Home A novel synthesis of graphene oxide-titanium dioxide (GO-TiO2) and graphene oxide-zinc oxide (GO-ZnO) nanocomposites and their application as effective, reusable photocatalysts for degradation of methylene blue (MB) dye
Article
Licensed
Unlicensed Requires Authentication

A novel synthesis of graphene oxide-titanium dioxide (GO-TiO2) and graphene oxide-zinc oxide (GO-ZnO) nanocomposites and their application as effective, reusable photocatalysts for degradation of methylene blue (MB) dye

  • Sujata Kumari , Pratibha Sharma , Debasree Ghosh , Anirban Das , Akshey Kaushal , Pooja Rawat , Chittaranjan Sinha , Jaydeep Bhattacharya , Chandra Mohan Srivastava EMAIL logo and Sudip Majumder EMAIL logo
Published/Copyright: November 21, 2022

Abstract

The current study focuses on graphene oxide (GO) and its composite with zinc oxide and titanium dioxide nanoparticles to develop a simple nano chemistry-based clean and efficient process for the effective degradation of methylene blue (MB) dye. Graphene oxide composite with zinc oxide and titanium dioxide nanoparticles were fabricated via a thermal coupling process that demonstrates exclusive physiochemical properties. A detailed comparison of the structure, morphology, and surface analysis of synthesized GO and nanocomposites, as well as their electrochemical properties, has been accomplished. By using the degradation of methylene blue (MB) dye the photocatalytic function of nanocomposites was studied. Results reveal that the rate constants of GO, GO-TiO2, and GO-ZnO photocatalysts are 1.06 × 10−3 min−1, 2.56 × 10−3 min−1, and 1.63 × 10−3 min−1 respectively which discloses GO-TiO2 nanocomposite shows maximum degradation of MB dye among both catalysts. The reuse of photocatalyst even after five cycles retained the degradation efficiency of 80, 77, and 49% respectively for GO-TiO2, GO-ZnO, and GO when tested against MB. Hence, as a result, it was determined that these photocatalysts are ideal for the remediation of dye-contaminated wastewater.


Corresponding author: Chandra Mohan Srivastava, Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana, Panchgaon, India, E-mail: ; and Sudip Majumder, Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana, Panchgaon, India; and Dollon’s Food Products(P) Ltd, Eco-Station, Block-BP, 10th floor#3, Sector 5, Salt lake, Kolkata-700091, India, E-mail:

Acknowledgment

SK, CM, and SM would like to thank Amity University, Haryana, for their assistance with this project. SM and CM would like to thank the DST-FIST Grant No.SR/FST/PS-I/2018/48 of the Government of India and CIRF Amity University Haryana for their assistance.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Shen, Y., Li, L., Xiao, K., Xi, J. Constructing three-dimensional hierarchical architectures by integrating carbon nanofibers into graphite felts for water purification. ACS Sustainable Chem. Eng. 2016, 4, 2351–2358; https://doi.org/10.1021/acssuschemeng.6b00030.Search in Google Scholar

2. Zhang, P., Li, J., Lv, L., Zhao, Y., Qu, L. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 2017, 11, 5087–5093; https://doi.org/10.1021/acsnano.7b01965.Search in Google Scholar PubMed

3. Romao, J., Barata, D., Habibovic, P., Mul, G., Baltrusaitis, J. High throughput analysis of photocatalytic water purification. Anal. Chem. 2014, 86, 7612–7617; https://doi.org/10.1021/ac501426f.Search in Google Scholar PubMed

4. Xu, L. J., Chu, W., Lu, G. Environmental application of graphene-based CoFe2O4 as an activator of peroxymonosulfate for the degradation of a plasticizer. Chem. Eng. J. 2015, 263, 435–443; https://doi.org/10.1016/j.cej.2014.11.065.Search in Google Scholar

5. Raizada, P., Kumari, J., Shandilya, P., Dhiman, R., Singh, V. P., Singh, P. Magnetically retrievable Bi2WO6/Fe3O4 immobilized on graphene sand composite for investigation of photocatalytic mineralization of oxytetracycline and ampicillin. Process Saf. Environ. Protect. 2017, 106, 104–116; https://doi.org/10.1016/j.psep.2016.12.012.Search in Google Scholar

6. Jo, W. K., Adinaveen, T., Vijaya, J. J., Sagaya Selvam, N. C. Synthesis of MoS 2 nanosheet supported Z-scheme TiO2/g-C3 N4 photocatalysts for the enhanced photocatalytic degradation of organic water pollutants. RSC Adv. 2016, 6, 10487–10497; https://doi.org/10.1039/c5ra24676h.Search in Google Scholar

