Home Photocatalytic hydrogen generation using TiO2: a state-of-the-art review
Article
Licensed
Unlicensed Requires Authentication

Photocatalytic hydrogen generation using TiO2: a state-of-the-art review

  • Fatima Mazhar , Abida Kausar EMAIL logo and Munawar Iqbal EMAIL logo
Published/Copyright: November 15, 2022

Abstract

This review is focusing on photocatalytic hydrogen (H2) production as a viable fuel. The limitations of different production methods for H2 generation and the importance of photocatalytic process are discussed, which renders this process as highly promising to meet the future energy crises. TiO2 is one of most effective material to generate the H2 via photocatalytic processes. Therefore, advantages of the catalyst over other semiconductors have been thoroughly analyzed. Starting from synthesis of TiO2 and factors affecting the whole process of photocatalytic H2 production have been discussed. Modifications for improvement in TiO2 and the photocatalytic reaction are critically reviewed as well as the mechanism of TiO2 modification has been described. Metal doping, non-metal doping, impurity addition and defect introduction processes have been analyzed and the comparison of experimental results is developed based on H2 production efficiency. A critical review of the literature from 2004 to 2021 concludes that H2 production as fuel using TiO2 photocatalytic method is efficient and environment friendly, which have potential for practical applications for H2 generation.


Corresponding authors: Abida Kausar, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan, E-mail: ; and Munawar Iqbal, Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Khan, S. B., Khan, M. S. J., Akhtar, K., Bakhsh, E. M., Kamal, T., Asiri, A. M., Shen, Y. Design of efficient solar photocatalytic system for hydrogen production and degradation of environmental pollutant. J. Mater. Res. Technol. 2021, 14, 2497–2512; https://doi.org/10.1016/j.jmrt.2021.07.097.Search in Google Scholar

2. Hussain, S., Akbar, K., Vikraman, D., Rabani, I., Song, W., An, K. S., Kim, H. S., Chun, S. H., Jung, J. Experimental and theoretical insights to demonstrate the hydrogen evolution activity of layered platinum dichalcogenides electrocatalysts. J. Mater. Res. Technol. 2021, 12, 385–398; https://doi.org/10.1016/j.jmrt.2021.02.097.Search in Google Scholar

3. Alshehri, A., Narasimharao, K. PtOx-TiO2 anatase nanomaterials for photocatalytic reformation of methanol to hydrogen: effect of TiO2 morphology. J. Mater. Res. Technol. 2020, 9, 14907–14921; https://doi.org/10.1016/j.jmrt.2020.10.087.Search in Google Scholar

4. Acar, C., Dincer, I., Naterer, F. G. Review of photocatalytic water-splitting methods for sustainable hydrogen production. Arch. Therm. 2012, 33, 23–40; https://doi.org/10.1002/er.Search in Google Scholar

5. Shaheen, M., Bhatti, I. A., Ashar, A., Mohsin, M., Nisar, J., Almoneef, M. M., Iqbal, M. Synthesis of Cu-doped MgO and its enhanced photocatalytic activity for the solar-driven degradation of disperse red F3BS with condition optimization. Z. Phys. Chem. 2021, 235, 1395–1412; https://doi.org/10.1515/zpch-2020-1741.Search in Google Scholar

6. Zeng, P., Zhang, X., Zhang, X., Chai, B., Peng, T. Efficient photocatalytic hydrogen production over Ni@C/TiO2 nanocomposite under visible light irradiation. Chem. Phys. Lett. 2011, 503, 262–265; https://doi.org/10.1016/j.cplett.2011.01.007.Search in Google Scholar

7. Kumaravel, V., Mathew, S., Bartlett, J., Pillai, S. C. Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances. Appl. Catal. B Environ. 2019, 244, 1021–1064; https://doi.org/10.1016/j.apcatb.2018.11.080.Search in Google Scholar

8. Baumann, F. The Next Frontier—Human Development and the Anthropocene; UNDP Human Development Report, Vol. 63, 2020; p. 2021.10.1080/00139157.2021.1898908Search in Google Scholar

9. Trading Economics. https://tradingeconomics.com/country-list/gasoline-prices (accessed Mar 1, 2022).Search in Google Scholar

10. Rigzone. https://www.rigzone.com/news/commodity/ (accessed Mar 1, 2022).Search in Google Scholar

11. Deb, S. Gap between GDP and HDI: are the rich country experiences different from the poor. In IARIW-OECD Special Conference, 2015.Search in Google Scholar

12. World Bank. GDP (Current US$); World Bank, 2022. https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?year_high_desc=true (accessed May 5, 2022).Search in Google Scholar

13. Maeda, K., Domen, K. Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1, 2655–2661; https://doi.org/10.1021/jz1007966.Search in Google Scholar

14. World Energy Council. Energy Resources: Solar. World Energy Counc. 2013. World Energy Resour. Sol. Published Online, 2013; pp. 1–28. http://www.worldenergy.org/wp-content/uploads/2013/10/WER_2013_8_Solar_revised.pdf.Search in Google Scholar

15. Breeze, P. Power Generation Technologies, 3rd ed.; Elsevier Ltd.: Newnes, London, 2019.10.1016/B978-0-08-102631-1.00014-6Search in Google Scholar

