Home Ultrasonic supported dye removal by a novel biomass
Article
Licensed
Unlicensed Requires Authentication

Ultrasonic supported dye removal by a novel biomass

  • Jale Gülen EMAIL logo , İlknur Küçük , Berrin Saygı Yalçın , Selen Ezgi Çelik and Mahmure Özgür
Published/Copyright: November 16, 2022

Abstract

Sumac Leaves (Rhus Coriaria L), were used as a possible adsorbent of Basic Blue 3 (BB3) removal. The main affecting parameters on adsorption such as concentration, pH and temperature were investigated. Adsorption equilibrium was reached in 30 min. The ultrasonic effect was also enhanced the dyestuff removal. Adsorption capacity was rised from 0.566 to 1.826 mg/g, as rising the concentration from 4 μg/mL to 10 μg/mL. Several isotherm models including Langmuir, Freundlich and Temkin were applied for explaining the adsorption mechanism. Temkin and Langmuir isotherm models describe the system well. Pseudo first order, pseudo second order and intra particle kinetics were evaluated. Pseudo second order diffusion model supports the adsoprption and also intra particle diffusion plays an important role for BB3 removal. Thermodynamics of the adsorption were commented. −2219.5 J/mol of Gibbs energy showed us a spontaneous and physical adsorption.


Corresponding author: Jale Gülen, Chemical Engineering Department, Yıldız Technical University, 34210, Esenler – Istanbul, Türkiye, E-mail:

Acknowledgments

This study is supported by the Research Fund of Yıldız Technical University YTU BAPK, Project 2011-07-01-GEP02.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Zollinger, H. Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments, 2nd ed.; VCH: Cambridge, 1997.Search in Google Scholar

2. Sumathi, S., Huang, Y. T. Treatment of pulp and paper mill wastes. In Waste Treatment in the Process Industries; Wang, L. K., Hung, Y. T., Lo, H. H., Yapijakis, C., Eds. Taylor & Francis: USA, 2006; pp. 453–497.10.1201/9780203026519.ch10Search in Google Scholar

3. Ratia, H., Vuori, K. M., Oikari, A. Ecol. Indicat. 2012, 15, 217; https://doi.org/10.1016/j.ecolind.2011.09.015.Search in Google Scholar

4. McKay, G., Otterburn, M. S., Sweney, A. G. Water Res. 1980, 14, 15; https://doi.org/10.1016/0043-1354(80)90037-8.Search in Google Scholar

5. Garg, V. K., Amita, M., Kumar, R., Gupt, R. Dyes Pigments 2004, 63, 243; https://doi.org/10.1016/j.dyepig.2004.03.005.Search in Google Scholar

6. LaPotin, A., Kim, H., Rao, S. R., Wang, E. N. Acc. Chem. Res. 2019, 52, 1588; https://doi.org/10.1021/acs.accounts.9b00062.Search in Google Scholar PubMed

7. Bouremmad, F., Bouchair, A., Papapari, S. S., Shawuti, S., Gulgun, M. A. J. Chem. Soc. Pakistan 2019, 41, 62.10.52568/000712/JCSP/41.01.2019Search in Google Scholar

8. Naveed, R., Bhatti, I. A., Sohail, I., Ashar, A., Ibrahim, S. M., Iqbal, M., Nazir, A. Z. Phys. Chem. 2021, 235, 1027; https://doi.org/10.1515/zpch-2019-1567.Search in Google Scholar

9. Nazir, A., Zahra, F., Sabri, M. U., Ghaffar, A., Ather, A. Q., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2021, 235, 265; https://doi.org/10.1515/zpch-2019-1455.Search in Google Scholar

10. Shehzad, H., Ahmed, E., Din, M. I., Farooqi, Z. H., Arsahd, M., Sharif, A., Zhou, L., Yun, W., Umer, R. Z. Phys. Chem. 2021, 235, 582; https://doi.org/10.1515/zpch-2019-1555.Search in Google Scholar

11. Baylan, N., Dedecan, T., İlalan, İ., İnci, İ. Anal. Lett. 2021, 54, 2113–2125; https://doi.org/10.1080/00032719.2020.1842434.Search in Google Scholar

