Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites
-
Junaid Raza
, Abdul Hamid , Muhammad Khan, Fakhar Hussain
, Amir Zada, Li Tiehu
, Amjad Ali , Perveen Fazil und Zainul Wahab
Abstract
Two series, A and B, of PVC based nanocomposite polymer membranes (nCPMs) were prepared using PbO only and PbO/graphite mixture as a filler by solution casting method. Seven samples with varying compositions (5–35%) of filler particles were prepared for each series and were compared by thickness measurements, porosity, water uptake, swelling degree, ionic conductivity, ion exchange capacity (IEC), membrane potential and transport number. The maximum values for these characteristics were observed as 0.402 mm, 0.77, 141.3%, 0.11, 0.0033 Scm−1, 8.6 milli-eq.g−1, 0.19 V and 0.01391 for series-A composites whereas that of 0.367 mm, 0.83, 63.4%, 0.019, 0.00981 Scm−1, 5.21 milli-eq.g−1, 0.13 V and 0.0108 for series-B nCPMs respectively. The SEM images of membranes showed greater voids produced in the series-B compared to series-A composites. The maximum Ionic conductivity, IEC, membrane potential and transport number were observed for membrane with 25% PbO/graphite, 20% PbO and 35% PbO particles respectively.
Acknowledgments
We are also very thankful to the School of Materials Science and Engineering, Northwestern Polytechnical University, Xian, P.R. of China and Higher Education Commission (HEC) Pakistan for their financial support.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research has been Financially Supported for the Postdoctoral study by the Shaanxi Province and Natural Science Foundation of China under the (Grant No: 2016JQ5108).
-
Conflict of interest statement: On behalf of all authors, the corresponding author declared that this work is the original work of authors, and all standards were followed accordingly and there is no conflict of interest.
References
1. Zada, A., Khan, M., Hussain, Z., Shah, M.I. A., Ateeq, M., Ullah, M., Ali, N., Shaheen, S., Yasmeen, H., Shah, S. N. A., Dang, A. Z. Phys. Chem. 2022, 236, 53–66; https://doi.org/10.1515/zpch-2020-1778.Suche in Google Scholar
2. Zhang, Z., Zada, A., Cui, N., Liu, N., Liu, M., Yang, Y., Jiang, D., Jiang, J., Liu, S. Crystals 2021, 11, 981; https://doi.org/10.3390/cryst11080981.Suche in Google Scholar
3. Saeed, K., Khan, I., Ahad, M., Shah, T., Sadiq, M., Zada, A., Zada, N., Appl. Water Sci. 2021, 11, 105. https://doi.org/10.1007/s13201-021-01442-0.Suche in Google Scholar
4. Xu, M., Zada, A., Yan, R., Li, H., Sun, N., Qu, Y. Phys. Chem. Chem. Phys. 2020, 22, 4526–4532; https://doi.org/10.1039/C9CP05147C.Suche in Google Scholar
5. Liu, S., Zada, A., Yu, X., Liu, F., Jin, G. Chemosphere 2022, 307, 135717; https://doi.org/10.1016/j.chemosphere.2022.135717.Suche in Google Scholar PubMed
6. Dang, A., Sun, Y., Liu, Y., Xia, Y., Liu, X., Gao, Y., Wu, S., Li, T., Zada, A., Ye, F. ACS Appl. Energy Mater. 2022, 5, 9158–9172; https://doi.org/10.1021/acsaem.2c01738.Suche in Google Scholar
7. Hussain, Z., Zada, A., Hussain, K., Naz, M. Y., Salam, N. M. A., Ibrahim, K. A. Asia Pac. J. Chem. Eng. 2020, 2021e2610; https://doi.org/10.1002/apj.2610.Suche in Google Scholar
8. Musa, M. T., Shaari, N., Kamarudin, S. K. Int. J. Energy Res. 2021, 45, 1309–1346; https://doi.org/10.1002/er.5874.Suche in Google Scholar