16. Perry, R. H., Green, D. W. Perry’s Engineers’ Handbook; McGraw-Hill Education: US, 1997.Search in Google Scholar

17. Liao, C. H., Huang, C. W., Wu, J. C. S. Hydrogen production from semiconductor-based photocatalysis via water splitting. Catalysts 2012, 2, 490–516; https://doi.org/10.3390/catal2040490.Search in Google Scholar

18. Li, F., Huang, Y., Peng, H., Cao, Y., Niu, Y. Preparation and photocatalytic water splitting hydrogen production of titanium dioxide nanosheets. Int. J. Photoenergy 2020, 2020, 1–6; https://doi.org/10.1155/2020/3617312.Search in Google Scholar

19. Ashcroft, N. W. Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 1968, 21, 1748–1749; https://doi.org/10.1103/PhysRevLett.21.1748.Search in Google Scholar

20. Liu, K., Song, C., Subramani, V. Hydrogen and Syngas Production and Purification Technologies; John Wiley & Sons: US, Vol. 2010, 2010.10.1002/9780470561256Search in Google Scholar

21. Semelsberger, T. A. Fuels—hydrogen storage| chemical carriers. In Encyclopedia of Electrochemical Power Sources; Garche, J., Ed. Elsevier: The Netherlands, 2009; pp. 504–518.10.1016/B978-044452745-5.00331-2Search in Google Scholar

22. Smoot, L. D., Baxter, L. L. Fossil Fuel Power Stations — Coal Utilization; Elsevier: Netherlands, Vol. 6, 2002.10.1016/B0-12-227410-5/00257-XSearch in Google Scholar

23. Basye, L., Swaminathan, S. Hydrogen Production Costs -- A Survey, 1997. https://www.osti.gov/biblio/674693.10.2172/674693Search in Google Scholar

24. Aroutiounian, V. M., Arakelyan, V. M., Shahnazaryan, G. E. Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting. Sol. Energy 2005, 78, 581–592; https://doi.org/10.1016/j.solener.2004.02.002.Search in Google Scholar

25. Elia, D. D., Elaboration, D. D. E. Elaboration and Study of TiO2 Nanostructures for Hydrogen Generation via Photolysis of Water. PhD diss., École Nationale Supérieure des Mines de Paris, 2011.Search in Google Scholar

26. Wang, Z., Roberts, R. R., Naterer, G. F., Gabriel, K. S. Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies. Int. J. Hydrogen Energy 2012, 37, 16287–16301; https://doi.org/10.1016/j.ijhydene.2012.03.057.Search in Google Scholar

27. Wetchakun, K., Wetchakun, N., Sakulsermsuk, S. An overview of solar/visible light-driven heterogeneous photocatalysis for water purification: TiO2- and ZnO-based photocatalysts used in suspension photoreactors. J. Ind. Eng. Chem. 2019, 71, 19–49; https://doi.org/10.1016/j.jiec.2018.11.025.Search in Google Scholar

28. Tentu, R. D., Basu, S. Photocatalytic water splitting for hydrogen production. Curr. Opin. Electrochem. 2017, 5, 56–62; https://doi.org/10.1016/j.coelec.2017.10.019.Search in Google Scholar

29. Ola, O., Maroto-Valer, M. M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C Photochem. Rev. 2015, 24, 16–42; https://doi.org/10.1016/j.jphotochemrev.2015.06.001.Search in Google Scholar

30. Huang, Q., Ye, Z., Xiaob, X. Recent progress in photocathodes for hydrogen evolution. J. Mater. Chem. 2019, 3, 15824–15837.10.1039/C5TA03594ESearch in Google Scholar

31. Naldoni, A., Altomare, M., Zoppellaro, G., Liu, N., Kment, S., Zbořil, R., Schmuki, P. Photocatalysis with reduced TiO2: from Black TiO2 to cocatalyst-free hydrogen production. ACS Catal. 2019, 9, 345–364; https://doi.org/10.1021/acscatal.8b04068.Search in Google Scholar PubMed PubMed Central

32. Sulaiman, S. N. A., Noh, M. Z., Adnan, N. N., Bidin, N., Ab Razak, S. N. Effects of photocatalytic activity of metal and non-metal doped Tio2 for Hydrogen production enhancement – a Review. J. Phys. Conf. 2018, 1027, 012006; https://doi.org/10.1088/1742-6596/1027/1/012006.Search in Google Scholar

33. Saravanan, R., Shankar, H., Rajasudha, G., Stephen, A., Narayanan, V. Photocatalytic degradation of organic dye using nano ZnO. Int. J. Nanosci. 2011, 10, 253–257; https://doi.org/10.1142/S0219581X11007867.Search in Google Scholar

34. Shimizu, S. ZnO Bandgap Engineering, 2013. http://maeresearch.ucsd.edu/mckittrick/index_files/Page945.htm.Search in Google Scholar

35. Chai, M. H. H., Amir, N., Yahya, N., Saaid, I. M. Characterization and colloidal stability of surface modified zinc oxide nanoparticle. J. Phys. Conf. 2018, 1123, 012007; https://doi.org/10.1088/1742-6596/1123/1/012007.Search in Google Scholar

