Startseite Ultrasonic supported dye removal by a novel biomass
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ultrasonic supported dye removal by a novel biomass

  • Jale Gülen EMAIL logo , İlknur Küçük , Berrin Saygı Yalçın , Selen Ezgi Çelik und Mahmure Özgür
Veröffentlicht/Copyright: 16. November 2022

Abstract

Sumac Leaves (Rhus Coriaria L), were used as a possible adsorbent of Basic Blue 3 (BB3) removal. The main affecting parameters on adsorption such as concentration, pH and temperature were investigated. Adsorption equilibrium was reached in 30 min. The ultrasonic effect was also enhanced the dyestuff removal. Adsorption capacity was rised from 0.566 to 1.826 mg/g, as rising the concentration from 4 μg/mL to 10 μg/mL. Several isotherm models including Langmuir, Freundlich and Temkin were applied for explaining the adsorption mechanism. Temkin and Langmuir isotherm models describe the system well. Pseudo first order, pseudo second order and intra particle kinetics were evaluated. Pseudo second order diffusion model supports the adsoprption and also intra particle diffusion plays an important role for BB3 removal. Thermodynamics of the adsorption were commented. −2219.5 J/mol of Gibbs energy showed us a spontaneous and physical adsorption.


Corresponding author: Jale Gülen, Chemical Engineering Department, Yıldız Technical University, 34210, Esenler – Istanbul, Türkiye, E-mail:

Acknowledgments

This study is supported by the Research Fund of Yıldız Technical University YTU BAPK, Project 2011-07-01-GEP02.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Zollinger, H. Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments, 2nd ed.; VCH: Cambridge, 1997.Suche in Google Scholar

2. Sumathi, S., Huang, Y. T. Treatment of pulp and paper mill wastes. In Waste Treatment in the Process Industries; Wang, L. K., Hung, Y. T., Lo, H. H., Yapijakis, C., Eds. Taylor & Francis: USA, 2006; pp. 453–497.10.1201/9780203026519.ch10Suche in Google Scholar

3. Ratia, H., Vuori, K. M., Oikari, A. Ecol. Indicat. 2012, 15, 217; https://doi.org/10.1016/j.ecolind.2011.09.015.Suche in Google Scholar

4. McKay, G., Otterburn, M. S., Sweney, A. G. Water Res. 1980, 14, 15; https://doi.org/10.1016/0043-1354(80)90037-8.Suche in Google Scholar

5. Garg, V. K., Amita, M., Kumar, R., Gupt, R. Dyes Pigments 2004, 63, 243; https://doi.org/10.1016/j.dyepig.2004.03.005.Suche in Google Scholar

6. LaPotin, A., Kim, H., Rao, S. R., Wang, E. N. Acc. Chem. Res. 2019, 52, 1588; https://doi.org/10.1021/acs.accounts.9b00062.Suche in Google Scholar PubMed

7. Bouremmad, F., Bouchair, A., Papapari, S. S., Shawuti, S., Gulgun, M. A. J. Chem. Soc. Pakistan 2019, 41, 62.10.52568/000712/JCSP/41.01.2019Suche in Google Scholar

8. Naveed, R., Bhatti, I. A., Sohail, I., Ashar, A., Ibrahim, S. M., Iqbal, M., Nazir, A. Z. Phys. Chem. 2021, 235, 1027; https://doi.org/10.1515/zpch-2019-1567.Suche in Google Scholar

9. Nazir, A., Zahra, F., Sabri, M. U., Ghaffar, A., Ather, A. Q., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2021, 235, 265; https://doi.org/10.1515/zpch-2019-1455.Suche in Google Scholar

10. Shehzad, H., Ahmed, E., Din, M. I., Farooqi, Z. H., Arsahd, M., Sharif, A., Zhou, L., Yun, W., Umer, R. Z. Phys. Chem. 2021, 235, 582; https://doi.org/10.1515/zpch-2019-1555.Suche in Google Scholar

11. Baylan, N., Dedecan, T., İlalan, İ., İnci, İ. Anal. Lett. 2021, 54, 2113–2125; https://doi.org/10.1080/00032719.2020.1842434.Suche in Google Scholar