9. Dang, A., Sun, Y., Fang, C., Li, T., Liu, X., Xia, Y., Ye, F., Zada, A., Khan, M. Appl. Surf. Sci. 2022, 581, 152432; https://doi.org/10.1016/j.apsusc.2022.152432.Suche in Google Scholar
10. Shah, M. Z., Guan, Z.-H., Din, A. U., Ali, A., Rehman, A. U., Jan, K., Faisal, S., Saud, S., Adnan, M., Wahid, F. Sci. Rep. 2021, 11, 1–14.10.1038/s41598-020-79139-8Suche in Google Scholar PubMed PubMed Central
11. Li, G., Zhu, D., Jia, W., Zhang, F. E-Polymers 2021, 21, 921–929; https://doi.org/10.1515/epoly-2021-0078.Suche in Google Scholar
12. Kulikowska, J. W., Wolska, J., Koroniak, H. Phys. Sci. Rev. 2017, 2, 20170018; https://doi.org/10.1515/psr-2017-0018.Suche in Google Scholar
13. Khan, M., Tiehu, L., Zaidi, S. B. A., Javed, E., Hussain, A., Hayat, A., Zada, A., Alei, D., Ullah, A. Polym. Int. 2021, 70, 1733–1740; https://doi.org/10.1002/pi.6274.Suche in Google Scholar
14. Khan, W. A., Arain, M. B., Bibi, H., Tuzen, M., Shah, N., Zada, A. Z. Phys. Chem. 2021, 235, 1113–1128; https://doi.org/10.1515/zpch-2020-1761.Suche in Google Scholar
15. Putri, Y. M. T. A., Gunlazuardi, J., Yulizar, Y., Wibowo, R., Einaga, Y., Ivandini, T. A. Open Chem. 2021, 19, 1116–1133; https://doi.org/10.1515/chem-2021-0100.Suche in Google Scholar
16. Hamid, A., Khan, M., Hussain, F., Zada, A., Li, T., Alei, D., Ali, A. Z. Phys. Chem. 2021, 235, 1791–1810; https://doi.org/10.1515/zpch-2020-1763.Suche in Google Scholar
17. Hayat, A., Sohail, M., Iqbal, W., Taha, T.A., Alenad, A. M., Al-Sehemi, A. G., Ullah, S., Alghamdi, N. A., Alhadhrami, A., Ajmal, Z., Palamanit, A., Nawawi, W.I., AlSalem, H. S., Ali, H., Zada, A., Amin, M. A. J. Sci. Adv. Mater. Dev. 2022, 100483; https://doi.org/10.1016/j.jsamd.2022.100483.Suche in Google Scholar
18. Feng, K., Hou, L., Tang, B., Wu, P. Phys. Chem. Chem. Phys. 2015, 17, 9106–9115; https://doi.org/10.1039/C5CP00203F.Suche in Google Scholar PubMed
19. Wu, G., Lin, S.-J., Hsu, I., Su, J.-Y., Chen, D. W. Polymers 2019, 11, 1177; https://doi.org/10.3390/polym11071177.Suche in Google Scholar PubMed PubMed Central
20. Ahmed, S., Arshad, T., Zada, A., Afzal, A., Khan, M., Hussain, A., Hassan, M., Ali, M., Xu, S. Membranes 2021, 11, 450; https://doi.org/10.3390/membranes11060450.Suche in Google Scholar PubMed PubMed Central
21. Cui, N., Zada, A., Song, J., Yang, Y., Liu, M., Wang, Y., Wu, Yu., Qi, K., Selvaraj, R., Liu, S., Jin, G. Desalination Water Treat. 2021, 245, 247–254; https://doi.org/10.5004/dwt.2021.27976.Suche in Google Scholar
22. Deyab, M. A., Al-Qhatani, M. M. Z. Phys. Chem. 2022, 236, 67–77; https://doi.org/10.1515/zpch-2021-3050.Suche in Google Scholar
23. Khan, M., Li, T., Hayat, A., Zada, A., Ali, T., Uddin, I., Hayat, A., Khan, M., Ullah, A., Hussain, A., Zhao, T. Int. J. Energy Res. 2021, 45, 14306–14337; https://doi.org/10.1002/er.6747.Suche in Google Scholar
24. Raza, J., Hamid, A., Khan, M., Hussain, F., Tiehu, L., Fazil, P., Zada, A., Wahab, Z., Ali, A. Z. Phys. Chem. 2022, 236, 619–636; https://doi.org/10.1515/zpch-2021-3152.Suche in Google Scholar
25. Khan, M., Hayat, A., Mane, S. K. B., Li, T., Shaishta, N., Alei, D., Zhao, T. K., Ullah, A., Zada, A., Rehman, A. U., Khan, W. U. Int. J. Hydrogen Energy 2020, 4553, 29070–29081; https://doi.org/10.1016/j.ijhydene.2020.07.274.Suche in Google Scholar