12. Gupta, V. K., Mittal, A., Gajbe, V., Mittal, J. Ind. Eng. Chem. Res. 2006, 45, 1446; https://doi.org/10.1021/ie051111f.Search in Google Scholar

13. Tanveer, H. B., Ghulam, M., Noshaba, A., Muhammad, U., Nadia, A., Atta, U. H., Mahwish, S., Saima, N., Foziah, F. A.-F., Siham, A. A., Munawar, I., Arif, N. Pol. J. Environ. Stud. 2022, 31, 619; https://doi.org/10.15244/pjoes/140273.Search in Google Scholar

14. Rizwana, N., Ijaz, A. B., Shahid, A., Ambreen, A., Isra, S., Masood, U. H. K., Nasir, M., Munawar, I., Arif, N. J. of Natural Fıbers 2022, 19, 248. https://doi.org/10.1080/15440478.2020.1738309.Search in Google Scholar

15. Umme, H. S., Shaukat, A., Tanveer, H., Munawar, I., Nasir, M., Arif, N. J. Nat. Fibers 2022, 19, 1094. https://doi.org/10.1080/15440478.2020.1789532.Search in Google Scholar

16. Liversidge, R. M., Lloyd, G. J., Wase, D. A. J., Forster, C. F. Process Biochem. 1997, 32, 473; https://doi.org/10.1016/s0032-9592(96)00107-0.Search in Google Scholar

17. Tang, D., Kupgan, G., Colina, C. M., Sholl, D. S. J. Phys. Chem. C 2019, 123, 17884; https://doi.org/10.1021/acs.jpcc.9b04413.Search in Google Scholar

18. Reck, I. M., Paixão, Bergamasco, R., Bergamasco, M. F., Vieira, A. M. C., Vieira, A. M. S. Separ. Sci. Technol. 2020, 55, 13; https://doi.org/10.1080/01496395.2018.1559859.Search in Google Scholar

19. Yogeshwaran, J. V., Priyab, A. K. Indian Chem. Soc. 2020, 97, 1467.Search in Google Scholar

20. Salleh, M. A. M., Mahmoud, D. K., Karim, W. A., Idris, A. Desalination 2011, 280, 1; https://doi.org/10.1016/j.desal.2011.07.019.Search in Google Scholar

21. Chilakapati, R. B., Kumar, S. H., Satyanarayana, S. V., Beheza, D. K. Z. Phys. Chem 2021, 235, 1717; https://doi.org/10.1515/zpch-2020-1717.Search in Google Scholar

22. Soleimani, H., Mahvi, A. H., Yaghmaeian, K., Abbasnia, A., Sharafi, K., Alimohammadi, M., Zamanzadeh, M. J. Mol. Liq. 2019, 290, 111181; https://doi.org/10.1016/j.molliq.2019.111181.Search in Google Scholar

23. Zahran, F., El-Maghrabi, H. H., Hussein, G., Abdelmaged, S. M. Environ. Nanotechnol. Monit. Manag. 2019, 11. 100205; https://doi.org/10.1016/j.enmm.2018.100205.Search in Google Scholar

24. Vukelic, D., Boskovic, N., Agarski, B., Radonic, J., Budak, I., Pap, S., Turk Sekulic, M. T. J. Clean. Prod. 2018, 174, 1620; https://doi.org/10.1016/j.jclepro.2017.11.098.Search in Google Scholar

25. Ashah, R. M., Shamshuddin, J., Fauziah, C. I., Arifin, A., Panhwar, Q. A. J. Chem. Soc. Pakistan 2018, 40, 828.Search in Google Scholar

26. Abida, K., Kashaf, N., Munawar, I., Zill-i-Huma, N., Haq, N. B., Aisha, A., Arif, N., Heri, S. K., Muhammad, I. K. Z. Phys. Chem. 2021, 235, 1499–1538. https://doi.org/10.1515/zpch-2019-1586.Search in Google Scholar