12. Gupta, V. K., Mittal, A., Gajbe, V., Mittal, J. Ind. Eng. Chem. Res. 2006, 45, 1446; https://doi.org/10.1021/ie051111f.Suche in Google Scholar

13. Tanveer, H. B., Ghulam, M., Noshaba, A., Muhammad, U., Nadia, A., Atta, U. H., Mahwish, S., Saima, N., Foziah, F. A.-F., Siham, A. A., Munawar, I., Arif, N. Pol. J. Environ. Stud. 2022, 31, 619; https://doi.org/10.15244/pjoes/140273.Suche in Google Scholar

14. Rizwana, N., Ijaz, A. B., Shahid, A., Ambreen, A., Isra, S., Masood, U. H. K., Nasir, M., Munawar, I., Arif, N. J. of Natural Fıbers 2022, 19, 248. https://doi.org/10.1080/15440478.2020.1738309.Suche in Google Scholar

15. Umme, H. S., Shaukat, A., Tanveer, H., Munawar, I., Nasir, M., Arif, N. J. Nat. Fibers 2022, 19, 1094. https://doi.org/10.1080/15440478.2020.1789532.Suche in Google Scholar

16. Liversidge, R. M., Lloyd, G. J., Wase, D. A. J., Forster, C. F. Process Biochem. 1997, 32, 473; https://doi.org/10.1016/s0032-9592(96)00107-0.Suche in Google Scholar

17. Tang, D., Kupgan, G., Colina, C. M., Sholl, D. S. J. Phys. Chem. C 2019, 123, 17884; https://doi.org/10.1021/acs.jpcc.9b04413.Suche in Google Scholar

18. Reck, I. M., Paixão, Bergamasco, R., Bergamasco, M. F., Vieira, A. M. C., Vieira, A. M. S. Separ. Sci. Technol. 2020, 55, 13; https://doi.org/10.1080/01496395.2018.1559859.Suche in Google Scholar

19. Yogeshwaran, J. V., Priyab, A. K. Indian Chem. Soc. 2020, 97, 1467.Suche in Google Scholar

20. Salleh, M. A. M., Mahmoud, D. K., Karim, W. A., Idris, A. Desalination 2011, 280, 1; https://doi.org/10.1016/j.desal.2011.07.019.Suche in Google Scholar

21. Chilakapati, R. B., Kumar, S. H., Satyanarayana, S. V., Beheza, D. K. Z. Phys. Chem 2021, 235, 1717; https://doi.org/10.1515/zpch-2020-1717.Suche in Google Scholar

22. Soleimani, H., Mahvi, A. H., Yaghmaeian, K., Abbasnia, A., Sharafi, K., Alimohammadi, M., Zamanzadeh, M. J. Mol. Liq. 2019, 290, 111181; https://doi.org/10.1016/j.molliq.2019.111181.Suche in Google Scholar

23. Zahran, F., El-Maghrabi, H. H., Hussein, G., Abdelmaged, S. M. Environ. Nanotechnol. Monit. Manag. 2019, 11. 100205; https://doi.org/10.1016/j.enmm.2018.100205.Suche in Google Scholar

24. Vukelic, D., Boskovic, N., Agarski, B., Radonic, J., Budak, I., Pap, S., Turk Sekulic, M. T. J. Clean. Prod. 2018, 174, 1620; https://doi.org/10.1016/j.jclepro.2017.11.098.Suche in Google Scholar

25. Ashah, R. M., Shamshuddin, J., Fauziah, C. I., Arifin, A., Panhwar, Q. A. J. Chem. Soc. Pakistan 2018, 40, 828.Suche in Google Scholar

26. Abida, K., Kashaf, N., Munawar, I., Zill-i-Huma, N., Haq, N. B., Aisha, A., Arif, N., Heri, S. K., Muhammad, I. K. Z. Phys. Chem. 2021, 235, 1499–1538. https://doi.org/10.1515/zpch-2019-1586.Suche in Google Scholar