36. Chauhan, R., Kumar, A., Chaudhary, R. P. Photocatalytic degradation of methylene blue with Fe doped ZnS nanoparticles. Spectrochim. Acta, Part A Mol Biomol Spectrosc. 2013, 113, 250–256; https://doi.org/10.1016/j.saa.2013.04.087.Search in Google Scholar PubMed

37. D’Amico, P., Calzolari, A., Ruini, A., Catellani, A. New energy with ZnS: novel applications for a standard transparent compound. Sci. Rep. 2017, 7, 1–9; https://doi.org/10.1038/s41598-017-17156-w.Search in Google Scholar PubMed PubMed Central

38. Kuznetsova, Y. V., Kazantseva, A. A., Rempel, A. A. Zeta potential, size, and semiconductor properties of zinc sulfide nanoparticles in a stable Aqueous colloid solution. Russ. J. Phys. Chem. A 2016, 90, 864–869; https://doi.org/10.1134/S0036024416040154.Search in Google Scholar

39. Nasikhudin, D. M., Kusumaatmaja, A., Triyana, K. Study on photocatalytic properties of TiO2 nanoparticle in various pH condition. J. Phys. Conf. 2018, 1011, 012069; https://doi.org/10.1088/1742-6596/1011/1/012069.Search in Google Scholar

40. Azeez, F., Al-Hetlani, E., Arafa, M., Abdelmonem, Y., Nazeer, A. A., Amin, M. O., Madkour, M. The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci. Rep. 2018, 8, 1–9; https://doi.org/10.1038/s41598-018-25673-5.Search in Google Scholar PubMed PubMed Central

41. Gan, L., Xu, L., Shang, S., Zhou, X., Meng, L. Visible light induced methylene blue dye degradation photo-catalyzed by WO3/graphene nanocomposites and the mechanism. Ceram. Int. 2016, 42, 15235–15241; https://doi.org/10.1016/j.ceramint.2016.06.160.Search in Google Scholar

42. González-Borrero, P. P., Sato, F., Medina, A. N., Baesso, M. L., Bento, A. C., Baldissera, G., Persson, C., Niklasson, G. A., Granqvist, C. G., Ferreira da Silva, A. Optical band-gap determination of nanostructured WO3 film. Appl. Phys. Lett. 2010, 96, 2010–2013; https://doi.org/10.1063/1.3313945.Search in Google Scholar

43. Thwala, M. M., Dlamini, L. N. Photocatalytic reduction of Cr(VI) using Mg-doped WO3 nanoparticles. Environ. Technol. 2020, 41, 2277–2292; https://doi.org/10.1080/09593330.2019.1629635.Search in Google Scholar PubMed

44. Acosta, D., Magaña, C., Hernández, F., Chavez-Esquivel, G., Cortes-Cordova, D. E., Huerta, L., Valdés-Martínez, O. U. Temperature effects on VO2 thin films deposited by RF sputtering for the degradation by photocatalysis of methylene blue and naproxen. Int. J. Chem. React. Eng. 2020, 18, 20190214; https://doi.org/10.1515/ijcre-2019-0214.Search in Google Scholar

45. Lamsal, C., Ravindra, N. M. Optical properties of vanadium oxides-an analysis. J. Mater. Sci. 2013, 48, 6341–6351; https://doi.org/10.1007/s10853-013-7433-3.Search in Google Scholar

46. Coronado, J. M., Fresno, F., Hernández-Alonso, M. D., Portela, R. Design of Advanced Photocatalytic Materials for Energy and Environmental Applications; Springer: London, Vol. 71, 2013.10.1007/978-1-4471-5061-9Search in Google Scholar

47. Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., Von Goetz, N. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 2012, 46, 2242–2250; https://doi.org/10.1021/es204168d.Search in Google Scholar PubMed PubMed Central

48. Nozik, A. J. Photochemical diodes. Appl. Phys. Lett. 1977, 30, 567–569; https://doi.org/10.1063/1.89262.Search in Google Scholar

49. Chu, R., Yan, J., Lian, S., Wang, Y., Yan, F., Chen, D. Shape-controlled synthesis of nanocrystalline titania at low temperature. Solid State Commun. 2004, 130, 789–792; https://doi.org/10.1016/j.ssc.2004.04.013.Search in Google Scholar

50. Li, G., Gray, K. A. The solid-solid interface: explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials. Chem. Phys. 2007, 339, 173–187; https://doi.org/10.1016/j.chemphys.2007.05.023.Search in Google Scholar

51. Clarizia, L., Russo, D., Di Somma, I., Andreozzi, R., Marotta, R. Hydrogen generation through solar photocatalytic processes: a review of the configuration and the properties of effective metal-based semiconductor nanomaterials. Energies 2017, 10, 1624; https://doi.org/10.3390/en10101624.Search in Google Scholar

52. Huang, G., Lu, C H., Yang, H. H. Chapter 3 – magnetic nanomaterials for magnetic bioanalysis. In Novel Nanomaterials for Biomedical, Environmental and Energy Applications. Micro and Nano Technologies; Wang, X., Chen, X., Eds. Elsevier: Cincinnati, OH, USA, 2019; pp. 89–109.10.1016/B978-0-12-814497-8.00003-5Search in Google Scholar

