Startseite Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites

  • Junaid Raza , Abdul Hamid , Muhammad Khan EMAIL logo , Fakhar Hussain , Amir Zada EMAIL logo , Li Tiehu , Amjad Ali , Perveen Fazil und Zainul Wahab
Veröffentlicht/Copyright: 17. August 2022

Abstract

Two series, A and B, of PVC based nanocomposite polymer membranes (nCPMs) were prepared using PbO only and PbO/graphite mixture as a filler by solution casting method. Seven samples with varying compositions (5–35%) of filler particles were prepared for each series and were compared by thickness measurements, porosity, water uptake, swelling degree, ionic conductivity, ion exchange capacity (IEC), membrane potential and transport number. The maximum values for these characteristics were observed as 0.402 mm, 0.77, 141.3%, 0.11, 0.0033 Scm−1, 8.6 milli-eq.g−1, 0.19 V and 0.01391 for series-A composites whereas that of 0.367 mm, 0.83, 63.4%, 0.019, 0.00981 Scm−1, 5.21 milli-eq.g−1, 0.13 V and 0.0108 for series-B nCPMs respectively. The SEM images of membranes showed greater voids produced in the series-B compared to series-A composites. The maximum Ionic conductivity, IEC, membrane potential and transport number were observed for membrane with 25% PbO/graphite, 20% PbO and 35% PbO particles respectively.


Corresponding authors: Muhammad Khan, School of Materials Science and Engineering, Northwestern Polytechnical University, Xian, 710072, P.R. China; and Department of Chemistry, University of Okara, Punjab, Pakistan, E-mail: ; and Amir Zada, Department of Chemistry, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan, E-mail:

Acknowledgments

We are also very thankful to the School of Materials Science and Engineering, Northwestern Polytechnical University, Xian, P.R. of China and Higher Education Commission (HEC) Pakistan for their financial support.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research has been Financially Supported for the Postdoctoral study by the Shaanxi Province and Natural Science Foundation of China under the (Grant No: 2016JQ5108).

  3. Conflict of interest statement: On behalf of all authors, the corresponding author declared that this work is the original work of authors, and all standards were followed accordingly and there is no conflict of interest.

References

1. Zada, A., Khan, M., Hussain, Z., Shah, M.I. A., Ateeq, M., Ullah, M., Ali, N., Shaheen, S., Yasmeen, H., Shah, S. N. A., Dang, A. Z. Phys. Chem. 2022, 236, 53–66; https://doi.org/10.1515/zpch-2020-1778.Suche in Google Scholar

2. Zhang, Z., Zada, A., Cui, N., Liu, N., Liu, M., Yang, Y., Jiang, D., Jiang, J., Liu, S. Crystals 2021, 11, 981; https://doi.org/10.3390/cryst11080981.Suche in Google Scholar

3. Saeed, K., Khan, I., Ahad, M., Shah, T., Sadiq, M., Zada, A., Zada, N., Appl. Water Sci. 2021, 11, 105. https://doi.org/10.1007/s13201-021-01442-0.Suche in Google Scholar

4. Xu, M., Zada, A., Yan, R., Li, H., Sun, N., Qu, Y. Phys. Chem. Chem. Phys. 2020, 22, 4526–4532; https://doi.org/10.1039/C9CP05147C.Suche in Google Scholar

5. Liu, S., Zada, A., Yu, X., Liu, F., Jin, G. Chemosphere 2022, 307, 135717; https://doi.org/10.1016/j.chemosphere.2022.135717.Suche in Google Scholar PubMed

6. Dang, A., Sun, Y., Liu, Y., Xia, Y., Liu, X., Gao, Y., Wu, S., Li, T., Zada, A., Ye, F. ACS Appl. Energy Mater. 2022, 5, 9158–9172; https://doi.org/10.1021/acsaem.2c01738.Suche in Google Scholar

7. Hussain, Z., Zada, A., Hussain, K., Naz, M. Y., Salam, N. M. A., Ibrahim, K. A. Asia Pac. J. Chem. Eng. 2020, 2021e2610; https://doi.org/10.1002/apj.2610.Suche in Google Scholar

