Abstract
Sumac Leaves (Rhus Coriaria L), were used as a possible adsorbent of Basic Blue 3 (BB3) removal. The main affecting parameters on adsorption such as concentration, pH and temperature were investigated. Adsorption equilibrium was reached in 30 min. The ultrasonic effect was also enhanced the dyestuff removal. Adsorption capacity was rised from 0.566 to 1.826 mg/g, as rising the concentration from 4 μg/mL to 10 μg/mL. Several isotherm models including Langmuir, Freundlich and Temkin were applied for explaining the adsorption mechanism. Temkin and Langmuir isotherm models describe the system well. Pseudo first order, pseudo second order and intra particle kinetics were evaluated. Pseudo second order diffusion model supports the adsoprption and also intra particle diffusion plays an important role for BB3 removal. Thermodynamics of the adsorption were commented. −2219.5 J/mol of Gibbs energy showed us a spontaneous and physical adsorption.
Acknowledgments
This study is supported by the Research Fund of Yıldız Technical University YTU BAPK, Project 2011-07-01-GEP02.
- 
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission. 
- 
Research funding: None declared. 
- 
Conflict of interest statement: The authors declare no conflicts of interest regarding this article. 
References
1. Zollinger, H. Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments, 2nd ed.; VCH: Cambridge, 1997.Search in Google Scholar
2. Sumathi, S., Huang, Y. T. Treatment of pulp and paper mill wastes. In Waste Treatment in the Process Industries; Wang, L. K., Hung, Y. T., Lo, H. H., Yapijakis, C., Eds. Taylor & Francis: USA, 2006; pp. 453–497.10.1201/9780203026519.ch10Search in Google Scholar
3. Ratia, H., Vuori, K. M., Oikari, A. Ecol. Indicat. 2012, 15, 217; https://doi.org/10.1016/j.ecolind.2011.09.015.Search in Google Scholar
4. McKay, G., Otterburn, M. S., Sweney, A. G. Water Res. 1980, 14, 15; https://doi.org/10.1016/0043-1354(80)90037-8.Search in Google Scholar
5. Garg, V. K., Amita, M., Kumar, R., Gupt, R. Dyes Pigments 2004, 63, 243; https://doi.org/10.1016/j.dyepig.2004.03.005.Search in Google Scholar
6. LaPotin, A., Kim, H., Rao, S. R., Wang, E. N. Acc. Chem. Res. 2019, 52, 1588; https://doi.org/10.1021/acs.accounts.9b00062.Search in Google Scholar PubMed
7. Bouremmad, F., Bouchair, A., Papapari, S. S., Shawuti, S., Gulgun, M. A. J. Chem. Soc. Pakistan 2019, 41, 62.10.52568/000712/JCSP/41.01.2019Search in Google Scholar
8. Naveed, R., Bhatti, I. A., Sohail, I., Ashar, A., Ibrahim, S. M., Iqbal, M., Nazir, A. Z. Phys. Chem. 2021, 235, 1027; https://doi.org/10.1515/zpch-2019-1567.Search in Google Scholar
9. Nazir, A., Zahra, F., Sabri, M. U., Ghaffar, A., Ather, A. Q., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2021, 235, 265; https://doi.org/10.1515/zpch-2019-1455.Search in Google Scholar
10. Shehzad, H., Ahmed, E., Din, M. I., Farooqi, Z. H., Arsahd, M., Sharif, A., Zhou, L., Yun, W., Umer, R. Z. Phys. Chem. 2021, 235, 582; https://doi.org/10.1515/zpch-2019-1555.Search in Google Scholar
11. Baylan, N., Dedecan, T., İlalan, İ., İnci, İ. Anal. Lett. 2021, 54, 2113–2125; https://doi.org/10.1080/00032719.2020.1842434.Search in Google Scholar
12. Gupta, V. K., Mittal, A., Gajbe, V., Mittal, J. Ind. Eng. Chem. Res. 2006, 45, 1446; https://doi.org/10.1021/ie051111f.Search in Google Scholar