26. Hamid, A., Khan, M., Hayat, A., Raza, J., Zada, A., Ullah, A., Raziq, F., Li, T., Hussain, F. Spectrochim. Acta Mol. Biomol. Spectrosc. 2020, 235, 118303; https://doi.org/10.1016/j.saa.2020.118303.Suche in Google Scholar PubMed
27. Zada, A., Muhammad, P., Ahmad, W., Hussain, Z., Ali, S., Khan, M., Khan, Q., Maqbool, M. Adv. Funct. Mater. 2020, 30, 1906744; https://doi.org/10.1002/adfm.201906744.Suche in Google Scholar
28. Chu, X., Qu, Y., Zada, A., Bai, L., Li, Z., Yang, F., Zhao, L., Zhang, G., Sun, X., Yang, Z., Jing, L. Adv. Sci. 2020, 7, 2001543; https://doi.org/10.1002/advs.202001543.Suche in Google Scholar PubMed PubMed Central
29. Yasmeen, H., Zada, A., Ali, S., Khan, I., Ali, W., Khan, W., Khan, M., Anwar, N., Ali, A., Flores, A. M. H., Subhan, F. J. Chin. Chem. Soc. 2020, 67, 1611–1617; https://doi.org/10.1002/jccs.202000205.Suche in Google Scholar
30. Madani, S. S., Yangjeh, A. H., Khaneghah, S. A., Chand, H., Krishnan, V., Zada, A. J. Taiwan Inst. Chem. Eng. 2021, 119, 177–186; https://doi.org/10.1016/j.jtice.2021.01.020.Suche in Google Scholar
31. Zada, A., Khan, M., Qureshi, M. N., Liu, S., Wang, R. Front. Chem. 2020, 7, 941; https://doi.org/10.3389/fchem.2019.00941.Suche in Google Scholar PubMed PubMed Central
32. Hayat, A., Sohail, M., Hamdy, M. S., Mane, S. K. B., Amin, M. A., Zada, A., Taha, T. A., Rahman, M. M., Palamanit, A., Medina, D. I., Khan, J., Nawawi, W. I. Mol. Catal. 2022, 518, 112064.10.1016/j.mcat.2021.112064Suche in Google Scholar
33. Raziq, F., Aligayev, A., Shen, H., Ali, S., Shah, R., Ali, S., Bakhtiar, S. H., Ali, A., Zarshad, N., Zada, A., Xia, X., Zu, X., Khan, M., Wu, X., Kong, Q., Liu, C., Qiao, Q. Adv. Sci. 2021, 9, 2102530; https://doi.org/10.1002/advs.202102530.Suche in Google Scholar PubMed PubMed Central
34. Zafar, Z., Yi, S., Li, J., Li, C., Zhu, Y., Zada, A., Yao, W., Liu, Z., Yue, X. Energy Environ. Mater. 2022, 5, 68–114; https://doi.org/10.1002/eem2.12171.Suche in Google Scholar
35. Khan, M., Tiehu, L., Hussain, A., Raza, A., Zada, A., Dang, A., Khan, A. R., Ali, R., Hussain, H., Hussain, H., Wahab, Z., Imran, M. Diam. Relat. Mater. 2022, 126, 109077; https://doi.org/10.1016/j.diamond.2022.109077.Suche in Google Scholar
36. Gaurav, K., Singh, R., Tiwari, B. K., Srivastava, R. J. Polym. Eng. 2019, 39, 360–367; https://doi.org/10.1515/polyeng-2018-0276.Suche in Google Scholar
37. Subhan, F., Aslam, S., Yan, Z., Yaseen, M., Zada, A., Ikram, M. Separ. Purif. Technol. 2021, 265, 118532; https://doi.org/10.1016/j.seppur.2021.118532.Suche in Google Scholar
38. Pavlidou, S., Papaspyrides, C. Prog. Polym. Sci. 2008, 33, 1119–1198; https://doi.org/10.1016/j.progpolymsci.2008.07.008.Suche in Google Scholar
39. Ilyas, T., Raziq, F., Ali, S., Zada, A., Ilyas, N., Shah, R., Wang, Y., Qiao, L. Mater. Des. 2021, 204, 109674; https://doi.org/10.1016/j.matdes.2021.109674.Suche in Google Scholar
40. Perez-Puyana, V., Felix, M., Cabrera, L., Romero, A., Guerrero, A. Iran. Polym. J. (Engl. Ed.) 2019, 28, 921–931; https://doi.org/10.1007/s13726-019-00755-x.Suche in Google Scholar
41. Al-Hartomy, O. A., Al-Salamy, F., Al-Ghamdi, A. A., Abdel Fatah, M., Dishovsky, N., El-Tantawy, F. J. Appl. Polym. Sci. 2011, 120, 3628–3634; https://doi.org/10.1002/app.33547.Suche in Google Scholar