7. Chen, R., Zhou, J., Xu, B., Meng, X. Preparation of TiO2–BaSO4 composite microparticles and their photocatalytic activity. Chem. Eng. J. 2013, 218, 24–31; https://doi.org/10.1016/j.cej.2012.12.039.Search in Google Scholar

8. Wang, G., Chen, D., Zhang, H., Zhang, J. Z., Li, J. Tunable photocurrent spectrum in well-oriented zinc oxide nanorod arrays with enhanced photocatalytic activity. J. Phys. Chem. C 2008, 112, 8850–8855; https://doi.org/10.1021/jp800379k.Search in Google Scholar

9. Cho, S., Kim, S., Jang, J.-W., Jung, S.-H., Oh, E., Lee, B. R., Lee, K.-H. Large-scale fabrication of sub20-nm-diameter ZnO nanorod arrays at room temperature and their photocatalytic activity. J. Phys. Chem. C 2009, 113, 10452–10458; https://doi.org/10.1021/jp9017597.Search in Google Scholar

10. Zhang, H., Yang, D., Ma, X., Du, N., Wu, J., Que, D. Straight and thin ZnO nanorods: hectogram-scale synthesis at low temperature and cathodoluminescence. J. Phys. Chem. B 2006, 110, 827–830; https://doi.org/10.1021/jp055351k.Search in Google Scholar PubMed

11. Liao, L., Lu, H. B., Li, J. C., He, H., Wang, D. F., Fu, D. J., Liu, C., Zhang, W. F. Size dependence of gas sensitivity of ZnO nanorods. J. Phys. Chem. C 2007, 111, 1900–1903; https://doi.org/10.1021/jp065963k.Search in Google Scholar

12. Choy, J. H., Jang, E. S., Won, J. H., Chung, J. H., Jang, D. J., Kim, Y. W. Soft solution route to directionally grown ZnO nanorod arrays on Si wafer room-temperature ultraviolet laser. Adv. Mater. 2003, 15, 1911–1914; https://doi.org/10.1002/adma.200305327.Search in Google Scholar

13. Chen, J., Li, C., Eda, G., Zhang, Y., Lei, W., Chhowalla, M., Milne, W. I., Deng, W.-Q. Incorporation of graphene in quantum dot sensitized solar cells based on ZnO nanorods. Chem. Commun. 2011, 47, 6084–6086; https://doi.org/10.1039/c1cc10162e.Search in Google Scholar PubMed

14. Park, W. I., Kim, J. S., Yi, G.-C., Bae, M. H., Lee, H. J. Fabrication and electrical characteristics of high performance ZnO nanorod field-effect transistors. Appl. Phys. Lett. 2004, 85, 5052–5054; https://doi.org/10.1063/1.1821648.Search in Google Scholar

15. Park, W. I., Kim, J. S., Yi, G. C., Lee, H. J. ZnO nanorod logic circuits ZnO nanorod logic circuits. Adv. Mater. 2005, 17, 1393–1397; https://doi.org/10.1002/adma.200401732.Search in Google Scholar PubMed

16. Chen, Y., Bagnall, D. M., Koh, H. J., Park, K. T., Hiraga, K., Zhu, Z., Yao, T. Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization. J. Appl. Phys. 1998, 84, 3912–3918; https://doi.org/10.1063/1.368595.Search in Google Scholar

17. Singh, A. K., Multani, S. S., Patil, S. B. ZnO nanorods and nano polypods synthesized using microwave assisted wet chemical and thermal evaporation method. Indian J. Pure Appl. Phys. 2011, 49, 270–276.Search in Google Scholar

18. Gusatti, M., do Rosario, J. D., de Campos, C. E., Kunhen, N. C., de Carvalho, E. U., Riella, H. G., Bernardin, A. M. Production and characterization of ZnO nanocrystals obtained by solochemical processing at different temperatures. J. Nanosci. Nanotechnol. 2010, 10, 4348–4351; https://doi.org/10.1166/jnn.2010.2198.Search in Google Scholar PubMed

19. Choy, J. H., Hee, H. C., Jung, H., Hwang, S. J. A novel synthetic route to TiO2—pillard layered titanate with enhanced motion (ESI) available: XRD patterns and crystallographic data for pristine layered caesium titanate and its proton exchanged form, XRD pattern of the anatase TiO2 nansol used as pillaring agent. J. Mater. Chem. 2001, 11, 2232–2234; https://doi.org/10.1039/b104551m.Search in Google Scholar