13. Tanveer, H. B., Ghulam, M., Noshaba, A., Muhammad, U., Nadia, A., Atta, U. H., Mahwish, S., Saima, N., Foziah, F. A.-F., Siham, A. A., Munawar, I., Arif, N. Pol. J. Environ. Stud. 2022, 31, 619; https://doi.org/10.15244/pjoes/140273.Search in Google Scholar
14. Rizwana, N., Ijaz, A. B., Shahid, A., Ambreen, A., Isra, S., Masood, U. H. K., Nasir, M., Munawar, I., Arif, N. J. of Natural Fıbers 2022, 19, 248. https://doi.org/10.1080/15440478.2020.1738309.Search in Google Scholar
15. Umme, H. S., Shaukat, A., Tanveer, H., Munawar, I., Nasir, M., Arif, N. J. Nat. Fibers 2022, 19, 1094. https://doi.org/10.1080/15440478.2020.1789532.Search in Google Scholar
16. Liversidge, R. M., Lloyd, G. J., Wase, D. A. J., Forster, C. F. Process Biochem. 1997, 32, 473; https://doi.org/10.1016/s0032-9592(96)00107-0.Search in Google Scholar
17. Tang, D., Kupgan, G., Colina, C. M., Sholl, D. S. J. Phys. Chem. C 2019, 123, 17884; https://doi.org/10.1021/acs.jpcc.9b04413.Search in Google Scholar
18. Reck, I. M., Paixão, Bergamasco, R., Bergamasco, M. F., Vieira, A. M. C., Vieira, A. M. S. Separ. Sci. Technol. 2020, 55, 13; https://doi.org/10.1080/01496395.2018.1559859.Search in Google Scholar
19. Yogeshwaran, J. V., Priyab, A. K. Indian Chem. Soc. 2020, 97, 1467.Search in Google Scholar
20. Salleh, M. A. M., Mahmoud, D. K., Karim, W. A., Idris, A. Desalination 2011, 280, 1; https://doi.org/10.1016/j.desal.2011.07.019.Search in Google Scholar
21. Chilakapati, R. B., Kumar, S. H., Satyanarayana, S. V., Beheza, D. K. Z. Phys. Chem 2021, 235, 1717; https://doi.org/10.1515/zpch-2020-1717.Search in Google Scholar
22. Soleimani, H., Mahvi, A. H., Yaghmaeian, K., Abbasnia, A., Sharafi, K., Alimohammadi, M., Zamanzadeh, M. J. Mol. Liq. 2019, 290, 111181; https://doi.org/10.1016/j.molliq.2019.111181.Search in Google Scholar
23. Zahran, F., El-Maghrabi, H. H., Hussein, G., Abdelmaged, S. M. Environ. Nanotechnol. Monit. Manag. 2019, 11. 100205; https://doi.org/10.1016/j.enmm.2018.100205.Search in Google Scholar
24. Vukelic, D., Boskovic, N., Agarski, B., Radonic, J., Budak, I., Pap, S., Turk Sekulic, M. T. J. Clean. Prod. 2018, 174, 1620; https://doi.org/10.1016/j.jclepro.2017.11.098.Search in Google Scholar
25. Ashah, R. M., Shamshuddin, J., Fauziah, C. I., Arifin, A., Panhwar, Q. A. J. Chem. Soc. Pakistan 2018, 40, 828.Search in Google Scholar
26. Abida, K., Kashaf, N., Munawar, I., Zill-i-Huma, N., Haq, N. B., Aisha, A., Arif, N., Heri, S. K., Muhammad, I. K. Z. Phys. Chem. 2021, 235, 1499–1538. https://doi.org/10.1515/zpch-2019-1586.Search in Google Scholar
27. Attaullah, B., Madiha, A., Arif, N., Anees-ur, R., Muhammad, R. S., Qudsia, K., Munawar, I., Hind, A., Norah, A. Z. Phys. Chem. 2021, 235, 1055–1075. https://doi.org/10.1515/zpch-2021-3096.Search in Google Scholar
28. Arif, N., Saqib, F., Mazhar, A., Eman, A. A., Hind, A., Norah, A., Aljohara, H. A., Munawar, I. Z. Phys. Chem. 2021, 235, 1589–1607.10.1515/zpch-2020-1803Search in Google Scholar
29. Munawar, I., Ghulam, A. S., Sobhy, M. I., Shan, I., Muhammad, A., Muhammad, I. K., Heri, S. K., Muhammad, Y., Arif, N. Z. Phys. Chem. 2021, 235, 1209–1226.10.1515/zpch-2019-1562Search in Google Scholar
30. Zalacain, A., Carmona, M., Lorenzo, C., Blazquez, I., Alonso, G. L., J. Am. Leather Chem. Assoc. 2002, 97, 137–142.Search in Google Scholar
31. Merck, CAS Number:33203-82-6. http://www.worlddyevariety.com/basic-dyes/basic-blue-3.html (accessed Aug 3, 2022).Search in Google Scholar
