., Cui, C., Wu, X., Kong, Q., Yi, J., Zu, X., Xiao, H., Raziq, R., Qiao, L. Appl. Catal. B Environ. 2022, 307, 121149; https://doi.org/10.1016/j.apcatb.2022.121149.Search in Google Scholar

43. Al-Ghamdi, A. A., El-Tantawy, F. Compos. A: Appl. Sci. Manuf. 2010, 41, 1693–1701; https://doi.org/10.1016/j.compositesa.2010.08.006.Search in Google Scholar

44. Raziq, F., Khan, K., Ali, S., Ali, S., Xu, H., Ali, I., Zada, A., Ismail, P.M., Ali, A., Khan, H., Wu, Q., Kong, Q., Zahoor, M., Xiao, H., Zu, X., Li, S., Qiao, L. Chem. Eng. J. 2022, 446, 137161; https://doi.org/10.1016/j.cej.2022.137161.Search in Google Scholar

45. Sinha, M., Purkait, M. Desalination 2014, 338, 106–114; https://doi.org/10.1016/j.desal.2014.02.002.Search in Google Scholar

46. Samsudin, A. M., Hacker, V. Polymers 2019, 11, 1399; https://doi.org/10.3390/polym1109139.Search in Google Scholar

47. Yan, R., Zada, A., Sun, L., Li, Z., Mu, Z., Chen, S., Yang, F., Sun, J., Bai, L., Qu, Y., Jing, L. Rare Met. 2022, 41, 155–165; https://doi.org/10.1007/s12598-021-01857-3.Search in Google Scholar

48. Zhou, X., Zheng, P., Wang, L., Liu, X. Polymers 2019, 11, 32; https://doi.org/10.3390/polym11010032.Search in Google Scholar PubMed PubMed Central

49. Xu, B., Zada, A., Wang, G., Qu, Y. Sustain. Energy Fuels 2019, 3, 3363–3369; https://doi.org/10.1039/C9SE00409B.Search in Google Scholar

50. Qi, K., Zada, A., Yang, Y., Chen, Q., Khataee, A. Res. Chem. Intermed. 2020, 46, 5281–5295; https://doi.org/10.1007/s11164-020-04262-0.Search in Google Scholar

51. Nazir, R., Khan, M., Rehman, R. U., Shujah, S., Khan, M., Ullah, M., Zada, A., Mahmood, N., Ahmad, I. Soil Water Res. 2020, 15, 166–172; https://doi.org/10.17221/59/2019-SWR.Search in Google Scholar

52. Ullah, M., Nazir, R., Khan, M., Khan, W., Shah, M., Afridi, S. G., Zada, A. Soil Water Res. 2020, 15, 30–37; https://doi.org/10.17221/212/2018-SWR.Search in Google Scholar

53. Ali, W., Ullah, H., Zada, A., Alamgir, M. K., Muhammad, W., Ahmad, M. J., Nadhman, A. Mater. Chem. Phys. 2018, 213, 259–266; https://doi.org/10.1016/j.matchemphys.2018.04.015.Search in Google Scholar

54. Rehman, A. U., Khan, M., Maosheng, Z. J. Energy Storage 2019, 26, 101026.10.1016/j.est.2019.101026Search in Google Scholar

55. Wang, S., Zhang, H., Shao, L., Liu, S., He, P. Chemosphere 2014, 117, 353–359; https://doi.org/10.1016/j.chemosphere.2014.07.076.Search in Google Scholar PubMed

56. Rehman, A. U., Maosheng, Z., Hayat, A. Int. J. Energy Res. 2020, 44, 6981–6990.10.1002/er.5470Search in Google Scholar

57. Deshmukh, S. P., Rao, A. C., Gaval, V. R., Joseph, S., Mahanwar, P. A. J. Miner. Mater. Char. Eng. 2010, 9, 831–844; https://doi.org/10.4236/jmmce.2010.99060.Search in Google Scholar

58. Rehman, A. U., Maosheng, Z., Hayat, A. Int. J. Energy Res. 2020, 44, 269–281.10.1002/er.4910Search in Google Scholar

59. Qi, K., Xing, X., Zada, A., Li, M., Wang, Q., Liu, S., Lin, H., Wang, G.. Ceram. Int. 2020, 46, 1494–1502; https://doi.org/10.1016/j.ceramint.2019.09.116.Search in Google Scholar

60. Rehman, A. U., Shah, M. Z., Ali, A., Zhao, T., Shah, R., Ullah, I., Bilal, H., Khan, A. R., Iqbal, M., Hayat, A.. Int. J. Energy Res. 2021, 45, 4746–4754.10.1002/er.6077Search in Google Scholar

61. Qi, K., Liu, S., Zada, A. J. Taiwan Inst. Chem. Eng. 2020, 109, 111–123; https://doi.org/10.1016/j.jtice.2020.02.012.Search in Google Scholar

62. Zhao, T., Munis, A., Rehman, A. U., Zheng, M. Mater. Res. Express 2020, 7, 015529.10.1088/2053-1591/ab6c24Search in Google Scholar

63. Zhao, Y., Zada, A., Yang, Y., Pan, J., Wang, Y., Yan, Z., Xu, Z., Qi, K. Front. Chem. 2021, 9, 797738; https://doi.org/10.3389/fchem.2021.797738.Search in Google Scholar PubMed PubMed Central