42. Ali, S., Ali, S., Ismail, P. M., Shen, H., Zada, A., Ali, A., Ahmad, I., Shah, R., Khan, I., Chen, J., Cui, C., Wu, X., Kong, Q., Yi, J., Zu, X., Xiao, H., Raziq, R., Qiao, L. Appl. Catal. B Environ. 2022, 307, 121149; https://doi.org/10.1016/j.apcatb.2022.121149.Suche in Google Scholar
43. Al-Ghamdi, A. A., El-Tantawy, F. Compos. A: Appl. Sci. Manuf. 2010, 41, 1693–1701; https://doi.org/10.1016/j.compositesa.2010.08.006.Suche in Google Scholar
44. Raziq, F., Khan, K., Ali, S., Ali, S., Xu, H., Ali, I., Zada, A., Ismail, P.M., Ali, A., Khan, H., Wu, Q., Kong, Q., Zahoor, M., Xiao, H., Zu, X., Li, S., Qiao, L. Chem. Eng. J. 2022, 446, 137161; https://doi.org/10.1016/j.cej.2022.137161.Suche in Google Scholar
45. Sinha, M., Purkait, M. Desalination 2014, 338, 106–114; https://doi.org/10.1016/j.desal.2014.02.002.Suche in Google Scholar
46. Samsudin, A. M., Hacker, V. Polymers 2019, 11, 1399; https://doi.org/10.3390/polym1109139.Suche in Google Scholar
47. Yan, R., Zada, A., Sun, L., Li, Z., Mu, Z., Chen, S., Yang, F., Sun, J., Bai, L., Qu, Y., Jing, L. Rare Met. 2022, 41, 155–165; https://doi.org/10.1007/s12598-021-01857-3.Suche in Google Scholar
48. Zhou, X., Zheng, P., Wang, L., Liu, X. Polymers 2019, 11, 32; https://doi.org/10.3390/polym11010032.Suche in Google Scholar PubMed PubMed Central
49. Xu, B., Zada, A., Wang, G., Qu, Y. Sustain. Energy Fuels 2019, 3, 3363–3369; https://doi.org/10.1039/C9SE00409B.Suche in Google Scholar
50. Qi, K., Zada, A., Yang, Y., Chen, Q., Khataee, A. Res. Chem. Intermed. 2020, 46, 5281–5295; https://doi.org/10.1007/s11164-020-04262-0.Suche in Google Scholar
51. Nazir, R., Khan, M., Rehman, R. U., Shujah, S., Khan, M., Ullah, M., Zada, A., Mahmood, N., Ahmad, I. Soil Water Res. 2020, 15, 166–172; https://doi.org/10.17221/59/2019-SWR.Suche in Google Scholar
52. Ullah, M., Nazir, R., Khan, M., Khan, W., Shah, M., Afridi, S. G., Zada, A. Soil Water Res. 2020, 15, 30–37; https://doi.org/10.17221/212/2018-SWR.Suche in Google Scholar
53. Ali, W., Ullah, H., Zada, A., Alamgir, M. K., Muhammad, W., Ahmad, M. J., Nadhman, A. Mater. Chem. Phys. 2018, 213, 259–266; https://doi.org/10.1016/j.matchemphys.2018.04.015.Suche in Google Scholar
54. Rehman, A. U., Khan, M., Maosheng, Z. J. Energy Storage 2019, 26, 101026.10.1016/j.est.2019.101026Suche in Google Scholar
55. Wang, S., Zhang, H., Shao, L., Liu, S., He, P. Chemosphere 2014, 117, 353–359; https://doi.org/10.1016/j.chemosphere.2014.07.076.Suche in Google Scholar PubMed
56. Rehman, A. U., Maosheng, Z., Hayat, A. Int. J. Energy Res. 2020, 44, 6981–6990.10.1002/er.5470Suche in Google Scholar
57. Deshmukh, S. P., Rao, A. C., Gaval, V. R., Joseph, S., Mahanwar, P. A. J. Miner. Mater. Char. Eng. 2010, 9, 831–844; https://doi.org/10.4236/jmmce.2010.99060.Suche in Google Scholar
58. Rehman, A. U., Maosheng, Z., Hayat, A. Int. J. Energy Res. 2020, 44, 269–281.10.1002/er.4910Suche in Google Scholar
59. Qi, K., Xing, X., Zada, A., Li, M., Wang, Q., Liu, S., Lin, H., Wang, G.. Ceram. Int. 2020, 46, 1494–1502; https://doi.org/10.1016/j.ceramint.2019.09.116.Suche in Google Scholar
60. Rehman, A. U., Shah, M. Z., Ali, A., Zhao, T., Shah, R., Ullah, I., Bilal, H., Khan, A. R., Iqbal, M., Hayat, A.. Int. J. Energy Res. 2021, 45, 4746–4754.10.1002/er.6077Suche in Google Scholar