32. Tan, I. A. W., Ahmad, A. L., Hameed, B. H. Bioresour. Technol. 2009, 100, 1494; https://doi.org/10.1016/j.biortech.2008.08.017.Search in Google Scholar PubMed
33. Gülen, J., İskeçeli, M. Mater. Test. 2017, 59, 188–194. https://doi.org/10.3139/120.110984.Search in Google Scholar
34. Gülen, J., Zorbay, F. Water Environ. Res. 2017, 89, 805–816; https://doi.org/10.2175/106143017X14902968254836.Search in Google Scholar PubMed
35. Gülen, J., Pişkin, S., Doymaz, İ. Int. J. Chem. 2011, 3, 75–80.Search in Google Scholar
36. Gülen, J., Akin, B., Özgür, M. Desalination Water Treat. 2016, 57, 9286–9295; https://doi.org/10.1080/19443994.2015.1029002.Search in Google Scholar
37. Toprak, S., Sütcü, E. C., Gülen, J. Turk. J. Earth Sci. 2014, 23, 668–672; https://doi.org/10.3906/yer-1312-20.Search in Google Scholar
38. Doymaz, İ., Gulen, J., Piskin, S., Toprak, S. Energy Sources, Part A Recovery, Util. Environ. Eff. 2007, 29, 337–346; https://doi.org/10.1080/15567030600819882.Search in Google Scholar
39. Gülen, J., Arslan, H. Energy Sources, Part A Recovery, Util. Environ. Eff. 2009, 31, 1443–1449; https://doi.org/10.1080/15567030802093088.Search in Google Scholar
40. Srivastava, V. C., Swamy, M. M., Mall, I. D., Prasad, B., Mishra, I. M. Colloids Surf. A Physicochem. Eng. Asp. 2006, 272, 89; https://doi.org/10.1016/j.colsurfa.2005.07.016.Search in Google Scholar
41. Yu, J. X., Chi, R. A., Zhang, Y. F., Xu, Z. G., Xiao, C. Q., Guo, J. Bioresour. Technol. 2012, 110, 160; https://doi.org/10.1016/j.biortech.2012.01.134.Search in Google Scholar PubMed
42. Hameed, B. H., El-Khaiary, M. I. J. Hazard Mater. 2008, 153, 701; https://doi.org/10.1016/j.jhazmat.2007.09.019.Search in Google Scholar PubMed
43. Hameed, B. H., Krishni, R. R., Sata, S. A. J. Hazard Mater. 2009, 162, 305; https://doi.org/10.1016/j.jhazmat.2008.05.036.Search in Google Scholar PubMed
44. Ncibi, M. C., Mahjoub, B., Seffen, M. J. Hazard Mater. 2007, 139, 280; https://doi.org/10.1016/j.jhazmat.2006.06.029.Search in Google Scholar PubMed
45. Langmuir, I. J. Am. Chem. Soc. 1918, 40, 2221; https://doi.org/10.1021/ja02242a004.Search in Google Scholar
46. Hall, K. R., Eagleton, L. C., Acrivos, A., Vermeulen, T. Ind. Eng. Chem. Fund. 1966, 5, 212; https://doi.org/10.1021/i160018a011.Search in Google Scholar
47. Freundlich, H. M. F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385.Search in Google Scholar
48. Temkin, M. J., Pyzhev, V. Acta Physiochim. URSS. 1940, 12, 217.Search in Google Scholar
49. Namane, A., Mekarzia, A., Benrachedi, K., Belhanechebensemra, N., Hellal, A. J. Hazard Mater. 2005, 119, 189; https://doi.org/10.1016/j.jhazmat.2004.12.006.Search in Google Scholar PubMed
50. Rehman, M. S. U., Kim, I., Han, J. I. Carbohydr. Polym. 2012, 90, 1314; https://doi.org/10.1016/j.carbpol.2012.06.078.Search in Google Scholar PubMed
51. Fu, Y., Viraraghavan, T. Bioresour. Technol. 2001, 79, 251; https://doi.org/10.1016/s0960-8524(01)00028-1.Search in Google Scholar PubMed
52. Fu, Y., Viraraghavan, T. Adv. Environ. Res. 2012, 7, 239.10.1016/S1093-0191(01)00123-XSearch in Google Scholar
53. Namasivayam, C., Arasi, D. Chemosphere 1997, 34, 401; https://doi.org/10.1016/s0045-6535(96)00385-2.Search in Google Scholar
54. Bhattacharyya, K. G., Sharma, A. Dyes Pigments 2005, 65, 51; https://doi.org/10.1016/j.dyepig.2004.06.016.Search in Google Scholar
55. Wang, S., Boyjoo, Y., Choueib, A., Zhu, Z. H. Water Res. 2005, 39, 129; https://doi.org/10.1016/j.watres.2004.09.011.Search in Google Scholar PubMed
