Abstract
Sumac Leaves (Rhus Coriaria L), were used as a possible adsorbent of Basic Blue 3 (BB3) removal. The main affecting parameters on adsorption such as concentration, pH and temperature were investigated. Adsorption equilibrium was reached in 30 min. The ultrasonic effect was also enhanced the dyestuff removal. Adsorption capacity was rised from 0.566 to 1.826 mg/g, as rising the concentration from 4 μg/mL to 10 μg/mL. Several isotherm models including Langmuir, Freundlich and Temkin were applied for explaining the adsorption mechanism. Temkin and Langmuir isotherm models describe the system well. Pseudo first order, pseudo second order and intra particle kinetics were evaluated. Pseudo second order diffusion model supports the adsoprption and also intra particle diffusion plays an important role for BB3 removal. Thermodynamics of the adsorption were commented. −2219.5 J/mol of Gibbs energy showed us a spontaneous and physical adsorption.
Acknowledgments
This study is supported by the Research Fund of Yıldız Technical University YTU BAPK, Project 2011-07-01-GEP02.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Zollinger, H. Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments, 2nd ed.; VCH: Cambridge, 1997.Suche in Google Scholar
2. Sumathi, S., Huang, Y. T. Treatment of pulp and paper mill wastes. In Waste Treatment in the Process Industries; Wang, L. K., Hung, Y. T., Lo, H. H., Yapijakis, C., Eds. Taylor & Francis: USA, 2006; pp. 453–497.10.1201/9780203026519.ch10Suche in Google Scholar
3. Ratia, H., Vuori, K. M., Oikari, A. Ecol. Indicat. 2012, 15, 217; https://doi.org/10.1016/j.ecolind.2011.09.015.Suche in Google Scholar
4. McKay, G., Otterburn, M. S., Sweney, A. G. Water Res. 1980, 14, 15; https://doi.org/10.1016/0043-1354(80)90037-8.Suche in Google Scholar
5. Garg, V. K., Amita, M., Kumar, R., Gupt, R. Dyes Pigments 2004, 63, 243; https://doi.org/10.1016/j.dyepig.2004.03.005.Suche in Google Scholar
6. LaPotin, A., Kim, H., Rao, S. R., Wang, E. N. Acc. Chem. Res. 2019, 52, 1588; https://doi.org/10.1021/acs.accounts.9b00062.Suche in Google Scholar PubMed
7. Bouremmad, F., Bouchair, A., Papapari, S. S., Shawuti, S., Gulgun, M. A. J. Chem. Soc. Pakistan 2019, 41, 62.10.52568/000712/JCSP/41.01.2019Suche in Google Scholar
8. Naveed, R., Bhatti, I. A., Sohail, I., Ashar, A., Ibrahim, S. M., Iqbal, M., Nazir, A. Z. Phys. Chem. 2021, 235, 1027; https://doi.org/10.1515/zpch-2019-1567.Suche in Google Scholar
9. Nazir, A., Zahra, F., Sabri, M. U., Ghaffar, A., Ather, A. Q., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2021, 235, 265; https://doi.org/10.1515/zpch-2019-1455.Suche in Google Scholar
10. Shehzad, H., Ahmed, E., Din, M. I., Farooqi, Z. H., Arsahd, M., Sharif, A., Zhou, L., Yun, W., Umer, R. Z. Phys. Chem. 2021, 235, 582; https://doi.org/10.1515/zpch-2019-1555.Suche in Google Scholar
11. Baylan, N., Dedecan, T., İlalan, İ., İnci, İ. Anal. Lett. 2021, 54, 2113–2125; https://doi.org/10.1080/00032719.2020.1842434.Suche in Google Scholar
12. Gupta, V. K., Mittal, A., Gajbe, V., Mittal, J. Ind. Eng. Chem. Res. 2006, 45, 1446; https://doi.org/10.1021/ie051111f.Suche in Google Scholar
13. Tanveer, H. B., Ghulam, M., Noshaba, A., Muhammad, U., Nadia, A., Atta, U. H., Mahwish, S., Saima, N., Foziah, F. A.-F., Siham, A. A., Munawar, I., Arif, N. Pol. J. Environ. Stud. 2022, 31, 619; https://doi.org/10.15244/pjoes/140273.Suche in Google Scholar