61. Qi, K., Liu, S., Zada, A. J. Taiwan Inst. Chem. Eng. 2020, 109, 111–123; https://doi.org/10.1016/j.jtice.2020.02.012.Suche in Google Scholar
62. Zhao, T., Munis, A., Rehman, A. U., Zheng, M. Mater. Res. Express 2020, 7, 015529.10.1088/2053-1591/ab6c24Suche in Google Scholar
63. Zhao, Y., Zada, A., Yang, Y., Pan, J., Wang, Y., Yan, Z., Xu, Z., Qi, K. Front. Chem. 2021, 9, 797738; https://doi.org/10.3389/fchem.2021.797738.Suche in Google Scholar PubMed PubMed Central
64. Rehman, A. U., Shah, M. Z., Rasheed, S., Afzal, W., Arsalan, M., Rahman, H. U., Ullah, M., Zhao, T., Ullah, I., Din, A. U. Z. Phys. Chem. 2021, 235, 1481–1497.10.1515/zpch-2021-3012Suche in Google Scholar
65. Du, X., Zhang, Z., Liu, W., Deng, Y. Nano Energy 2017, 35, 299–320; https://doi.org/10.1016/j.nanoen.2017.04.001.Suche in Google Scholar
66. Ahamed, M. I., Asiri, A. M., Luqman, M. Adv. Mater. Sci. Eng. 2019, 2019, 4764198.10.1155/2019/4764198Suche in Google Scholar
67. Jalani, N. H., Dunn, K., Datta, R. Electrochim. Acta 2005, 51, 553–560.10.1016/j.electacta.2005.05.016Suche in Google Scholar
68. Ali, A., Hussain, Z., Zahid, M., Qamar, L., Zada, A., Arain, M. B., Salman, S. M., Mohammed Khan, K. Int. J. Environ. Anal. Chem. 2020, 1–16; https://doi.org/10.1080/03067319.2020.1760860.Suche in Google Scholar
69. Tran, L. T., Tran, H. V., Le, T. D., Bach, G. L., Tran, L. D. Adv. Polym. Technol. 2019, 2019, 8124351; https://doi.org/10.1155/2019/8124351.Suche in Google Scholar
70. Zada, A., Ali, N., Subhan, F., Anwar, N., Shah, M. I. A., Ateeq, M., Hussain, Z., Zaman, K., Khan, M. Prog. Nat. Sci. Mat. Int. 2019, 29, 138–144; https://doi.org/10.1016/j.pnsc.2019.03.004.Suche in Google Scholar
71. Malik, M. S., Qaiser, A. A., Arif, M. A. RSC Adv. 2016, 6, 115046–115054; https://doi.org/10.1039/C6RA24594C.Suche in Google Scholar
72. Khan, M. F., Bakhtiar, S. H., Zada, A., Raziq, F., Saleemi, H. A., Khan, M. S., Ismail, P. M., Alguno, A. C., Capangpangan, R. Y., Ali, A., Hayat, S., Ali, S., Ismail, A., Zahid, M. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100711; https://doi.org/10.1016/j.enmm.2022.100711.Suche in Google Scholar
73. Mitzel, J., Arena, F., Walter, T., Stefener, M., Hempelmann, R. Z. Phys. Chem. 2013, 227, 497–540; https://doi.org/10.1524/zpch.2013.0341.Suche in Google Scholar
74. Burjanadze, M., Karatas, Y., Kaskhedikar, N., Kogel, L. M., Kloss, S., Gentschev, A., Hiller, M. M., Müller, R. A., Stolina, R., Vettikuzha, P., Wiemhöfer, H. Z. Phys. Chem. 2010, 224, 1439–1473; https://doi.org/10.1524/zpch.2010.0046.Suche in Google Scholar
75. Cui, N., Zada, A., Song, J., Yang, Y., Liu, M., Wang, Y., Wu, Y., Qi, K., Selvaraj, R., Liu, S., Jin, G. Desalination Water Treat. 2022, 245, 247–254; https://doi.org/10.5004/dwt.2022.27976.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Suppression of steel corrosion via some gemini cationic surfactant-based Schiff base: experimental and theoretical investigations
- Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential
- Eco-benign preparation of biosorbent using Momordica Charantia for the efficient removal of Cr(VI) ions from wastewater