8. Musa, M. T., Shaari, N., Kamarudin, S. K. Int. J. Energy Res. 2021, 45, 1309–1346; https://doi.org/10.1002/er.5874.Suche in Google Scholar

9. Dang, A., Sun, Y., Fang, C., Li, T., Liu, X., Xia, Y., Ye, F., Zada, A., Khan, M. Appl. Surf. Sci. 2022, 581, 152432; https://doi.org/10.1016/j.apsusc.2022.152432.Suche in Google Scholar

10. Shah, M. Z., Guan, Z.-H., Din, A. U., Ali, A., Rehman, A. U., Jan, K., Faisal, S., Saud, S., Adnan, M., Wahid, F. Sci. Rep. 2021, 11, 1–14.10.1038/s41598-020-79139-8Suche in Google Scholar PubMed PubMed Central

11. Li, G., Zhu, D., Jia, W., Zhang, F. E-Polymers 2021, 21, 921–929; https://doi.org/10.1515/epoly-2021-0078.Suche in Google Scholar

12. Kulikowska, J. W., Wolska, J., Koroniak, H. Phys. Sci. Rev. 2017, 2, 20170018; https://doi.org/10.1515/psr-2017-0018.Suche in Google Scholar

13. Khan, M., Tiehu, L., Zaidi, S. B. A., Javed, E., Hussain, A., Hayat, A., Zada, A., Alei, D., Ullah, A. Polym. Int. 2021, 70, 1733–1740; https://doi.org/10.1002/pi.6274.Suche in Google Scholar

14. Khan, W. A., Arain, M. B., Bibi, H., Tuzen, M., Shah, N., Zada, A. Z. Phys. Chem. 2021, 235, 1113–1128; https://doi.org/10.1515/zpch-2020-1761.Suche in Google Scholar

15. Putri, Y. M. T. A., Gunlazuardi, J., Yulizar, Y., Wibowo, R., Einaga, Y., Ivandini, T. A. Open Chem. 2021, 19, 1116–1133; https://doi.org/10.1515/chem-2021-0100.Suche in Google Scholar

16. Hamid, A., Khan, M., Hussain, F., Zada, A., Li, T., Alei, D., Ali, A. Z. Phys. Chem. 2021, 235, 1791–1810; https://doi.org/10.1515/zpch-2020-1763.Suche in Google Scholar

17. Hayat, A., Sohail, M., Iqbal, W., Taha, T.A., Alenad, A. M., Al-Sehemi, A. G., Ullah, S., Alghamdi, N. A., Alhadhrami, A., Ajmal, Z., Palamanit, A., Nawawi, W.I., AlSalem, H. S., Ali, H., Zada, A., Amin, M. A. J. Sci. Adv. Mater. Dev. 2022, 100483; https://doi.org/10.1016/j.jsamd.2022.100483.Suche in Google Scholar

18. Feng, K., Hou, L., Tang, B., Wu, P. Phys. Chem. Chem. Phys. 2015, 17, 9106–9115; https://doi.org/10.1039/C5CP00203F.Suche in Google Scholar PubMed

19. Wu, G., Lin, S.-J., Hsu, I., Su, J.-Y., Chen, D. W. Polymers 2019, 11, 1177; https://doi.org/10.3390/polym11071177.Suche in Google Scholar PubMed PubMed Central

20. Ahmed, S., Arshad, T., Zada, A., Afzal, A., Khan, M., Hussain, A., Hassan, M., Ali, M., Xu, S. Membranes 2021, 11, 450; https://doi.org/10.3390/membranes11060450.Suche in Google Scholar PubMed PubMed Central

21. Cui, N., Zada, A., Song, J., Yang, Y., Liu, M., Wang, Y., Wu, Yu., Qi, K., Selvaraj, R., Liu, S., Jin, G. Desalination Water Treat. 2021, 245, 247–254; https://doi.org/10.5004/dwt.2021.27976.Suche in Google Scholar