53. Zhu, K., Hu, G. Supercritical hydrothermal synthesis of titanium dioxide nanostructures with controlled phase and morphology. J. Supercrit. Fluids 2014, 94, 165–173; https://doi.org/10.1016/j.supflu.2014.07.011.Search in Google Scholar

54. Sietsma, J. R. A., Jos van Dillen, A., de Jongh, P. E., de Jong, K. P. Application of ordered mesoporous materials as model supports to study catalyst preparation by impregnation and drying. In Scientific Bases for the Preparation of Heterogeneous Catalysts. Vol 162. Studies in Surface Science and Catalysis; Gaigneaux, E. M., Devillers, M., De Vos, D. E., Hermans, S., Jacobs, P. A., Martens, J. A., Ruiz, P., Eds. Elsevier: Amsterdam, Netherlands, 2006; pp. 95–102.10.1016/S0167-2991(06)80895-5Search in Google Scholar

55. Feng, S. H., Li, G. H. Chapter 4 - hydrothermal and solvothermal syntheses. In Modern Inorganic Synthetic Chemistry; Xu, R., Xu, Y., Eds., 2nd ed. Elsevier: Amsterdam, 2017; pp. 73–104.10.1016/B978-0-444-63591-4.00004-5Search in Google Scholar

56. Zhong, H., Mirkovic, T., Scholes, G. D. 5.06 – nanocrystal synthesis. In Comprehensive Nanoscience and Technology; Andrews, D. L., Scholes, G. D., Wiederrecht, G. P., Eds. Academic Press: London, UK, 2011; pp. 153–201.10.1016/B978-0-12-374396-1.00051-9Search in Google Scholar

57. Dholam, R., Patel, N., Adami, M., Miotello, A. Physically and chemically synthesized TiO2 composite thin films for hydrogen production by photocatalytic water splitting. Int. J. Hydrogen Energy 2008, 33, 6896–6903; https://doi.org/10.1016/j.ijhydene.2008.08.061.Search in Google Scholar

58. Bashiri, R, Mohamed, N. M., Kait, C. F. Advancement of sol-gel–prepared TiO2 photocatalyst. In Recent Applications in Sol-Gel Synthesis; InTech: Rijeka, 2017 Jul, 5; pp. 151–167.10.5772/intechopen.68357Search in Google Scholar

59. Bashiri, R., Mohamed, N. M., Kait, C. F., Sufian, S. Hydrogen production from water photosplitting using Cu/TiO2 nanoparticles: effect of hydrolysis rate and reaction medium. Int. J. Hydrogen Energy 2015, 40, 6021–6037; https://doi.org/10.1016/j.ijhydene.2015.03.019.Search in Google Scholar

60. Hunge, Y. M., Yadav, A. A., Mathe, V. L. Photocatalytic hydrogen production using TiO2 nanogranules prepared by hydrothermal route. Chem. Phys. Lett. 2019, 731, 136582; https://doi.org/10.1016/j.cplett.2019.07.010.Search in Google Scholar

61. Nam, C. T., Yang, W. D., Duc, L. M. Solvothermal synthesis of TiO2 photocatalysts in ketone solvents with low boiling points. J. Nanomater. 2013, 2013, 627385; https://doi.org/10.1155/2013/627385.Search in Google Scholar

62. Dundar, I., Mere, A., Mikli, V., Krunks, M., Acik, I. O. Thickness effect on photocatalytic activity of TiO2 thin films fabricated by ultrasonic spray pyrolysis. Catalysts 2020, 10, 1–13; https://doi.org/10.3390/catal10091058.Search in Google Scholar

63. Jung, S. C., Kim, S. J., Imaishi, N., Cho, Y. I. Effect of TiO2 thin film thickness and specific surface area by low-pressure metal-organic chemical vapor deposition on photocatalytic activities. Appl. Catal., B 2005, 55, 253–257; https://doi.org/10.1016/j.apcatb.2004.08.009.Search in Google Scholar

64. Ibrahim, S. A., Sreekantan, S. Effect of pH on TiO2 nanoparticles via sol–gel method. Adv. Mater. Res. 2011, 173, 184–189; https://doi.org/10.4028/www.scientific.net/AMR.173.184.Search in Google Scholar

65. Paul, T.C., Podder, J. Synthesis and characterization of Zn-incorporated TiO2 thin films: impact of crystallite size on X-ray line broadening and bandgap tuning. Applied Physics A 2019, 125, 1–14.10.1007/s00339-019-3112-9Search in Google Scholar

66. Hoggard, S., Wang, L. Y., Ma, L., Fang, Y., Olson, J., Liu, Z., Chang, W. S., Ajayan, P. M., Link, S. Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene. ACS Nano 2013, 7, 11209–11217.10.1021/nn404985hSearch in Google Scholar PubMed PubMed Central

67. Sun, Q., Zheng, C., Huston, L. Q., Frankcombe, T. J., Chen, H., Zhou, C., Fu, Z., Withers, R. L., Norén, L., Bradby, J. E., Etheridge, J., Liu, Y. Bimetallic ions codoped nanocrystals: doping mechanism, defect formation, and associated structural transition. J. Phys. Chem. Lett. 2017, 8, 3249–3255; https://doi.org/10.1021/acs.jpclett.7b01384.Search in Google Scholar PubMed