64. Rehman, A. U., Shah, M. Z., Rasheed, S., Afzal, W., Arsalan, M., Rahman, H. U., Ullah, M., Zhao, T., Ullah, I., Din, A. U. Z. Phys. Chem. 2021, 235, 1481–1497.10.1515/zpch-2021-3012Search in Google Scholar

65. Du, X., Zhang, Z., Liu, W., Deng, Y. Nano Energy 2017, 35, 299–320; https://doi.org/10.1016/j.nanoen.2017.04.001.Search in Google Scholar

66. Ahamed, M. I., Asiri, A. M., Luqman, M. Adv. Mater. Sci. Eng. 2019, 2019, 4764198.10.1155/2019/4764198Search in Google Scholar

67. Jalani, N. H., Dunn, K., Datta, R. Electrochim. Acta 2005, 51, 553–560.10.1016/j.electacta.2005.05.016Search in Google Scholar

68. Ali, A., Hussain, Z., Zahid, M., Qamar, L., Zada, A., Arain, M. B., Salman, S. M., Mohammed Khan, K. Int. J. Environ. Anal. Chem. 2020, 1–16; https://doi.org/10.1080/03067319.2020.1760860.Search in Google Scholar

69. Tran, L. T., Tran, H. V., Le, T. D., Bach, G. L., Tran, L. D. Adv. Polym. Technol. 2019, 2019, 8124351; https://doi.org/10.1155/2019/8124351.Search in Google Scholar

70. Zada, A., Ali, N., Subhan, F., Anwar, N., Shah, M. I. A., Ateeq, M., Hussain, Z., Zaman, K., Khan, M. Prog. Nat. Sci. Mat. Int. 2019, 29, 138–144; https://doi.org/10.1016/j.pnsc.2019.03.004.Search in Google Scholar

71. Malik, M. S., Qaiser, A. A., Arif, M. A. RSC Adv. 2016, 6, 115046–115054; https://doi.org/10.1039/C6RA24594C.Search in Google Scholar

72. Khan, M. F., Bakhtiar, S. H., Zada, A., Raziq, F., Saleemi, H. A., Khan, M. S., Ismail, P. M., Alguno, A. C., Capangpangan, R. Y., Ali, A., Hayat, S., Ali, S., Ismail, A., Zahid, M. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100711; https://doi.org/10.1016/j.enmm.2022.100711.Search in Google Scholar

73. Mitzel, J., Arena, F., Walter, T., Stefener, M., Hempelmann, R. Z. Phys. Chem. 2013, 227, 497–540; https://doi.org/10.1524/zpch.2013.0341.Search in Google Scholar

74. Burjanadze, M., Karatas, Y., Kaskhedikar, N., Kogel, L. M., Kloss, S., Gentschev, A., Hiller, M. M., Müller, R. A., Stolina, R., Vettikuzha, P., Wiemhöfer, H. Z. Phys. Chem. 2010, 224, 1439–1473; https://doi.org/10.1524/zpch.2010.0046.Search in Google Scholar

75. Cui, N., Zada, A., Song, J., Yang, Y., Liu, M., Wang, Y., Wu, Y., Qi, K., Selvaraj, R., Liu, S., Jin, G. Desalination Water Treat. 2022, 245, 247–254; https://doi.org/10.5004/dwt.2022.27976.Search in Google Scholar

Received: 2022-04-08
Accepted: 2022-07-21
Published Online: 2022-08-17
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Original Papers
  3. Suppression of steel corrosion via some gemini cationic surfactant-based Schiff base: experimental and theoretical investigations
  4. Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential
  5. Eco-benign preparation of biosorbent using Momordica Charantia for the efficient removal of Cr(VI) ions from wastewater
  6. Oil mediated green synthesis of nano silver in the presence of surfactants for catalytic and food preservation application
  7. Adsorption properties of metal functionalized fullerene (C59Au, C59Hf, C59Ag, and C59Ir) nanoclusters for application as a biosensor for hydroxyurea (HXU): insight from theoretical computation
  8. Evaluation of diethylenetriaminepentaacetic acid modified chitosan immobilized in amino-carbmated alginate matrix as a low cost adsorbent for effective Cu(II) recovery
  9. Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract
  10. Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites
  11. Optical and topographic characteristics of silver films deposited from a colloidal solution on polyelectrolytes for IgG-FITC fluorescence analysis
  12. The three pyridazines, three naphthyridines and two azoles: effect of the position of the second heteroatom on pKaH of their eight conjugate acids
  13. Theoretical study on the origins of sildenafil tautomers’ relative stability
  14. Application of the Lennard-Jones potential for calculating the surface tension and the formation enthalpy of a binary solution
  15. Ultrasonic supported dye removal by a novel biomass
  16. A novel synthesis of graphene oxide-titanium dioxide (GO-TiO2) and graphene oxide-zinc oxide (GO-ZnO) nanocomposites and their application as effective, reusable photocatalysts for degradation of methylene blue (MB) dye
  17. Review Article
  18. Photocatalytic hydrogen generation using TiO2: a state-of-the-art review
Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2022-0051/html
Scroll to top button