22. Deyab, M. A., Al-Qhatani, M. M. Z. Phys. Chem. 2022, 236, 67–77; https://doi.org/10.1515/zpch-2021-3050.Suche in Google Scholar

23. Khan, M., Li, T., Hayat, A., Zada, A., Ali, T., Uddin, I., Hayat, A., Khan, M., Ullah, A., Hussain, A., Zhao, T. Int. J. Energy Res. 2021, 45, 14306–14337; https://doi.org/10.1002/er.6747.Suche in Google Scholar

24. Raza, J., Hamid, A., Khan, M., Hussain, F., Tiehu, L., Fazil, P., Zada, A., Wahab, Z., Ali, A. Z. Phys. Chem. 2022, 236, 619–636; https://doi.org/10.1515/zpch-2021-3152.Suche in Google Scholar

25. Khan, M., Hayat, A., Mane, S. K. B., Li, T., Shaishta, N., Alei, D., Zhao, T. K., Ullah, A., Zada, A., Rehman, A. U., Khan, W. U. Int. J. Hydrogen Energy 2020, 4553, 29070–29081; https://doi.org/10.1016/j.ijhydene.2020.07.274.Suche in Google Scholar

26. Hamid, A., Khan, M., Hayat, A., Raza, J., Zada, A., Ullah, A., Raziq, F., Li, T., Hussain, F. Spectrochim. Acta Mol. Biomol. Spectrosc. 2020, 235, 118303; https://doi.org/10.1016/j.saa.2020.118303.Suche in Google Scholar PubMed

27. Zada, A., Muhammad, P., Ahmad, W., Hussain, Z., Ali, S., Khan, M., Khan, Q., Maqbool, M. Adv. Funct. Mater. 2020, 30, 1906744; https://doi.org/10.1002/adfm.201906744.Suche in Google Scholar

28. Chu, X., Qu, Y., Zada, A., Bai, L., Li, Z., Yang, F., Zhao, L., Zhang, G., Sun, X., Yang, Z., Jing, L. Adv. Sci. 2020, 7, 2001543; https://doi.org/10.1002/advs.202001543.Suche in Google Scholar PubMed PubMed Central

29. Yasmeen, H., Zada, A., Ali, S., Khan, I., Ali, W., Khan, W., Khan, M., Anwar, N., Ali, A., Flores, A. M. H., Subhan, F. J. Chin. Chem. Soc. 2020, 67, 1611–1617; https://doi.org/10.1002/jccs.202000205.Suche in Google Scholar

30. Madani, S. S., Yangjeh, A. H., Khaneghah, S. A., Chand, H., Krishnan, V., Zada, A. J. Taiwan Inst. Chem. Eng. 2021, 119, 177–186; https://doi.org/10.1016/j.jtice.2021.01.020.Suche in Google Scholar

31. Zada, A., Khan, M., Qureshi, M. N., Liu, S., Wang, R. Front. Chem. 2020, 7, 941; https://doi.org/10.3389/fchem.2019.00941.Suche in Google Scholar PubMed PubMed Central

32. Hayat, A., Sohail, M., Hamdy, M. S., Mane, S. K. B., Amin, M. A., Zada, A., Taha, T. A., Rahman, M. M., Palamanit, A., Medina, D. I., Khan, J., Nawawi, W. I. Mol. Catal. 2022, 518, 112064.10.1016/j.mcat.2021.112064Suche in Google Scholar

33. Raziq, F., Aligayev, A., Shen, H., Ali, S., Shah, R., Ali, S., Bakhtiar, S. H., Ali, A., Zarshad, N., Zada, A., Xia, X., Zu, X., Khan, M., Wu, X., Kong, Q., Liu, C., Qiao, Q. Adv. Sci. 2021, 9, 2102530; https://doi.org/10.1002/advs.202102530.Suche in Google Scholar PubMed PubMed Central