20. Kapinus, E. I., Vikforova, T. I., Khalyavka, T. A. Photocatalytic activity of nanoparticles of metal sulfides in the degradation organic dyes. Theor. Exp. Chem. 2006, 42, 282–286; https://doi.org/10.1007/s11237-006-0054-z.Search in Google Scholar

21. Ishizum, A., White, C. M., Kanemitsu, Y. Photoluminescence properties of impurity-doped ZnS nanocrystals fabricated by sequential ion implantation: low-dimensinal systems and nanostructures. Physica 2005, 26, 24–27.10.1016/j.physe.2004.08.016Search in Google Scholar

22. Nezamzadeh-Ejhieh, A., Banan, Z. Photodegradation of dimethyldisulfide by heterogeneous catalysis using nano CdS and nano CdO embedded on the zeolite A synthesized from waste porcelain. Desalination Water Treat. 2014, 52, 3328–3337; https://doi.org/10.1080/19443994.2013.797627.Search in Google Scholar

23. Habibi, M. H., Zendehdel, M. Synthesis and characterization of titania nanoparticles on the surface of microporous perlite using sol–gel method: influence of titania precursor on characteristics. J. Inorg. Organomet. Polym. Mater. 2011, 21, 634–639; https://doi.org/10.1007/s10904-011-9500-z.Search in Google Scholar

24. Pham, T.-T., Nguyen-Huy, C., Lee, H.-J., Nguyen-Phan, T.-D., Son, T. H., Kim, C.-K., Shin, E. W. Cu-doped TiO2/reduced graphene oxide thin-film photocatalysts: effect of Cu content upon methylene blue removal in water. Ceram. Int. 2015, 41, 11184–11193; https://doi.org/10.1016/j.ceramint.2015.05.068.Search in Google Scholar

25. Khalid, N. R., Ahmed, E., Hong, Z., Zhang, Y., Ahmad, M. Nitrogen doped TiO 2 nanoparticles decorated on graphene sheets for photocatalysis applications. Curr. Appl. Phys. 2012, 12, 1485–1492; https://doi.org/10.1016/j.cap.2012.04.019.Search in Google Scholar

26. Oppong, S. O. B., Anku, W. W., Shukla, S. K., Agorku, E. S., Govender, P. P. Photocatalytic degradation of indigo carmine using Nd-doped TiO2-decorated graphene oxide nanocomposites. J. Sol. Gel Sci. Technol. 2016, 80, 38–49; https://doi.org/10.1007/s10971-016-4062-8.Search in Google Scholar

27. Su, R., Bechstein, R., Kibsgaard, J., Vang, R. T., Besenbacher, F. High-quality Fe-doped TiO2 films with superior visible-light performance. J. Mater. Chem. 2012, 22, 23755; https://doi.org/10.1039/c2jm34298g.Search in Google Scholar

28. Zha, R., Nadimicherla, R., Guo, X. Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO2/ZnO heterojunctions. J. Mater. Chem. A. 2015, 3, 6565–6574; https://doi.org/10.1039/c5ta00764j.Search in Google Scholar

29. Khalid, N. R., Majid, A., Bilal Tahir, M., Niaz, N. A., Khalid, Sadia. Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: a review. Ceram. Int. 2017, 4317, 14552–14571; https://doi.org/10.1016/j.ceramint.2017.08.143.Search in Google Scholar

30. Tahir, M. B., Nabi, G., Rafique, M., Khalid, N. R. Nanostructured-based WO3 photocatalysts: recent development, activity enhancement, perspectives and applications for wastewater treatment. Int. J. Environ. Sci. Technol. 2017, 14, 2519–2542.10.1007/s13762-017-1394-zSearch in Google Scholar

31. Khalid, N. R., Hammad, A., Tahir, M. B., Rafique, M., Iqbal, T., Nabi, G., Hussain, M. K. Enhanced photocatalytic activity of Al and Fe co-doped ZnO nanorods for methylene blue degradation. Ceram. Int. 2019, 45A, 21430–21435; https://doi.org/10.1016/j.ceramint.2019.07.132.Search in Google Scholar

32. Tahir, M. B., Nabi, G., Hassan, A., Iqbal, T., Sarwar, H., Majid, A. Morphology tailored synthesis of C-WO3 nanostructures and its photocatalytic application. J. Inorg. Organomet. Polym. 2018, 28, 738–745; https://doi.org/10.1007/s10904-017-0720-8.Search in Google Scholar