14. Rizwana, N., Ijaz, A. B., Shahid, A., Ambreen, A., Isra, S., Masood, U. H. K., Nasir, M., Munawar, I., Arif, N. J. of Natural Fıbers 2022, 19, 248. https://doi.org/10.1080/15440478.2020.1738309.Suche in Google Scholar
15. Umme, H. S., Shaukat, A., Tanveer, H., Munawar, I., Nasir, M., Arif, N. J. Nat. Fibers 2022, 19, 1094. https://doi.org/10.1080/15440478.2020.1789532.Suche in Google Scholar
16. Liversidge, R. M., Lloyd, G. J., Wase, D. A. J., Forster, C. F. Process Biochem. 1997, 32, 473; https://doi.org/10.1016/s0032-9592(96)00107-0.Suche in Google Scholar
17. Tang, D., Kupgan, G., Colina, C. M., Sholl, D. S. J. Phys. Chem. C 2019, 123, 17884; https://doi.org/10.1021/acs.jpcc.9b04413.Suche in Google Scholar
18. Reck, I. M., Paixão, Bergamasco, R., Bergamasco, M. F., Vieira, A. M. C., Vieira, A. M. S. Separ. Sci. Technol. 2020, 55, 13; https://doi.org/10.1080/01496395.2018.1559859.Suche in Google Scholar
19. Yogeshwaran, J. V., Priyab, A. K. Indian Chem. Soc. 2020, 97, 1467.Suche in Google Scholar
20. Salleh, M. A. M., Mahmoud, D. K., Karim, W. A., Idris, A. Desalination 2011, 280, 1; https://doi.org/10.1016/j.desal.2011.07.019.Suche in Google Scholar
21. Chilakapati, R. B., Kumar, S. H., Satyanarayana, S. V., Beheza, D. K. Z. Phys. Chem 2021, 235, 1717; https://doi.org/10.1515/zpch-2020-1717.Suche in Google Scholar
22. Soleimani, H., Mahvi, A. H., Yaghmaeian, K., Abbasnia, A., Sharafi, K., Alimohammadi, M., Zamanzadeh, M. J. Mol. Liq. 2019, 290, 111181; https://doi.org/10.1016/j.molliq.2019.111181.Suche in Google Scholar
23. Zahran, F., El-Maghrabi, H. H., Hussein, G., Abdelmaged, S. M. Environ. Nanotechnol. Monit. Manag. 2019, 11. 100205; https://doi.org/10.1016/j.enmm.2018.100205.Suche in Google Scholar
24. Vukelic, D., Boskovic, N., Agarski, B., Radonic, J., Budak, I., Pap, S., Turk Sekulic, M. T. J. Clean. Prod. 2018, 174, 1620; https://doi.org/10.1016/j.jclepro.2017.11.098.Suche in Google Scholar
25. Ashah, R. M., Shamshuddin, J., Fauziah, C. I., Arifin, A., Panhwar, Q. A. J. Chem. Soc. Pakistan 2018, 40, 828.Suche in Google Scholar
26. Abida, K., Kashaf, N., Munawar, I., Zill-i-Huma, N., Haq, N. B., Aisha, A., Arif, N., Heri, S. K., Muhammad, I. K. Z. Phys. Chem. 2021, 235, 1499–1538. https://doi.org/10.1515/zpch-2019-1586.Suche in Google Scholar
27. Attaullah, B., Madiha, A., Arif, N., Anees-ur, R., Muhammad, R. S., Qudsia, K., Munawar, I., Hind, A., Norah, A. Z. Phys. Chem. 2021, 235, 1055–1075. https://doi.org/10.1515/zpch-2021-3096.Suche in Google Scholar
28. Arif, N., Saqib, F., Mazhar, A., Eman, A. A., Hind, A., Norah, A., Aljohara, H. A., Munawar, I. Z. Phys. Chem. 2021, 235, 1589–1607.10.1515/zpch-2020-1803Suche in Google Scholar
29. Munawar, I., Ghulam, A. S., Sobhy, M. I., Shan, I., Muhammad, A., Muhammad, I. K., Heri, S. K., Muhammad, Y., Arif, N. Z. Phys. Chem. 2021, 235, 1209–1226.10.1515/zpch-2019-1562Suche in Google Scholar
30. Zalacain, A., Carmona, M., Lorenzo, C., Blazquez, I., Alonso, G. L., J. Am. Leather Chem. Assoc. 2002, 97, 137–142.Suche in Google Scholar
31. Merck, CAS Number:33203-82-6. http://www.worlddyevariety.com/basic-dyes/basic-blue-3.html (accessed Aug 3, 2022).Suche in Google Scholar
32. Tan, I. A. W., Ahmad, A. L., Hameed, B. H. Bioresour. Technol. 2009, 100, 1494; https://doi.org/10.1016/j.biortech.2008.08.017.Suche in Google Scholar PubMed