68. Yan, N., Liao, L., Yuan, J., Lin, Y. J., Weng, L. H., Yang, J., Wu, Z. Bimetal doping in nanoclusters: synergistic or counteractive? Chem. Mater. 2016, 28, 8240–8247; https://doi.org/10.1021/acs.chemmater.6b03132.Search in Google Scholar

69. Wu, F., Hu, X., Fan, J., Liu, E., Sun, T., Kang, L., Hou, W., Zhu, C., Liu, H. Photocatalytic activity of Ag/TiO2 nanotube Arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting. Plasmonics 2013, 8, 501–508; https://doi.org/10.1007/s11468-012-9418-5.Search in Google Scholar

70. Qin, S., Kim, H., Denisov, N., Fehn, D., Schmidt, J., Meyer, K., Schmuki, P. Grey facet-controlled anatase nanosheets for photocatalytic H 2 evolution without co-catalyst. J. Phys.: Energy 2021, 3, 034003; https://doi.org/10.1088/2515-7655/abd5a8.Search in Google Scholar

71. Le, T. T., Akhtar, M. S., Park, D. M., Lee, J. C., Yang, O. B. Water splitting on Rhodamine-B dye sensitized Co-doped TiO2 catalyst under visible light. Appl. Catal., B Environ. 2012, 111–112, 397–401; https://doi.org/10.1016/j.apcatb.2011.10.023.Search in Google Scholar

72. Rusinque, B., Salas, S. E., de Lasa, H. Photoreduction of a Pd-doped mesoporous TiO2 photocatalyst for hydrogen production under visible light. Catalysts 2020, 10, 74; https://doi.org/10.3390/catal10010074.Search in Google Scholar

73. Wu, M. C., Lin, T. H., Chih, J. S., Hsiao, K. C., Wu, P. Y. Niobium doping induced morphological changes and enhanced photocatalytic performance of anatase TiO2. Jpn. J. Appl. Phys. 2017, 56, 04CP07; https://doi.org/10.7567/JJAP.56.04CP07.Search in Google Scholar

74. Yang, X., Wu, X., Li, J., Liu, Y. TiO2-Au composite nanofibers for photocatalytic hydrogen evolution. RSC Adv. 2019, 9, 29097–29104; https://doi.org/10.1039/c9ra05113a.Search in Google Scholar PubMed PubMed Central

75. Dholam, R., Patel, N., Adami, M., Miotello, A. Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int. J. Hydrogen Energy 2009, 34, 5337–5346; https://doi.org/10.1016/j.ijhydene.2009.05.011.Search in Google Scholar

76. Sun, T., Fan, J., Liu, E., Liu, L., Wang, Y., Dai, H., Yang, Y., Hou, W., Hu, X., Jiang, Z. Fe and Ni co-doped TiO2 nanoparticles prepared by alcohol-thermal method: application in hydrogen evolution by water splitting under visible light irradiation. Powder Technol. 2012, 228, 210–218; https://doi.org/10.1016/j.powtec.2012.05.018.Search in Google Scholar

77. Guayaquil-Sosa, J. F., Calzada, A., Serrano, B., Escobedo, S., de Lasa, H. Hydrogen production via water dissociation using Pt–TiO2 photocatalysts: an oxidation–reduction network. Catalysts 2017, 7, 324; https://doi.org/10.3390/catal7110324.Search in Google Scholar

78. Fuchigami, T., Atobe, M., Inagi, S. Appendix B: tables of physical data. Fundam. Appl. Org. Electrochem. 2014, 217–222; https://doi.org/10.1002/9781118670750.app2.Search in Google Scholar

79. Lin, W. C., Yang, W. D., Huang, I. L., Wu, T. S., Chung, Z. J. Hydrogen production from methanol/water photocatalytic decomposition using pt/TiO2-xnx catalyst. Energy Fuel. 2009, 23, 2192–2196; https://doi.org/10.1021/ef801091p.Search in Google Scholar

80. Chen, W. T., Dong, Y., Yadav, P., Aughterson, R. D., Sun-Waterhouse, D., Waterhouse, G. I. N. Effect of alcohol sacrificial agent on the performance of Cu/TiO2 photocatalysts for UV-driven hydrogen production. Appl. Catal., A 2020, 602, 117703; https://doi.org/10.1016/j.apcata.2020.117703.Search in Google Scholar

81. Yuan, J., Chen, M., Shi, J., Shangguan, W. Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride. Int. J. Hydrogen Energy 2006, 31, 1326–1331; https://doi.org/10.1016/j.ijhydene.2005.11.016.Search in Google Scholar

82. Kong, X., Peng, Z., Jiang, R., Jia, P., Feng, J., Yang, P., Chi, Q., Ye, W., Xu, F., Gao, P. Nanolayered heterostructures of N-doped TiO2 and N-doped carbon for hydrogen evolution. ACS Appl. Nano Mater. 2020, 3, 1373–1381; https://doi.org/10.1021/acsanm.9b02217.Search in Google Scholar

83. Slamet, Agriyfani, D. A., Elysabeth, T., Ibadurrohman, M., Nurdin, M. Synthesis of Ni-and N-doped titania nanotube arrays for photocatalytic hydrogen production from glycerol–water solutions. Catalysts 2020, 10, 1–17; https://doi.org/10.3390/catal10111234.Search in Google Scholar