33. Khalid, N. R., Ahmed, E., Niaz, N. A., Nabi, G., Ahmad, M., Bilal Tahir, M., Rafique, M., Rizwan, M., Khan, Y. Highly visible light responsive metal loaded N/TiO2 nanoparticles for photocatalytic conversion of CO2 into methane. Ceram. Int. 2017, 43, 6771–6777; https://doi.org/10.1016/j.ceramint.2017.02.093.Search in Google Scholar

34. Kumari, S., Sharma, P., Ghosh, D., Shandilya, M., Rawat, P., Hassan, Md. I., Moulick, R. G., Bhattacharya, J., Srivastava, C., Majumder, S. Time-dependent study of graphene oxide-trypsin adsorption interface and visualization of nano-protein corona. Int. J. Biol. Macromol. 2020, 163, 2259–2269; https://doi.org/10.1016/j.ijbiomac.2020.09.099.Search in Google Scholar PubMed

35. Zhu, Y., Murali, S., Cal, W., Li, X., Suk, J. W., Potts, J. R., Ruoff, R. S. Graphene and graphene oxide: synthesis, properties and applications. Adv. Mater. 2010, 22, 3906–3924; https://doi.org/10.1002/adma.201001068.Search in Google Scholar PubMed

36. Liang, Y. Y., Wang, H. L., Casalongue, H. S., Chen, Z., Dai, J. TiO2 nanocrystal grown on graphene as advanced photocatalytic hybrid materials. Nano Sci. Res. 2010, 3, 701–705.10.1007/s12274-010-0033-5Search in Google Scholar

37. Sharma, P., Dhiman, S., Kumari, S., Rawat, P., Srivastava, C., Sato, H., Akitsu, T., Kumar, S., Hassan, M. I., Majumder, S. Revisiting the physiochemical properties of Hematite (α-Fe2O3) nanoparticle and exploring its bio-environmental application. Mater. Res. Express 2019, 6, 095072; https://doi.org/10.1088/2053-1591/ab30ef.Search in Google Scholar

38. Sharma, P., Kumari, S., Ghosh, D., Yadav, V., Vij, A., Rawat, P., Kumar, S., Sinha, C., Saini, S., Sharma, V., Hassan, Md. I., Srivastava, C., Majumder, S. Capping agent-induced variation of physicochemical and biological properties of α-Fe2O3 nanoparticles. Mater. Chem. Phys. 2021, 258, 123899; https://doi.org/10.1016/j.matchemphys.2020.123899.Search in Google Scholar

39. Pandey, N., Dhiman, S., Srivastava, T., Majumder, S. Transition metal oxide nanoparticles are effective in inhibiting lung cancer cell survival in the hypoxic tumor micro environment. Chem. Biol. Interact. 2016, 254, 221–230; https://doi.org/10.1016/j.cbi.2016.06.006.Search in Google Scholar PubMed

40. Siemon, U., Bahnemann, D., Testa, J. J., Rodriguez, D., Litte, M. I., Bruno, N. Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2. J. Photochem. Photobiol. Chem. 2002, 148, 245–253; https://doi.org/10.1016/s1010-6030(02)00050-3.Search in Google Scholar

41. Kumari, S., Sharma, P., Yadav, S., Kumar, J., Vij, A., Rawat, P., Kumar, S., Sinha, C., Bhattacharya, J., Srivastava, C., Majumder, S. A novel synthesis of the graphene oxide-silver (GO-Ag) nanocomposite for unique physiochemical applications. ACS Omega 2020, 5, 5041–5047; https://doi.org/10.1021/acsomega.9b03976.Search in Google Scholar PubMed PubMed Central

42. Kumar, V. R., Wariar, P. R. S., Prasad, V. S., Koshy, J. A novel approach for the synthesis of nanocrystalline zinc oxide powders by room temperature co-precipitation method. Mater. Lett. 2011, 65, 2059–2061; https://doi.org/10.1016/j.matlet.2011.04.015.Search in Google Scholar

43. Zhang, X., Sun, Y., Cui, X., Jiang, Z. A green and facile synthesis of TiO2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution. Int. J. Hydrogen Energy 2012, 37, 811–815; https://doi.org/10.1016/j.ijhydene.2011.04.053.Search in Google Scholar