34. Zafar, Z., Yi, S., Li, J., Li, C., Zhu, Y., Zada, A., Yao, W., Liu, Z., Yue, X. Energy Environ. Mater. 2022, 5, 68–114; https://doi.org/10.1002/eem2.12171.Suche in Google Scholar

35. Khan, M., Tiehu, L., Hussain, A., Raza, A., Zada, A., Dang, A., Khan, A. R., Ali, R., Hussain, H., Hussain, H., Wahab, Z., Imran, M. Diam. Relat. Mater. 2022, 126, 109077; https://doi.org/10.1016/j.diamond.2022.109077.Suche in Google Scholar

36. Gaurav, K., Singh, R., Tiwari, B. K., Srivastava, R. J. Polym. Eng. 2019, 39, 360–367; https://doi.org/10.1515/polyeng-2018-0276.Suche in Google Scholar

37. Subhan, F., Aslam, S., Yan, Z., Yaseen, M., Zada, A., Ikram, M. Separ. Purif. Technol. 2021, 265, 118532; https://doi.org/10.1016/j.seppur.2021.118532.Suche in Google Scholar

38. Pavlidou, S., Papaspyrides, C. Prog. Polym. Sci. 2008, 33, 1119–1198; https://doi.org/10.1016/j.progpolymsci.2008.07.008.Suche in Google Scholar

39. Ilyas, T., Raziq, F., Ali, S., Zada, A., Ilyas, N., Shah, R., Wang, Y., Qiao, L. Mater. Des. 2021, 204, 109674; https://doi.org/10.1016/j.matdes.2021.109674.Suche in Google Scholar

40. Perez-Puyana, V., Felix, M., Cabrera, L., Romero, A., Guerrero, A. Iran. Polym. J. (Engl. Ed.) 2019, 28, 921–931; https://doi.org/10.1007/s13726-019-00755-x.Suche in Google Scholar

41. Al-Hartomy, O. A., Al-Salamy, F., Al-Ghamdi, A. A., Abdel Fatah, M., Dishovsky, N., El-Tantawy, F. J. Appl. Polym. Sci. 2011, 120, 3628–3634; https://doi.org/10.1002/app.33547.Suche in Google Scholar

42. Ali, S., Ali, S., Ismail, P. M., Shen, H., Zada, A., Ali, A., Ahmad, I., Shah, R., Khan, I., Chen, J., Cui, C., Wu, X., Kong, Q., Yi, J., Zu, X., Xiao, H., Raziq, R., Qiao, L. Appl. Catal. B Environ. 2022, 307, 121149; https://doi.org/10.1016/j.apcatb.2022.121149.Suche in Google Scholar

43. Al-Ghamdi, A. A., El-Tantawy, F. Compos. A: Appl. Sci. Manuf. 2010, 41, 1693–1701; https://doi.org/10.1016/j.compositesa.2010.08.006.Suche in Google Scholar

44. Raziq, F., Khan, K., Ali, S., Ali, S., Xu, H., Ali, I., Zada, A., Ismail, P.M., Ali, A., Khan, H., Wu, Q., Kong, Q., Zahoor, M., Xiao, H., Zu, X., Li, S., Qiao, L. Chem. Eng. J. 2022, 446, 137161; https://doi.org/10.1016/j.cej.2022.137161.Suche in Google Scholar

45. Sinha, M., Purkait, M. Desalination 2014, 338, 106–114; https://doi.org/10.1016/j.desal.2014.02.002.Suche in Google Scholar

46. Samsudin, A. M., Hacker, V. Polymers 2019, 11, 1399; https://doi.org/10.3390/polym1109139.Suche in Google Scholar

47. Yan, R., Zada, A., Sun, L., Li, Z., Mu, Z., Chen, S., Yang, F., Sun, J., Bai, L., Qu, Y., Jing, L. Rare Met. 2022, 41, 155–165; https://doi.org/10.1007/s12598-021-01857-3.Suche in Google Scholar

48. Zhou, X., Zheng, P., Wang, L., Liu, X. Polymers 2019, 11, 32; https://doi.org/10.3390/polym11010032.Suche in Google Scholar PubMed PubMed Central