84. Jia, G., Wang, Y., Cui, X., Zheng, W. Highly carbon-doped TiO2 derived from MXene boosting the photocatalytic hydrogen evolution. ACS Sustain. Chem. Eng. 2018, 6, 13480–13486; https://doi.org/10.1021/acssuschemeng.8b03406.Search in Google Scholar

85. Filippatos, P. P., Soultati, A., Kelaidis, N., Petaroudis, C., Alivisatou, A. A., Drivas, C., Kennou, S., Agapaki, E., Charalampidis, G., Yusoff, A. R. B. M., Lathiotakis, N. N., Coutsolelos, A. G., Davazoglou, D., Vasilopoulou, M., Chroneos, A. Preparation of hydrogen, fluorine and chlorine doped and co-doped titanium dioxide photocatalysts: a theoretical and experimental approach. Sci. Rep. 2021, 11, 1–12; https://doi.org/10.1038/s41598-021-81979-x.Search in Google Scholar PubMed PubMed Central

86. Xing, Z., Li, Z., Wu, X., Wang, G., Zhou, W. In-situ S-doped porous anatase TiO2 nanopillars for high-efficient visible-light photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2016, 41, 1535–1541; https://doi.org/10.1016/j.ijhydene.2015.12.033.Search in Google Scholar

87. Cheng, P., Yang, Z., Wang, H., Cheng, W., Chen, M., Shangguan, W., Ding, G. TiO2-graphene nanocomposites for photocatalytic hydrogen production from splitting water. Int. J. Hydrogen Energy 2012, 37, 2224–2230; https://doi.org/10.1016/j.ijhydene.2011.11.004.Search in Google Scholar

88. Zhang, Y. J., Yan, W., Wu, Y. P., Wang, Z. H. Synthesis of TiO2 nanotubes coupled with CdS nanoparticles and production of hydrogen by photocatalytic water decomposition. Mater. Lett. 2008, 62, 3846–3848; https://doi.org/10.1016/j.matlet.2008.04.084.Search in Google Scholar

89. Hussein, A. M., Mahoney, L., Peng, R., Kibombo, H., Wu, C. M., Koodali, R. T., Shende, R. Mesoporous coupled ZnO/TiO2 photocatalyst nanocomposites for hydrogen generation. J. Renew. Sustain. Energy 2013, 5, 033118; https://doi.org/10.1063/1.4808263.Search in Google Scholar

90. Trang, T. N. Q., Tu, L. T. N., Man, T. V., Mathesh, M., Nam, N. D., Thu, V. T. H. A high-efficiency photoelectrochemistry of Cu2O/TiO2 nanotubes based composite for hydrogen evolution under sunlight. Composites, Part B Eng. 2019, 174, 106969; https://doi.org/10.1016/j.compositesb.2019.106969.Search in Google Scholar

91. Alcudia-Ramos, M. A., Fuentez-Torres, M. O., Ortiz-Chi, F., Espinosa-González, C. G., Hernández-Como, N., García-Zaleta, D. S., Kesarla, M. K., Torres-Torres, J. G., Collins-Martínez, V., Godavarthi, S. Fabrication of g-C3N4/TiO2 heterojunction composite for enhanced photocatalytic hydrogen production. Ceram. Int. 2020, 46, 38–45; https://doi.org/10.1016/j.ceramint.2019.08.228.Search in Google Scholar

92. Zhong, R., Zhang, Z., Yi, H.,Zeng, L., Tang, C., Huang, L., Gu, M. Covalently bonded 2D/2D O–g–C3N4/TiO2 heterojunction for enhanced visible-light photocatalytic hydrogen evolution. Appl. Catal., B Environ. 2018, 237, 1130–1138; https://doi.org/10.1016/j.apcatb.2017.12.066.Search in Google Scholar

93. Qian, Y., Yang, M., Zhang, F., Du, J., Li, K., Lin, X., Zhu, X., Lu, Y., Wang, W., Kang, D. J. A stable and highly efficient visible-light-driven hydrogen evolution porous CdS/WO3/TiO2 photocatalysts. Mater. Charact. 2018, 142, 43–49; https://doi.org/10.1016/j.matchar.2018.05.025.Search in Google Scholar

94. Xing, X., Zhu, H., Zhang, M., Xiao, L., Li, Q., Yang, J. Effect of heterojunctions and phase-junctions on visible-light photocatalytic hydrogen evolution in BCN-TiO2 photocatalysts. Chem. Phys. Lett. 2019, 727, 11–18; https://doi.org/10.1016/j.cplett.2019.04.044.Search in Google Scholar

95. El-Bery, H. M., Matsushita, Y., Abdel-moneim, A. Fabrication of efficient TiO 2 -RGO heterojunction composites for hydrogen generation via water-splitting: comparison between RGO, Au and Pt reduction sites. Appl. Surf. Sci. 2017, 423, 185–196; https://doi.org/10.1016/j.apsusc.2017.06.130.Search in Google Scholar

96. Liu, N., Häublein, V., Zhou, X., Venkatesan, U., Hartmann, M., Mačković, M., Nakajima, T., Spiecker, E., Osvet, A., Frey, L., Schmuki, P. “Black” TiO2 nanotubes formed by high-energy proton implantation show noble-metal-co-catalyst free photocatalytic H2-evolution. Nano Lett. 2015, 15, 6815–6820; https://doi.org/10.1021/acs.nanolett.5b02663.Search in Google Scholar PubMed