33. Gülen, J., İskeçeli, M. Mater. Test. 2017, 59, 188–194. https://doi.org/10.3139/120.110984.Suche in Google Scholar
34. Gülen, J., Zorbay, F. Water Environ. Res. 2017, 89, 805–816; https://doi.org/10.2175/106143017X14902968254836.Suche in Google Scholar PubMed
35. Gülen, J., Pişkin, S., Doymaz, İ. Int. J. Chem. 2011, 3, 75–80.Suche in Google Scholar
36. Gülen, J., Akin, B., Özgür, M. Desalination Water Treat. 2016, 57, 9286–9295; https://doi.org/10.1080/19443994.2015.1029002.Suche in Google Scholar
37. Toprak, S., Sütcü, E. C., Gülen, J. Turk. J. Earth Sci. 2014, 23, 668–672; https://doi.org/10.3906/yer-1312-20.Suche in Google Scholar
38. Doymaz, İ., Gulen, J., Piskin, S., Toprak, S. Energy Sources, Part A Recovery, Util. Environ. Eff. 2007, 29, 337–346; https://doi.org/10.1080/15567030600819882.Suche in Google Scholar
39. Gülen, J., Arslan, H. Energy Sources, Part A Recovery, Util. Environ. Eff. 2009, 31, 1443–1449; https://doi.org/10.1080/15567030802093088.Suche in Google Scholar
40. Srivastava, V. C., Swamy, M. M., Mall, I. D., Prasad, B., Mishra, I. M. Colloids Surf. A Physicochem. Eng. Asp. 2006, 272, 89; https://doi.org/10.1016/j.colsurfa.2005.07.016.Suche in Google Scholar
41. Yu, J. X., Chi, R. A., Zhang, Y. F., Xu, Z. G., Xiao, C. Q., Guo, J. Bioresour. Technol. 2012, 110, 160; https://doi.org/10.1016/j.biortech.2012.01.134.Suche in Google Scholar PubMed
42. Hameed, B. H., El-Khaiary, M. I. J. Hazard Mater. 2008, 153, 701; https://doi.org/10.1016/j.jhazmat.2007.09.019.Suche in Google Scholar PubMed
43. Hameed, B. H., Krishni, R. R., Sata, S. A. J. Hazard Mater. 2009, 162, 305; https://doi.org/10.1016/j.jhazmat.2008.05.036.Suche in Google Scholar PubMed
44. Ncibi, M. C., Mahjoub, B., Seffen, M. J. Hazard Mater. 2007, 139, 280; https://doi.org/10.1016/j.jhazmat.2006.06.029.Suche in Google Scholar PubMed
45. Langmuir, I. J. Am. Chem. Soc. 1918, 40, 2221; https://doi.org/10.1021/ja02242a004.Suche in Google Scholar
46. Hall, K. R., Eagleton, L. C., Acrivos, A., Vermeulen, T. Ind. Eng. Chem. Fund. 1966, 5, 212; https://doi.org/10.1021/i160018a011.Suche in Google Scholar
47. Freundlich, H. M. F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385.Suche in Google Scholar
48. Temkin, M. J., Pyzhev, V. Acta Physiochim. URSS. 1940, 12, 217.Suche in Google Scholar
49. Namane, A., Mekarzia, A., Benrachedi, K., Belhanechebensemra, N., Hellal, A. J. Hazard Mater. 2005, 119, 189; https://doi.org/10.1016/j.jhazmat.2004.12.006.Suche in Google Scholar PubMed
50. Rehman, M. S. U., Kim, I., Han, J. I. Carbohydr. Polym. 2012, 90, 1314; https://doi.org/10.1016/j.carbpol.2012.06.078.Suche in Google Scholar PubMed
51. Fu, Y., Viraraghavan, T. Bioresour. Technol. 2001, 79, 251; https://doi.org/10.1016/s0960-8524(01)00028-1.Suche in Google Scholar PubMed
52. Fu, Y., Viraraghavan, T. Adv. Environ. Res. 2012, 7, 239.10.1016/S1093-0191(01)00123-XSuche in Google Scholar
53. Namasivayam, C., Arasi, D. Chemosphere 1997, 34, 401; https://doi.org/10.1016/s0045-6535(96)00385-2.Suche in Google Scholar
54. Bhattacharyya, K. G., Sharma, A. Dyes Pigments 2005, 65, 51; https://doi.org/10.1016/j.dyepig.2004.06.016.Suche in Google Scholar
55. Wang, S., Boyjoo, Y., Choueib, A., Zhu, Z. H. Water Res. 2005, 39, 129; https://doi.org/10.1016/j.watres.2004.09.011.Suche in Google Scholar PubMed