44. Pathania, D., Sharma, S., Singh, P. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab. J. Chem. 2017, 10, S1445–S1451; https://doi.org/10.1016/j.arabjc.2013.04.021.Search in Google Scholar

45. You, Y. F., Xu, C. H., Xu, S. S., Cao, S., Wang, J. P., Huang, Y. B., Shi, S. Q. Structural characterization and optical property of TiO2 powders prepared by the sol–gel method. Ceram. Int. 2014, 40, 8659–8666; https://doi.org/10.1016/j.ceramint.2014.01.083.Search in Google Scholar

46. Yao, L., Dong, L., Li, X., Xu, S., Zhang, G., Sun, Q. TiO2-Intercalated graphene oxides with highly efficient photocatalytic degradation for methylene blue. J. Nanomater., 2018, 3091970; https://doi.org/10.1155/2018/3091970.Search in Google Scholar

47. Lei, C., Pi, M., Jiang, C., Cheng, B., Yue, J. Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red. J. Colloid Interface Sci. 2017, 490, 242–251; https://doi.org/10.1016/j.jcis.2016.11.049.Search in Google Scholar PubMed

48. Abdolhosseinzadeh, S., Asgharzadeh, H., Sadighikia, S., Khataee, A. UV-assisted synthesis of reduced graphene oxide–ZnO nanorod composites immobilized on Zn foil with enhanced photocatalytic performance. Res. Chem. Intermed. 2016, 42, 4479–4496; https://doi.org/10.1007/s11164-015-2291-z.Search in Google Scholar

49. Ookubo, A., Kanezaki, E., Ooi, K. ESR, XRD, and DRS studies of paramagnetic Ti3+ ions in a colloidal solid of titanium-oxide prepared by the hydrolysis of TiCl3. Langmuir 1990, 6, 206–209; https://doi.org/10.1021/la00091a033.Search in Google Scholar

50. Gohari, G., Mohammadi, A., Akbari, A., Panahirad, S., Dadpour, M. R., Fotopoulos, V., Kimura, S. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci. Rep. 2020, 10, 912; https://doi.org/10.1038/s41598-020-57794-1.Search in Google Scholar PubMed PubMed Central

51. Bano, N., Hussain, I., El-Naggar, A. M., Albassam, A. A. Reduced graphene oxide nanocomposites for optoelectronics applications. Appl. Phys. A 2019, 125, 215; https://doi.org/10.1007/s00339-019-2518-8.Search in Google Scholar

52. Boukhoubza, I., Khenfouch, M., Achehboune, M., Leontie, L., Galca, A. C., Enculescu, M., Carlescu, A., Guerboub, M., Mothudi, B. M., Jorio, A., Zorkani, I. Graphene oxide concentration effect on the optoelectronic properties of ZnO/GO nanocomposites. Nanomaterials 2020, 10, 1532; https://doi.org/10.3390/nano10081532.Search in Google Scholar PubMed PubMed Central

53. Zhang, X., Sun, Y., Cui, X., Jian, Z. A green and facile synthesis of TiO2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution. Int. J. Hydrogen Energy 2012, 37, 811–815; https://doi.org/10.1016/j.ijhydene.2011.04.053.Search in Google Scholar

54. Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814; https://doi.org/10.1021/nn1006368.Search in Google Scholar PubMed

55. Vallejo, W., Rueda, A., Dı´az-Uribe, C., Grande, C., Quintana, P. Photocatalytic activity of graphene oxide – TiO2 thin films sensitized by natural dyes extracted from Bactris guineensis. R. Soc. Open Sci. 2019, 6, 181824; https://doi.org/10.1098/rsos.181824.Search in Google Scholar PubMed PubMed Central

56. Zhang, Q., Bao, N., Wang, X., Hu, X., Miao, X., Chaker, M., Ma, D. Advanced fabrication of chemically bonded graphene/TiO2 continuous fibers with enhanced broadband photocatalytic properties and involved mechanisms exploration. Sci. Rep. 2016, 6, 38066; https://doi.org/10.1038/srep38066.Search in Google Scholar PubMed PubMed Central

57. Lin, Y., Hong, R., Chen, H., Zhang, D., Xu, J. Green synthesis of ZnO-GO composites for the photocatalytic degradation of methylene blue. Hindawi, J. Nanomaterials, 2020, 4147357; https://doi.org/10.1155/2020/4147357.Search in Google Scholar