97. Liu, N., Schneider, C., Freitag, D., Hartmann, M., Venkatesan, U., Müller, J., Spiecker, E., Schmuki, P. Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano letters 2014, 14, 3309–3313.10.1021/nl500710jSearch in Google Scholar PubMed

98. Wu, Q., Huang, F., Zhao, M., Xu, J., Zhou, J., Wang, Y. Ultra-small yellow defective TiO2 nanoparticles for co-catalyst free photocatalytic hydrogen production. Nano Energy 2016, 24, 63–71; https://doi.org/10.1016/j.nanoen.2016.04.004.Search in Google Scholar

99. Sinhamahapatra, A., Jeon, J. P., Yu, J. S. A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ. Sci. 2015, 8, 3539–3544; https://doi.org/10.1039/c5ee02443a.Search in Google Scholar

100. Liu, N., Schneider, C., Freitag, D., Venkatesan, U., Marthala, V. R. R., Hartmann, M., Winter, B., Spiecker, E., Osvet, A., Zolnhofer, E. M., Meyer, K., Nakajima, T., Zhou, X., Schmuki, P. Hydrogenated anatase: strong photocatalytic dihydrogen evolution without the use of a Co-catalyst. Angew. Chem. 2014, 126, 14425–14429; https://doi.org/10.1002/ange.201408493.Search in Google Scholar

101. Yang, F., Schröck, C., Kugelstadt, J., Zhang, S., Scheu, C., Trautmann, C., Maijenburg, A. W., Toimil-Molares, M. E. Cu2O/TiO2 nanowire assemblies as photocathodes for solar hydrogen evolution: influence of diameter, length and NumberDensity of wires. Z. Phys. Chem. 2020, 234, 1205–1221; https://doi.org/10.1515/zpch-2019-1529.Search in Google Scholar

102. Neuberger, F., Baranyai, J., Schmidt, T., Cottre, T., Kaiser, B., Jaegermann, W., Schäfer, R. From bulk to atoms: the influence of particle and cluster size on the hydrogen evolution reaction. Z. Phys. Chem. 2020, 234, 847–865; https://doi.org/10.1515/zpch-2019-1424.Search in Google Scholar

103. Petersen, T., Klüner, T. Water adsorption on ideal anatase-TiO2 (101)–An embedded cluster model for accurate adsorption energetics and excited state properties. Z. Phys. Chem. 2020, 234, 813–834; https://doi.org/10.1515/zpch-2019-1425.Search in Google Scholar

104. Sanda, M. D. A., Badu, M., Awudza, J. A., Boadi, N. O. Development of TiO2-based dye-sensitized solar cells using natural dyes extracted from some plant-based materials. Chem. Int. 2021, 7, 9–20.Search in Google Scholar

105. Jaegermann, W., Kaiser, B., Finger, F., Smirnov, V., Schäfer, R. Design considerations of efficient photo-electrosynthetic cells and its realization using buried junction Si thin film multi absorber cells. Z. Phys. Chem. 2020, 234, 549–604; https://doi.org/10.1515/zpch-2019-1584.Search in Google Scholar

106. Awwad, A. M., Amer, M. W., Al-Aqarbeh, M. M. TiO2-kaolinite nanocomposite prepared from the Jordanian Kaolin clay: adsorption and thermodynamic of Pb(II) and Cd(II) ions in aqueous solution. Chem. Int. 2020, 6, 168–178.Search in Google Scholar

107. Have, I. C. t., Kromwijk, J. J. G., Monai, M., Ferri, D., Sterk, E. B., Meirer, F., Weckhuysen, B. M. Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenation. Nat. Commun. 2022, 13, 324; https://doi.org/10.1038/s41467-022-27981-x.Search in Google Scholar PubMed PubMed Central

108. Khan, M. I., Touheed, M., Sajjad-ul-Hasan, M., Siddique, M., Rouf, S. A., Ahmad, T., Fatima, M., Iqbal, M., Almoneef, M. M., Alwadai, N. Hydrothermal synthesis, characterization and photocatalytic activity of Mg doped MoS2. Z. Phys. Chem. 2022, 236, 155–168; https://doi.org/10.1515/zpch-2020-1635.Search in Google Scholar

109. Ismail, R. M., Almaqtri, W. Q., Hassan, M. Kaolin and bentonite catalysts efficiencies for the debutylation of 2-tert-butylphenol. Chem. Int. 2021, 7, 21–29.Search in Google Scholar

110. Bukhari, A., Atta, M., Nazir, A., Shahab, M. R., Kanwal, Q., Iqbal, M., Albalawi, H., Alwadai, N. Catalytic degradation of MO and MB dyes under solar and UV light irradiation using ZnO fabricated using Syzygium Cumini leaf extract. Z. Phys. Chem. 2022, 236, 659–671; https://doi.org/10.1515/zpch-2021-3096.Search in Google Scholar

111. Shindy, H. A., El-Maghraby, M. A., Goma, M. M., Harb, N. A. Dicarbocyanine and tricarbocyanine dyes: novel synthetic approaches, photosensitization evaluation and antimicrobial screening. Chem. Int. 2020, 6, 30–41.Search in Google Scholar