- Oil mediated green synthesis of nano silver in the presence of surfactants for catalytic and food preservation application
- Adsorption properties of metal functionalized fullerene (C59Au, C59Hf, C59Ag, and C59Ir) nanoclusters for application as a biosensor for hydroxyurea (HXU): insight from theoretical computation
- Evaluation of diethylenetriaminepentaacetic acid modified chitosan immobilized in amino-carbmated alginate matrix as a low cost adsorbent for effective Cu(II) recovery
- Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract
- Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites
- Optical and topographic characteristics of silver films deposited from a colloidal solution on polyelectrolytes for IgG-FITC fluorescence analysis
- The three pyridazines, three naphthyridines and two azoles: effect of the position of the second heteroatom on pKaH of their eight conjugate acids
- Theoretical study on the origins of sildenafil tautomers’ relative stability
- Application of the Lennard-Jones potential for calculating the surface tension and the formation enthalpy of a binary solution
- Ultrasonic supported dye removal by a novel biomass
- A novel synthesis of graphene oxide-titanium dioxide (GO-TiO2) and graphene oxide-zinc oxide (GO-ZnO) nanocomposites and their application as effective, reusable photocatalysts for degradation of methylene blue (MB) dye
- Review Article
- Photocatalytic hydrogen generation using TiO2: a state-of-the-art review
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Suppression of steel corrosion via some gemini cationic surfactant-based Schiff base: experimental and theoretical investigations
- Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential
- Eco-benign preparation of biosorbent using Momordica Charantia for the efficient removal of Cr(VI) ions from wastewater
- Oil mediated green synthesis of nano silver in the presence of surfactants for catalytic and food preservation application
- Adsorption properties of metal functionalized fullerene (C59Au, C59Hf, C59Ag, and C59Ir) nanoclusters for application as a biosensor for hydroxyurea (HXU): insight from theoretical computation
- Evaluation of diethylenetriaminepentaacetic acid modified chitosan immobilized in amino-carbmated alginate matrix as a low cost adsorbent for effective Cu(II) recovery
- Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract
- Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites
- Optical and topographic characteristics of silver films deposited from a colloidal solution on polyelectrolytes for IgG-FITC fluorescence analysis
- The three pyridazines, three naphthyridines and two azoles: effect of the position of the second heteroatom on pKaH of their eight conjugate acids
- Theoretical study on the origins of sildenafil tautomers’ relative stability
- Application of the Lennard-Jones potential for calculating the surface tension and the formation enthalpy of a binary solution
- Ultrasonic supported dye removal by a novel biomass
- A novel synthesis of graphene oxide-titanium dioxide (GO-TiO2) and graphene oxide-zinc oxide (GO-ZnO) nanocomposites and their application as effective, reusable photocatalysts for degradation of methylene blue (MB) dye
- Review Article
- Photocatalytic hydrogen generation using TiO2: a state-of-the-art review