27. Attaullah, B., Madiha, A., Arif, N., Anees-ur, R., Muhammad, R. S., Qudsia, K., Munawar, I., Hind, A., Norah, A. Z. Phys. Chem. 2021, 235, 1055–1075. https://doi.org/10.1515/zpch-2021-3096.Suche in Google Scholar

28. Arif, N., Saqib, F., Mazhar, A., Eman, A. A., Hind, A., Norah, A., Aljohara, H. A., Munawar, I. Z. Phys. Chem. 2021, 235, 1589–1607.10.1515/zpch-2020-1803Suche in Google Scholar

29. Munawar, I., Ghulam, A. S., Sobhy, M. I., Shan, I., Muhammad, A., Muhammad, I. K., Heri, S. K., Muhammad, Y., Arif, N. Z. Phys. Chem. 2021, 235, 1209–1226.10.1515/zpch-2019-1562Suche in Google Scholar

30. Zalacain, A., Carmona, M., Lorenzo, C., Blazquez, I., Alonso, G. L., J. Am. Leather Chem. Assoc. 2002, 97, 137–142.Suche in Google Scholar

31. Merck, CAS Number:33203-82-6. http://www.worlddyevariety.com/basic-dyes/basic-blue-3.html (accessed Aug 3, 2022).Suche in Google Scholar

32. Tan, I. A. W., Ahmad, A. L., Hameed, B. H. Bioresour. Technol. 2009, 100, 1494; https://doi.org/10.1016/j.biortech.2008.08.017.Suche in Google Scholar PubMed

33. Gülen, J., İskeçeli, M. Mater. Test. 2017, 59, 188–194. https://doi.org/10.3139/120.110984.Suche in Google Scholar

34. Gülen, J., Zorbay, F. Water Environ. Res. 2017, 89, 805–816; https://doi.org/10.2175/106143017X14902968254836.Suche in Google Scholar PubMed

35. Gülen, J., Pişkin, S., Doymaz, İ. Int. J. Chem. 2011, 3, 75–80.Suche in Google Scholar

36. Gülen, J., Akin, B., Özgür, M. Desalination Water Treat. 2016, 57, 9286–9295; https://doi.org/10.1080/19443994.2015.1029002.Suche in Google Scholar

37. Toprak, S., Sütcü, E. C., Gülen, J. Turk. J. Earth Sci. 2014, 23, 668–672; https://doi.org/10.3906/yer-1312-20.Suche in Google Scholar

38. Doymaz, İ., Gulen, J., Piskin, S., Toprak, S. Energy Sources, Part A Recovery, Util. Environ. Eff. 2007, 29, 337–346; https://doi.org/10.1080/15567030600819882.Suche in Google Scholar

39. Gülen, J., Arslan, H. Energy Sources, Part A Recovery, Util. Environ. Eff. 2009, 31, 1443–1449; https://doi.org/10.1080/15567030802093088.Suche in Google Scholar

40. Srivastava, V. C., Swamy, M. M., Mall, I. D., Prasad, B., Mishra, I. M. Colloids Surf. A Physicochem. Eng. Asp. 2006, 272, 89; https://doi.org/10.1016/j.colsurfa.2005.07.016.Suche in Google Scholar

41. Yu, J. X., Chi, R. A., Zhang, Y. F., Xu, Z. G., Xiao, C. Q., Guo, J. Bioresour. Technol. 2012, 110, 160; https://doi.org/10.1016/j.biortech.2012.01.134.Suche in Google Scholar PubMed

42. Hameed, B. H., El-Khaiary, M. I. J. Hazard Mater. 2008, 153, 701; https://doi.org/10.1016/j.jhazmat.2007.09.019.Suche in Google Scholar PubMed

43. Hameed, B. H., Krishni, R. R., Sata, S. A. J. Hazard Mater. 2009, 162, 305; https://doi.org/10.1016/j.jhazmat.2008.05.036.Suche in Google Scholar PubMed

44. Ncibi, M. C., Mahjoub, B., Seffen, M. J. Hazard Mater. 2007, 139, 280; https://doi.org/10.1016/j.jhazmat.2006.06.029.Suche in Google Scholar PubMed