56. Chakrabarti, S., Dutta, B. K. J. Colloid Interface Sci. 2005, 286, 807; https://doi.org/10.1016/j.jcis.2005.01.035.Suche in Google Scholar PubMed
57. Vimonses, V., Lei, S. M., Jin, B., Chowd, C. W. K. Chem. Eng. J. 2009, 148, 354; https://doi.org/10.1016/j.cej.2008.09.009.Suche in Google Scholar
58. Fu, Y., Viraraghavan, T. Water Qual. Res. J. Can. 2000, 35, 95; https://doi.org/10.2166/wqrj.2000.006.Suche in Google Scholar
59. Lagergren, S. Kung Svenska Vetenskapsakad. Handl, Vol. 24, 1898; p. 1.Suche in Google Scholar
60. Ho, Y. S., McKay, G. Water Res. 1999, 33, 578; https://doi.org/10.1016/s0043-1354(98)00207-3.Suche in Google Scholar
61. Ho, Y. S., McKay, G. Process Biochem. 1999, 34, 451; https://doi.org/10.1016/s0032-9592(98)00112-5.Suche in Google Scholar
62. Jumasiah, A., Chuah, T. G., Gimbon, J., Choong, T. S. Y., Azni, I. Desalination 2005, 186, 57; https://doi.org/10.1016/j.desal.2005.05.015.Suche in Google Scholar
63. Wang, S., Zhu, Z. H., Coomes, A., Haghseresht, F., Lu, G. Q. J. Colloid Interface Sci. 2005, 284, 440; https://doi.org/10.1016/j.jcis.2004.10.050.Suche in Google Scholar PubMed
64. Prakashkumar, B. G., Shivakamy, K., Miranda, L. R., Velan, M. J. Hazard Mater. 2006, 136, 922; https://doi.org/10.1016/j.jhazmat.2006.01.037.Suche in Google Scholar PubMed
65. Noreen, S., Zafar, S., Bibi, I., Amami, M., Raza, M. A. S., Alshammari, F. H., Elqahtani, Z. M., Basha, B. I., Alwadai, N., Nazir, A., Khan, M. I., Iqbal, M. Ceram. Int. 2022, 48, 12170; https://doi.org/10.1016/j.ceramint.2022.01.078.Suche in Google Scholar
66. Hassan, A., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2022, 235, 1077–1097. https://doi.org/10.1515/zpch-2020-1680.Suche in Google Scholar
67. Weber, W. J., Morris, J. C. J. Sanit. Eng. Div. 1963, 89, 31; https://doi.org/10.1061/jsedai.0000430.Suche in Google Scholar
68. Poots, V. J. P., McKay, G., Healy, J. J. J. Water Pollut. Control Fed. 1978, 50, 926.Suche in Google Scholar
69. McKay, G., Otterburn, M. S., Sweeney, A. G. Water Res. 1980, 14, 15; https://doi.org/10.1016/0043-1354(80)90037-8.Suche in Google Scholar
70. Allen, S. J., McKay, G., Khader, K. Y. H. Environ. Pollut. 1989, 56, 39; https://doi.org/10.1016/0269-7491(89)90120-6.Suche in Google Scholar PubMed
71. McKay, G., Otterburn, M. S., Aga, J. A. Water Air Soil Pollut. 1985, 24, 307; https://doi.org/10.1007/bf00161790.Suche in Google Scholar
72. Jain, S., Jayaram, R. V. Desalination 2010, 250, 921; https://doi.org/10.1016/j.desal.2009.04.005.Suche in Google Scholar
73. Jaycock, M. J., Parfitt, G. D. Chemistry of Interfaces; Ellis Horwood Ltd Onichester: Chester, England, 1981.Suche in Google Scholar
74. Ata, S., Tabassum, A., Bibi, I., Ghafoor, S., Ahad, A., Bhatti, M. A., Islam, A., Rizvi, H., Iqbal, M. Z. Phys. Chem 2019, 233, 995; https://doi.org/10.1515/zpch-2018-1203.Suche in Google Scholar
75. Noll, K. E., Gounaris, V., Hou Adsorption Technology for Air and Water Pollution Control; Lewis Publishers: Devon, UK, 1992; pp. 21–22.Suche in Google Scholar
76. Yu, Y., Zhuang, Y. Y., Wang, Z. H. J. Colloid Interface Sci. 2001, 242, 288; https://doi.org/10.1006/jcis.2001.7780.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Suppression of steel corrosion via some gemini cationic surfactant-based Schiff base: experimental and theoretical investigations
- Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential
- Eco-benign preparation of biosorbent using Momordica Charantia for the efficient removal of Cr(VI) ions from wastewater