27. Attaullah, B., Madiha, A., Arif, N., Anees-ur, R., Muhammad, R. S., Qudsia, K., Munawar, I., Hind, A., Norah, A. Z. Phys. Chem. 2021, 235, 1055–1075. https://doi.org/10.1515/zpch-2021-3096.Search in Google Scholar

28. Arif, N., Saqib, F., Mazhar, A., Eman, A. A., Hind, A., Norah, A., Aljohara, H. A., Munawar, I. Z. Phys. Chem. 2021, 235, 1589–1607.10.1515/zpch-2020-1803Search in Google Scholar

29. Munawar, I., Ghulam, A. S., Sobhy, M. I., Shan, I., Muhammad, A., Muhammad, I. K., Heri, S. K., Muhammad, Y., Arif, N. Z. Phys. Chem. 2021, 235, 1209–1226.10.1515/zpch-2019-1562Search in Google Scholar

30. Zalacain, A., Carmona, M., Lorenzo, C., Blazquez, I., Alonso, G. L., J. Am. Leather Chem. Assoc. 2002, 97, 137–142.Search in Google Scholar

31. Merck, CAS Number:33203-82-6. http://www.worlddyevariety.com/basic-dyes/basic-blue-3.html (accessed Aug 3, 2022).Search in Google Scholar

32. Tan, I. A. W., Ahmad, A. L., Hameed, B. H. Bioresour. Technol. 2009, 100, 1494; https://doi.org/10.1016/j.biortech.2008.08.017.Search in Google Scholar PubMed

33. Gülen, J., İskeçeli, M. Mater. Test. 2017, 59, 188–194. https://doi.org/10.3139/120.110984.Search in Google Scholar

34. Gülen, J., Zorbay, F. Water Environ. Res. 2017, 89, 805–816; https://doi.org/10.2175/106143017X14902968254836.Search in Google Scholar PubMed

35. Gülen, J., Pişkin, S., Doymaz, İ. Int. J. Chem. 2011, 3, 75–80.Search in Google Scholar

36. Gülen, J., Akin, B., Özgür, M. Desalination Water Treat. 2016, 57, 9286–9295; https://doi.org/10.1080/19443994.2015.1029002.Search in Google Scholar

37. Toprak, S., Sütcü, E. C., Gülen, J. Turk. J. Earth Sci. 2014, 23, 668–672; https://doi.org/10.3906/yer-1312-20.Search in Google Scholar

38. Doymaz, İ., Gulen, J., Piskin, S., Toprak, S. Energy Sources, Part A Recovery, Util. Environ. Eff. 2007, 29, 337–346; https://doi.org/10.1080/15567030600819882.Search in Google Scholar

39. Gülen, J., Arslan, H. Energy Sources, Part A Recovery, Util. Environ. Eff. 2009, 31, 1443–1449; https://doi.org/10.1080/15567030802093088.Search in Google Scholar

40. Srivastava, V. C., Swamy, M. M., Mall, I. D., Prasad, B., Mishra, I. M. Colloids Surf. A Physicochem. Eng. Asp. 2006, 272, 89; https://doi.org/10.1016/j.colsurfa.2005.07.016.Search in Google Scholar

41. Yu, J. X., Chi, R. A., Zhang, Y. F., Xu, Z. G., Xiao, C. Q., Guo, J. Bioresour. Technol. 2012, 110, 160; https://doi.org/10.1016/j.biortech.2012.01.134.Search in Google Scholar PubMed

42. Hameed, B. H., El-Khaiary, M. I. J. Hazard Mater. 2008, 153, 701; https://doi.org/10.1016/j.jhazmat.2007.09.019.Search in Google Scholar PubMed

43. Hameed, B. H., Krishni, R. R., Sata, S. A. J. Hazard Mater. 2009, 162, 305; https://doi.org/10.1016/j.jhazmat.2008.05.036.Search in Google Scholar PubMed

44. Ncibi, M. C., Mahjoub, B., Seffen, M. J. Hazard Mater. 2007, 139, 280; https://doi.org/10.1016/j.jhazmat.2006.06.029.Search in Google Scholar PubMed