45. Langmuir, I. J. Am. Chem. Soc. 1918, 40, 2221; https://doi.org/10.1021/ja02242a004.Suche in Google Scholar

46. Hall, K. R., Eagleton, L. C., Acrivos, A., Vermeulen, T. Ind. Eng. Chem. Fund. 1966, 5, 212; https://doi.org/10.1021/i160018a011.Suche in Google Scholar

47. Freundlich, H. M. F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385.Suche in Google Scholar

48. Temkin, M. J., Pyzhev, V. Acta Physiochim. URSS. 1940, 12, 217.Suche in Google Scholar

49. Namane, A., Mekarzia, A., Benrachedi, K., Belhanechebensemra, N., Hellal, A. J. Hazard Mater. 2005, 119, 189; https://doi.org/10.1016/j.jhazmat.2004.12.006.Suche in Google Scholar PubMed

50. Rehman, M. S. U., Kim, I., Han, J. I. Carbohydr. Polym. 2012, 90, 1314; https://doi.org/10.1016/j.carbpol.2012.06.078.Suche in Google Scholar PubMed

51. Fu, Y., Viraraghavan, T. Bioresour. Technol. 2001, 79, 251; https://doi.org/10.1016/s0960-8524(01)00028-1.Suche in Google Scholar PubMed

52. Fu, Y., Viraraghavan, T. Adv. Environ. Res. 2012, 7, 239.10.1016/S1093-0191(01)00123-XSuche in Google Scholar

53. Namasivayam, C., Arasi, D. Chemosphere 1997, 34, 401; https://doi.org/10.1016/s0045-6535(96)00385-2.Suche in Google Scholar

54. Bhattacharyya, K. G., Sharma, A. Dyes Pigments 2005, 65, 51; https://doi.org/10.1016/j.dyepig.2004.06.016.Suche in Google Scholar

55. Wang, S., Boyjoo, Y., Choueib, A., Zhu, Z. H. Water Res. 2005, 39, 129; https://doi.org/10.1016/j.watres.2004.09.011.Suche in Google Scholar PubMed

56. Chakrabarti, S., Dutta, B. K. J. Colloid Interface Sci. 2005, 286, 807; https://doi.org/10.1016/j.jcis.2005.01.035.Suche in Google Scholar PubMed

57. Vimonses, V., Lei, S. M., Jin, B., Chowd, C. W. K. Chem. Eng. J. 2009, 148, 354; https://doi.org/10.1016/j.cej.2008.09.009.Suche in Google Scholar

58. Fu, Y., Viraraghavan, T. Water Qual. Res. J. Can. 2000, 35, 95; https://doi.org/10.2166/wqrj.2000.006.Suche in Google Scholar

59. Lagergren, S. Kung Svenska Vetenskapsakad. Handl, Vol. 24, 1898; p. 1.Suche in Google Scholar

60. Ho, Y. S., McKay, G. Water Res. 1999, 33, 578; https://doi.org/10.1016/s0043-1354(98)00207-3.Suche in Google Scholar

61. Ho, Y. S., McKay, G. Process Biochem. 1999, 34, 451; https://doi.org/10.1016/s0032-9592(98)00112-5.Suche in Google Scholar

62. Jumasiah, A., Chuah, T. G., Gimbon, J., Choong, T. S. Y., Azni, I. Desalination 2005, 186, 57; https://doi.org/10.1016/j.desal.2005.05.015.Suche in Google Scholar

63. Wang, S., Zhu, Z. H., Coomes, A., Haghseresht, F., Lu, G. Q. J. Colloid Interface Sci. 2005, 284, 440; https://doi.org/10.1016/j.jcis.2004.10.050.Suche in Google Scholar PubMed

64. Prakashkumar, B. G., Shivakamy, K., Miranda, L. R., Velan, M. J. Hazard Mater. 2006, 136, 922; https://doi.org/10.1016/j.jhazmat.2006.01.037.Suche in Google Scholar PubMed

65. Noreen, S., Zafar, S., Bibi, I., Amami, M., Raza, M. A. S., Alshammari, F. H., Elqahtani, Z. M., Basha, B. I., Alwadai, N., Nazir, A., Khan, M. I., Iqbal, M. Ceram. Int. 2022, 48, 12170; https://doi.org/10.1016/j.ceramint.2022.01.078.Suche in Google Scholar