56. Chakrabarti, S., Dutta, B. K. J. Colloid Interface Sci. 2005, 286, 807; https://doi.org/10.1016/j.jcis.2005.01.035.Search in Google Scholar PubMed
57. Vimonses, V., Lei, S. M., Jin, B., Chowd, C. W. K. Chem. Eng. J. 2009, 148, 354; https://doi.org/10.1016/j.cej.2008.09.009.Search in Google Scholar
58. Fu, Y., Viraraghavan, T. Water Qual. Res. J. Can. 2000, 35, 95; https://doi.org/10.2166/wqrj.2000.006.Search in Google Scholar
59. Lagergren, S. Kung Svenska Vetenskapsakad. Handl, Vol. 24, 1898; p. 1.Search in Google Scholar
60. Ho, Y. S., McKay, G. Water Res. 1999, 33, 578; https://doi.org/10.1016/s0043-1354(98)00207-3.Search in Google Scholar
61. Ho, Y. S., McKay, G. Process Biochem. 1999, 34, 451; https://doi.org/10.1016/s0032-9592(98)00112-5.Search in Google Scholar
62. Jumasiah, A., Chuah, T. G., Gimbon, J., Choong, T. S. Y., Azni, I. Desalination 2005, 186, 57; https://doi.org/10.1016/j.desal.2005.05.015.Search in Google Scholar
63. Wang, S., Zhu, Z. H., Coomes, A., Haghseresht, F., Lu, G. Q. J. Colloid Interface Sci. 2005, 284, 440; https://doi.org/10.1016/j.jcis.2004.10.050.Search in Google Scholar PubMed
64. Prakashkumar, B. G., Shivakamy, K., Miranda, L. R., Velan, M. J. Hazard Mater. 2006, 136, 922; https://doi.org/10.1016/j.jhazmat.2006.01.037.Search in Google Scholar PubMed
65. Noreen, S., Zafar, S., Bibi, I., Amami, M., Raza, M. A. S., Alshammari, F. H., Elqahtani, Z. M., Basha, B. I., Alwadai, N., Nazir, A., Khan, M. I., Iqbal, M. Ceram. Int. 2022, 48, 12170; https://doi.org/10.1016/j.ceramint.2022.01.078.Search in Google Scholar
66. Hassan, A., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2022, 235, 1077–1097. https://doi.org/10.1515/zpch-2020-1680.Search in Google Scholar
67. Weber, W. J., Morris, J. C. J. Sanit. Eng. Div. 1963, 89, 31; https://doi.org/10.1061/jsedai.0000430.Search in Google Scholar
68. Poots, V. J. P., McKay, G., Healy, J. J. J. Water Pollut. Control Fed. 1978, 50, 926.Search in Google Scholar
69. McKay, G., Otterburn, M. S., Sweeney, A. G. Water Res. 1980, 14, 15; https://doi.org/10.1016/0043-1354(80)90037-8.Search in Google Scholar
70. Allen, S. J., McKay, G., Khader, K. Y. H. Environ. Pollut. 1989, 56, 39; https://doi.org/10.1016/0269-7491(89)90120-6.Search in Google Scholar PubMed
71. McKay, G., Otterburn, M. S., Aga, J. A. Water Air Soil Pollut. 1985, 24, 307; https://doi.org/10.1007/bf00161790.Search in Google Scholar
72. Jain, S., Jayaram, R. V. Desalination 2010, 250, 921; https://doi.org/10.1016/j.desal.2009.04.005.Search in Google Scholar
73. Jaycock, M. J., Parfitt, G. D. Chemistry of Interfaces; Ellis Horwood Ltd Onichester: Chester, England, 1981.Search in Google Scholar
74. Ata, S., Tabassum, A., Bibi, I., Ghafoor, S., Ahad, A., Bhatti, M. A., Islam, A., Rizvi, H., Iqbal, M. Z. Phys. Chem 2019, 233, 995; https://doi.org/10.1515/zpch-2018-1203.Search in Google Scholar
75. Noll, K. E., Gounaris, V., Hou Adsorption Technology for Air and Water Pollution Control; Lewis Publishers: Devon, UK, 1992; pp. 21–22.Search in Google Scholar
76. Yu, Y., Zhuang, Y. Y., Wang, Z. H. J. Colloid Interface Sci. 2001, 242, 288; https://doi.org/10.1006/jcis.2001.7780.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Suppression of steel corrosion via some gemini cationic surfactant-based Schiff base: experimental and theoretical investigations
- Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential
- Eco-benign preparation of biosorbent using Momordica Charantia for the efficient removal of Cr(VI) ions from wastewater
- Oil mediated green synthesis of nano silver in the presence of surfactants for catalytic and food preservation application
- Adsorption properties of metal functionalized fullerene (C59Au, C59Hf, C59Ag, and C59Ir) nanoclusters for application as a biosensor for hydroxyurea (HXU): insight from theoretical computation
- Evaluation of diethylenetriaminepentaacetic acid modified chitosan immobilized in amino-carbmated alginate matrix as a low cost adsorbent for effective Cu(II) recovery
- Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract
- Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites
- Optical and topographic characteristics of silver films deposited from a colloidal solution on polyelectrolytes for IgG-FITC fluorescence analysis
- The three pyridazines, three naphthyridines and two azoles: effect of the position of the second heteroatom on pKaH of their eight conjugate acids
- Theoretical study on the origins of sildenafil tautomers’ relative stability
- Application of the Lennard-Jones potential for calculating the surface tension and the formation enthalpy of a binary solution
- Ultrasonic supported dye removal by a novel biomass
- A novel synthesis of graphene oxide-titanium dioxide (GO-TiO2) and graphene oxide-zinc oxide (GO-ZnO) nanocomposites and their application as effective, reusable photocatalysts for degradation of methylene blue (MB) dye
- Review Article
- Photocatalytic hydrogen generation using TiO2: a state-of-the-art review
Articles in the same Issue
- Frontmatter
- Original Papers
- Suppression of steel corrosion via some gemini cationic surfactant-based Schiff base: experimental and theoretical investigations
- Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential
- Eco-benign preparation of biosorbent using Momordica Charantia for the efficient removal of Cr(VI) ions from wastewater
- Oil mediated green synthesis of nano silver in the presence of surfactants for catalytic and food preservation application
- Adsorption properties of metal functionalized fullerene (C59Au, C59Hf, C59Ag, and C59Ir) nanoclusters for application as a biosensor for hydroxyurea (HXU): insight from theoretical computation
- Evaluation of diethylenetriaminepentaacetic acid modified chitosan immobilized in amino-carbmated alginate matrix as a low cost adsorbent for effective Cu(II) recovery
- Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract
- Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites
- Optical and topographic characteristics of silver films deposited from a colloidal solution on polyelectrolytes for IgG-FITC fluorescence analysis
- The three pyridazines, three naphthyridines and two azoles: effect of the position of the second heteroatom on pKaH of their eight conjugate acids
- Theoretical study on the origins of sildenafil tautomers’ relative stability
- Application of the Lennard-Jones potential for calculating the surface tension and the formation enthalpy of a binary solution
- Ultrasonic supported dye removal by a novel biomass
- A novel synthesis of graphene oxide-titanium dioxide (GO-TiO2) and graphene oxide-zinc oxide (GO-ZnO) nanocomposites and their application as effective, reusable photocatalysts for degradation of methylene blue (MB) dye
- Review Article
- Photocatalytic hydrogen generation using TiO2: a state-of-the-art review