45. Langmuir, I. J. Am. Chem. Soc. 1918, 40, 2221; https://doi.org/10.1021/ja02242a004.Search in Google Scholar

46. Hall, K. R., Eagleton, L. C., Acrivos, A., Vermeulen, T. Ind. Eng. Chem. Fund. 1966, 5, 212; https://doi.org/10.1021/i160018a011.Search in Google Scholar

47. Freundlich, H. M. F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385.Search in Google Scholar

48. Temkin, M. J., Pyzhev, V. Acta Physiochim. URSS. 1940, 12, 217.Search in Google Scholar

49. Namane, A., Mekarzia, A., Benrachedi, K., Belhanechebensemra, N., Hellal, A. J. Hazard Mater. 2005, 119, 189; https://doi.org/10.1016/j.jhazmat.2004.12.006.Search in Google Scholar PubMed

50. Rehman, M. S. U., Kim, I., Han, J. I. Carbohydr. Polym. 2012, 90, 1314; https://doi.org/10.1016/j.carbpol.2012.06.078.Search in Google Scholar PubMed

51. Fu, Y., Viraraghavan, T. Bioresour. Technol. 2001, 79, 251; https://doi.org/10.1016/s0960-8524(01)00028-1.Search in Google Scholar PubMed

52. Fu, Y., Viraraghavan, T. Adv. Environ. Res. 2012, 7, 239.10.1016/S1093-0191(01)00123-XSearch in Google Scholar

53. Namasivayam, C., Arasi, D. Chemosphere 1997, 34, 401; https://doi.org/10.1016/s0045-6535(96)00385-2.Search in Google Scholar

54. Bhattacharyya, K. G., Sharma, A. Dyes Pigments 2005, 65, 51; https://doi.org/10.1016/j.dyepig.2004.06.016.Search in Google Scholar

55. Wang, S., Boyjoo, Y., Choueib, A., Zhu, Z. H. Water Res. 2005, 39, 129; https://doi.org/10.1016/j.watres.2004.09.011.Search in Google Scholar PubMed

56. Chakrabarti, S., Dutta, B. K. J. Colloid Interface Sci. 2005, 286, 807; https://doi.org/10.1016/j.jcis.2005.01.035.Search in Google Scholar PubMed

57. Vimonses, V., Lei, S. M., Jin, B., Chowd, C. W. K. Chem. Eng. J. 2009, 148, 354; https://doi.org/10.1016/j.cej.2008.09.009.Search in Google Scholar

58. Fu, Y., Viraraghavan, T. Water Qual. Res. J. Can. 2000, 35, 95; https://doi.org/10.2166/wqrj.2000.006.Search in Google Scholar

59. Lagergren, S. Kung Svenska Vetenskapsakad. Handl, Vol. 24, 1898; p. 1.Search in Google Scholar

60. Ho, Y. S., McKay, G. Water Res. 1999, 33, 578; https://doi.org/10.1016/s0043-1354(98)00207-3.Search in Google Scholar

61. Ho, Y. S., McKay, G. Process Biochem. 1999, 34, 451; https://doi.org/10.1016/s0032-9592(98)00112-5.Search in Google Scholar

62. Jumasiah, A., Chuah, T. G., Gimbon, J., Choong, T. S. Y., Azni, I. Desalination 2005, 186, 57; https://doi.org/10.1016/j.desal.2005.05.015.Search in Google Scholar

63. Wang, S., Zhu, Z. H., Coomes, A., Haghseresht, F., Lu, G. Q. J. Colloid Interface Sci. 2005, 284, 440; https://doi.org/10.1016/j.jcis.2004.10.050.Search in Google Scholar PubMed

64. Prakashkumar, B. G., Shivakamy, K., Miranda, L. R., Velan, M. J. Hazard Mater. 2006, 136, 922; https://doi.org/10.1016/j.jhazmat.2006.01.037.Search in Google Scholar PubMed

65. Noreen, S., Zafar, S., Bibi, I., Amami, M., Raza, M. A. S., Alshammari, F. H., Elqahtani, Z. M., Basha, B. I., Alwadai, N., Nazir, A., Khan, M. I., Iqbal, M. Ceram. Int. 2022, 48, 12170; https://doi.org/10.1016/j.ceramint.2022.01.078.Search in Google Scholar