58. Brownson, D. A. C., Smith, G. C., Banks, C. E. GO electrochemistry: the electrochemistry of GO modified electrodes reveals coverage dependent beneficial electrocatalysis. R. Soc. Open Sci. 2017, 4, 171128; https://doi.org/10.1098/rsos.171128.Search in Google Scholar PubMed PubMed Central

59. Tavella, F., Ampelli, C., Leonardi, S. G., Neri, G. Photo-electrochemical sensing of dopamine by a novel porous TiO2 array-modified screen-printed Ti electrode. Sensors 2018, 18, 3566; https://doi.org/10.3390/s18103566.Search in Google Scholar PubMed PubMed Central

60. Sulciute, A., Nishimura, K., Gilshtein, E., Cesano, F., Viscardi, G., Nasibulin, A. G., Ohno, Y., Rackauskas, S. ZnO nanostructures application in electrochemistry: influence of morphology. J. Phys. Chem. C 2021, 125, 1472–1482; https://doi.org/10.1021/acs.jpcc.0c08459.Search in Google Scholar

61. Yang, Y., Zhang, T., Le, L., Ruan, X., Fang, P., Pan, C., Xiong, R., Shi, J., Wei, J. Quick and facile preparation of visible light-driven TiO2 photocatalyst with high absorption and photocatalytic activity. Sci. Rep. 2015, 4, 7045; https://doi.org/10.1038/srep07045.Search in Google Scholar PubMed PubMed Central

62. Barnes, R. J., Molina, R., Xu, J., Dobson, P. J., Thompson, I. P. Comparison of TiO2 and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of Gram-positive and Gram-negative bacteria. J. Nanoparticle Res. 2013, 15, 1432; https://doi.org/10.1007/s11051-013-1432-9.Search in Google Scholar

63. Kitture, R., Koppikar, S. J., Ghanekar, R. K., Kale, S. N. Catalyst efficiency, photostability and reusability study of ZnO nanoparticles in visible light for dye degradation. J. Phys. Chem. Solid. 2011, 72, 60–66; https://doi.org/10.1016/j.jpcs.2010.10.090.Search in Google Scholar

64. Rauf, M. A., Meetani, M. A., Khaleel, A., Ahmed, A. Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS. Chem. Eng. J. 2010, 157, 373–378; https://doi.org/10.1016/j.cej.2009.11.017.Search in Google Scholar

65. Gnaser, H., Savina, M. R., Calaway, W. F., Tripa, C. E., Veryovkin, I. V., Pellin, M. J. Photocatalytic degradation of methylene blue on nanocrystalline TiO2: surface mass spectrometry of reaction intermediates. Int. J. Mass Spectrom. 2005, 245, 61–67; https://doi.org/10.1016/j.ijms.2005.07.003.Search in Google Scholar

Received: 2022-04-25
Accepted: 2022-10-14
Published Online: 2022-11-21
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Original Papers
  3. Suppression of steel corrosion via some gemini cationic surfactant-based Schiff base: experimental and theoretical investigations
  4. Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential
  5. Eco-benign preparation of biosorbent using Momordica Charantia for the efficient removal of Cr(VI) ions from wastewater
  6. Oil mediated green synthesis of nano silver in the presence of surfactants for catalytic and food preservation application
  7. Adsorption properties of metal functionalized fullerene (C59Au, C59Hf, C59Ag, and C59Ir) nanoclusters for application as a biosensor for hydroxyurea (HXU): insight from theoretical computation
  8. Evaluation of diethylenetriaminepentaacetic acid modified chitosan immobilized in amino-carbmated alginate matrix as a low cost adsorbent for effective Cu(II) recovery
  9. Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract
  10. Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites
  11. Optical and topographic characteristics of silver films deposited from a colloidal solution on polyelectrolytes for IgG-FITC fluorescence analysis
  12. The three pyridazines, three naphthyridines and two azoles: effect of the position of the second heteroatom on pKaH of their eight conjugate acids
  13. Theoretical study on the origins of sildenafil tautomers’ relative stability
  14. Application of the Lennard-Jones potential for calculating the surface tension and the formation enthalpy of a binary solution
  15. Ultrasonic supported dye removal by a novel biomass
  16. A novel synthesis of graphene oxide-titanium dioxide (GO-TiO2) and graphene oxide-zinc oxide (GO-ZnO) nanocomposites and their application as effective, reusable photocatalysts for degradation of methylene blue (MB) dye
  17. Review Article
  18. Photocatalytic hydrogen generation using TiO2: a state-of-the-art review
Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2022-0065/html
Scroll to top button