- Oil mediated green synthesis of nano silver in the presence of surfactants for catalytic and food preservation application
- Adsorption properties of metal functionalized fullerene (C59Au, C59Hf, C59Ag, and C59Ir) nanoclusters for application as a biosensor for hydroxyurea (HXU): insight from theoretical computation
- Evaluation of diethylenetriaminepentaacetic acid modified chitosan immobilized in amino-carbmated alginate matrix as a low cost adsorbent for effective Cu(II) recovery
- Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract
- Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites
- Optical and topographic characteristics of silver films deposited from a colloidal solution on polyelectrolytes for IgG-FITC fluorescence analysis
- The three pyridazines, three naphthyridines and two azoles: effect of the position of the second heteroatom on pKaH of their eight conjugate acids
- Theoretical study on the origins of sildenafil tautomers’ relative stability
- Application of the Lennard-Jones potential for calculating the surface tension and the formation enthalpy of a binary solution
- Ultrasonic supported dye removal by a novel biomass
- A novel synthesis of graphene oxide-titanium dioxide (GO-TiO2) and graphene oxide-zinc oxide (GO-ZnO) nanocomposites and their application as effective, reusable photocatalysts for degradation of methylene blue (MB) dye
- Review Article
- Photocatalytic hydrogen generation using TiO2: a state-of-the-art review
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Suppression of steel corrosion via some gemini cationic surfactant-based Schiff base: experimental and theoretical investigations
- Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential
- Eco-benign preparation of biosorbent using Momordica Charantia for the efficient removal of Cr(VI) ions from wastewater
- Oil mediated green synthesis of nano silver in the presence of surfactants for catalytic and food preservation application
- Adsorption properties of metal functionalized fullerene (C59Au, C59Hf, C59Ag, and C59Ir) nanoclusters for application as a biosensor for hydroxyurea (HXU): insight from theoretical computation
- Evaluation of diethylenetriaminepentaacetic acid modified chitosan immobilized in amino-carbmated alginate matrix as a low cost adsorbent for effective Cu(II) recovery
- Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract
- Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites
- Optical and topographic characteristics of silver films deposited from a colloidal solution on polyelectrolytes for IgG-FITC fluorescence analysis
- The three pyridazines, three naphthyridines and two azoles: effect of the position of the second heteroatom on pKaH of their eight conjugate acids
- Theoretical study on the origins of sildenafil tautomers’ relative stability
- Application of the Lennard-Jones potential for calculating the surface tension and the formation enthalpy of a binary solution
- Ultrasonic supported dye removal by a novel biomass
- A novel synthesis of graphene oxide-titanium dioxide (GO-TiO2) and graphene oxide-zinc oxide (GO-ZnO) nanocomposites and their application as effective, reusable photocatalysts for degradation of methylene blue (MB) dye
- Review Article
- Photocatalytic hydrogen generation using TiO2: a state-of-the-art review