112. Bibi, I., Ghulam, T., Kamal, S., Jilani, K., Alwadai, N., Iqbal, M. Green synthesis of iron nanoparticles and photocatalytic activity evaluation for the degradation of methylene blue dye. Z. Phys. Chem. 2022, 1, 1–11; https://doi.org/10.1515/zpch-2021-3128.Search in Google Scholar

113. Amos-Tautua, B. M., Fakayode, O., Songca, S. P., Oluwafemi, S. O. Synthesis, spectroscopic characterization and singlet oxygen generation of 5, 10, 15, 20-tetrakis(3, 5-dimethoxyphenyl) porphyrin as a potential photosensitizer for photodynamic therapy. Chem. Int. 2020, 5, 10–15.Search in Google Scholar

114. Ghafoor, A., Bibi, I., Ata, S., Majid, F., Kamal, S., Rehman, F., Iqbal, S., Aamir, M., Slimani, Y., Iqbal, M., Mailk, A. Synthesis and characterization of magnetically separable La1−x Bix Cr1−y Fey O3 and photocatalytic activity evaluation under visible light. Z. Phys. Chem. 2021, 235, 1413–1431; https://doi.org/10.1515/zpch-2020-1747.Search in Google Scholar

115. Shindy, H., Khalafalla, A., Goma, M., Eed, A. J. C. I. Synthesis, photosensitization and antimicrobial activity evaluation of some novel Merocyanine dyes. Chem. Int. 2016, 2, 114–120.Search in Google Scholar

116. Ata, S., Shaheen, I., Majid, F., Bibi, I., Jilani, K., Slimani, Y., Iqbal, M. Hydrothermal route for the synthesis of manganese ferrite nanoparticles and photocatalytic activity evaluation for the degradation of methylene blue dye. Z. Phys. Chem. 2021, 235, 1433–1445; https://doi.org/10.1515/zpch-19-1381.Search in Google Scholar

117. Jamal, M. A., Muneer, M., Iqbal, M. Photo-degradation of monoazo dye blue 13 using advanced oxidation process. Chem. Int. 2015, 1, 12–16.Search in Google Scholar

118. Jamil, A., Bokhari, T. H., Iqbal, M., Zuber, M., Bukhari, I. H. ZnO/UV/H2O2 based advanced oxidation of disperse red dye. Z. Phys. Chem. 2020, 234, 129–143; https://doi.org/10.1515/zpch-2019-0006.Search in Google Scholar

119. Salem, N. M., Awwad, A. M. Green synthesis and characterization of ZnO nanoparticles using Solanum rantonnetii leaves aqueous extract and antifungal activity evaluation. Chem. Int. 2022, 8, 12–17.Search in Google Scholar

120. Shammout, M. W., Awwad, A. M. A novel route for the synthesis of copper oxide nanoparticles using Bougainvillea plant flowers extract and antifungal activity evaluation. Chem. Int. 2021, 7, 71–78.Search in Google Scholar

121. Bibi, I., Hussain, S., Majid, F., Kamal, S., Ata, S., Sultan, M., Din, M. I., Iqbal, M., Nazir, A. Structural, dielectric and magnetic studies of perovskite [Gd1−xMxCrO3 (M = La, Co, Bi)] nanoparticles: photocatalytic degradation of dyes. Z. Phys. Chem. 2019, 233, 1431–1445; https://doi.org/10.1515/zpch-2018-1162.Search in Google Scholar

Received: 2022-05-16
Accepted: 2022-10-20
Published Online: 2022-11-15
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Original Papers
  3. Suppression of steel corrosion via some gemini cationic surfactant-based Schiff base: experimental and theoretical investigations
  4. Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential
  5. Eco-benign preparation of biosorbent using Momordica Charantia for the efficient removal of Cr(VI) ions from wastewater
  6. Oil mediated green synthesis of nano silver in the presence of surfactants for catalytic and food preservation application
  7. Adsorption properties of metal functionalized fullerene (C59Au, C59Hf, C59Ag, and C59Ir) nanoclusters for application as a biosensor for hydroxyurea (HXU): insight from theoretical computation
  8. Evaluation of diethylenetriaminepentaacetic acid modified chitosan immobilized in amino-carbmated alginate matrix as a low cost adsorbent for effective Cu(II) recovery
  9. Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract
  10. Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites
  11. Optical and topographic characteristics of silver films deposited from a colloidal solution on polyelectrolytes for IgG-FITC fluorescence analysis
  12. The three pyridazines, three naphthyridines and two azoles: effect of the position of the second heteroatom on pKaH of their eight conjugate acids
  13. Theoretical study on the origins of sildenafil tautomers’ relative stability
  14. Application of the Lennard-Jones potential for calculating the surface tension and the formation enthalpy of a binary solution
  15. Ultrasonic supported dye removal by a novel biomass
  16. A novel synthesis of graphene oxide-titanium dioxide (GO-TiO2) and graphene oxide-zinc oxide (GO-ZnO) nanocomposites and their application as effective, reusable photocatalysts for degradation of methylene blue (MB) dye
  17. Review Article
  18. Photocatalytic hydrogen generation using TiO2: a state-of-the-art review
Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2022-0075/html
Scroll to top button