66. Hassan, A., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2022, 235, 1077–1097. https://doi.org/10.1515/zpch-2020-1680.Suche in Google Scholar

67. Weber, W. J., Morris, J. C. J. Sanit. Eng. Div. 1963, 89, 31; https://doi.org/10.1061/jsedai.0000430.Suche in Google Scholar

68. Poots, V. J. P., McKay, G., Healy, J. J. J. Water Pollut. Control Fed. 1978, 50, 926.Suche in Google Scholar

69. McKay, G., Otterburn, M. S., Sweeney, A. G. Water Res. 1980, 14, 15; https://doi.org/10.1016/0043-1354(80)90037-8.Suche in Google Scholar

70. Allen, S. J., McKay, G., Khader, K. Y. H. Environ. Pollut. 1989, 56, 39; https://doi.org/10.1016/0269-7491(89)90120-6.Suche in Google Scholar PubMed

71. McKay, G., Otterburn, M. S., Aga, J. A. Water Air Soil Pollut. 1985, 24, 307; https://doi.org/10.1007/bf00161790.Suche in Google Scholar

72. Jain, S., Jayaram, R. V. Desalination 2010, 250, 921; https://doi.org/10.1016/j.desal.2009.04.005.Suche in Google Scholar

73. Jaycock, M. J., Parfitt, G. D. Chemistry of Interfaces; Ellis Horwood Ltd Onichester: Chester, England, 1981.Suche in Google Scholar

74. Ata, S., Tabassum, A., Bibi, I., Ghafoor, S., Ahad, A., Bhatti, M. A., Islam, A., Rizvi, H., Iqbal, M. Z. Phys. Chem 2019, 233, 995; https://doi.org/10.1515/zpch-2018-1203.Suche in Google Scholar

75. Noll, K. E., Gounaris, V., Hou Adsorption Technology for Air and Water Pollution Control; Lewis Publishers: Devon, UK, 1992; pp. 21–22.Suche in Google Scholar

76. Yu, Y., Zhuang, Y. Y., Wang, Z. H. J. Colloid Interface Sci. 2001, 242, 288; https://doi.org/10.1006/jcis.2001.7780.Suche in Google Scholar

Received: 2022-03-02
Accepted: 2022-10-20
Published Online: 2022-11-16
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Original Papers
  3. Suppression of steel corrosion via some gemini cationic surfactant-based Schiff base: experimental and theoretical investigations
  4. Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential
  5. Eco-benign preparation of biosorbent using Momordica Charantia for the efficient removal of Cr(VI) ions from wastewater
  6. Oil mediated green synthesis of nano silver in the presence of surfactants for catalytic and food preservation application
  7. Adsorption properties of metal functionalized fullerene (C59Au, C59Hf, C59Ag, and C59Ir) nanoclusters for application as a biosensor for hydroxyurea (HXU): insight from theoretical computation
  8. Evaluation of diethylenetriaminepentaacetic acid modified chitosan immobilized in amino-carbmated alginate matrix as a low cost adsorbent for effective Cu(II) recovery
  9. Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract
  10. Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites
  11. Optical and topographic characteristics of silver films deposited from a colloidal solution on polyelectrolytes for IgG-FITC fluorescence analysis
  12. The three pyridazines, three naphthyridines and two azoles: effect of the position of the second heteroatom on pKaH of their eight conjugate acids
  13. Theoretical study on the origins of sildenafil tautomers’ relative stability
  14. Application of the Lennard-Jones potential for calculating the surface tension and the formation enthalpy of a binary solution
  15. Ultrasonic supported dye removal by a novel biomass
  16. A novel synthesis of graphene oxide-titanium dioxide (GO-TiO2) and graphene oxide-zinc oxide (GO-ZnO) nanocomposites and their application as effective, reusable photocatalysts for degradation of methylene blue (MB) dye
  17. Review Article
  18. Photocatalytic hydrogen generation using TiO2: a state-of-the-art review
Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2022-0035/html
Button zum nach oben scrollen