66. Hassan, A., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2022, 235, 1077–1097. https://doi.org/10.1515/zpch-2020-1680.Search in Google Scholar

67. Weber, W. J., Morris, J. C. J. Sanit. Eng. Div. 1963, 89, 31; https://doi.org/10.1061/jsedai.0000430.Search in Google Scholar

68. Poots, V. J. P., McKay, G., Healy, J. J. J. Water Pollut. Control Fed. 1978, 50, 926.Search in Google Scholar

69. McKay, G., Otterburn, M. S., Sweeney, A. G. Water Res. 1980, 14, 15; https://doi.org/10.1016/0043-1354(80)90037-8.Search in Google Scholar

70. Allen, S. J., McKay, G., Khader, K. Y. H. Environ. Pollut. 1989, 56, 39; https://doi.org/10.1016/0269-7491(89)90120-6.Search in Google Scholar PubMed

71. McKay, G., Otterburn, M. S., Aga, J. A. Water Air Soil Pollut. 1985, 24, 307; https://doi.org/10.1007/bf00161790.Search in Google Scholar

72. Jain, S., Jayaram, R. V. Desalination 2010, 250, 921; https://doi.org/10.1016/j.desal.2009.04.005.Search in Google Scholar

73. Jaycock, M. J., Parfitt, G. D. Chemistry of Interfaces; Ellis Horwood Ltd Onichester: Chester, England, 1981.Search in Google Scholar

74. Ata, S., Tabassum, A., Bibi, I., Ghafoor, S., Ahad, A., Bhatti, M. A., Islam, A., Rizvi, H., Iqbal, M. Z. Phys. Chem 2019, 233, 995; https://doi.org/10.1515/zpch-2018-1203.Search in Google Scholar

75. Noll, K. E., Gounaris, V., Hou Adsorption Technology for Air and Water Pollution Control; Lewis Publishers: Devon, UK, 1992; pp. 21–22.Search in Google Scholar

76. Yu, Y., Zhuang, Y. Y., Wang, Z. H. J. Colloid Interface Sci. 2001, 242, 288; https://doi.org/10.1006/jcis.2001.7780.Search in Google Scholar

Received: 2022-03-02
Accepted: 2022-10-20
Published Online: 2022-11-16
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Original Papers
  3. Suppression of steel corrosion via some gemini cationic surfactant-based Schiff base: experimental and theoretical investigations
  4. Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential
  5. Eco-benign preparation of biosorbent using Momordica Charantia for the efficient removal of Cr(VI) ions from wastewater
  6. Oil mediated green synthesis of nano silver in the presence of surfactants for catalytic and food preservation application
  7. Adsorption properties of metal functionalized fullerene (C59Au, C59Hf, C59Ag, and C59Ir) nanoclusters for application as a biosensor for hydroxyurea (HXU): insight from theoretical computation
  8. Evaluation of diethylenetriaminepentaacetic acid modified chitosan immobilized in amino-carbmated alginate matrix as a low cost adsorbent for effective Cu(II) recovery
  9. Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract
  10. Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites
  11. Optical and topographic characteristics of silver films deposited from a colloidal solution on polyelectrolytes for IgG-FITC fluorescence analysis
  12. The three pyridazines, three naphthyridines and two azoles: effect of the position of the second heteroatom on pKaH of their eight conjugate acids
  13. Theoretical study on the origins of sildenafil tautomers’ relative stability
  14. Application of the Lennard-Jones potential for calculating the surface tension and the formation enthalpy of a binary solution
  15. Ultrasonic supported dye removal by a novel biomass
  16. A novel synthesis of graphene oxide-titanium dioxide (GO-TiO2) and graphene oxide-zinc oxide (GO-ZnO) nanocomposites and their application as effective, reusable photocatalysts for degradation of methylene blue (MB) dye
  17. Review Article
  18. Photocatalytic hydrogen generation using TiO2: a state-of-the-art review
Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2022-0035/html
Scroll to top button