49. Xu, B., Zada, A., Wang, G., Qu, Y. Sustain. Energy Fuels 2019, 3, 3363–3369; https://doi.org/10.1039/C9SE00409B.Suche in Google Scholar

50. Qi, K., Zada, A., Yang, Y., Chen, Q., Khataee, A. Res. Chem. Intermed. 2020, 46, 5281–5295; https://doi.org/10.1007/s11164-020-04262-0.Suche in Google Scholar

51. Nazir, R., Khan, M., Rehman, R. U., Shujah, S., Khan, M., Ullah, M., Zada, A., Mahmood, N., Ahmad, I. Soil Water Res. 2020, 15, 166–172; https://doi.org/10.17221/59/2019-SWR.Suche in Google Scholar

52. Ullah, M., Nazir, R., Khan, M., Khan, W., Shah, M., Afridi, S. G., Zada, A. Soil Water Res. 2020, 15, 30–37; https://doi.org/10.17221/212/2018-SWR.Suche in Google Scholar

53. Ali, W., Ullah, H., Zada, A., Alamgir, M. K., Muhammad, W., Ahmad, M. J., Nadhman, A. Mater. Chem. Phys. 2018, 213, 259–266; https://doi.org/10.1016/j.matchemphys.2018.04.015.Suche in Google Scholar

54. Rehman, A. U., Khan, M., Maosheng, Z. J. Energy Storage 2019, 26, 101026.10.1016/j.est.2019.101026Suche in Google Scholar

55. Wang, S., Zhang, H., Shao, L., Liu, S., He, P. Chemosphere 2014, 117, 353–359; https://doi.org/10.1016/j.chemosphere.2014.07.076.Suche in Google Scholar PubMed

56. Rehman, A. U., Maosheng, Z., Hayat, A. Int. J. Energy Res. 2020, 44, 6981–6990.10.1002/er.5470Suche in Google Scholar

57. Deshmukh, S. P., Rao, A. C., Gaval, V. R., Joseph, S., Mahanwar, P. A. J. Miner. Mater. Char. Eng. 2010, 9, 831–844; https://doi.org/10.4236/jmmce.2010.99060.Suche in Google Scholar

58. Rehman, A. U., Maosheng, Z., Hayat, A. Int. J. Energy Res. 2020, 44, 269–281.10.1002/er.4910Suche in Google Scholar

59. Qi, K., Xing, X., Zada, A., Li, M., Wang, Q., Liu, S., Lin, H., Wang, G.. Ceram. Int. 2020, 46, 1494–1502; https://doi.org/10.1016/j.ceramint.2019.09.116.Suche in Google Scholar

60. Rehman, A. U., Shah, M. Z., Ali, A., Zhao, T., Shah, R., Ullah, I., Bilal, H., Khan, A. R., Iqbal, M., Hayat, A.. Int. J. Energy Res. 2021, 45, 4746–4754.10.1002/er.6077Suche in Google Scholar

61. Qi, K., Liu, S., Zada, A. J. Taiwan Inst. Chem. Eng. 2020, 109, 111–123; https://doi.org/10.1016/j.jtice.2020.02.012.Suche in Google Scholar

62. Zhao, T., Munis, A., Rehman, A. U., Zheng, M. Mater. Res. Express 2020, 7, 015529.10.1088/2053-1591/ab6c24Suche in Google Scholar

63. Zhao, Y., Zada, A., Yang, Y., Pan, J., Wang, Y., Yan, Z., Xu, Z., Qi, K. Front. Chem. 2021, 9, 797738; https://doi.org/10.3389/fchem.2021.797738.Suche in Google Scholar PubMed PubMed Central

64. Rehman, A. U., Shah, M. Z., Rasheed, S., Afzal, W., Arsalan, M., Rahman, H. U., Ullah, M., Zhao, T., Ullah, I., Din, A. U. Z. Phys. Chem. 2021, 235, 1481–1497.10.1515/zpch-2021-3012Suche in Google Scholar

65. Du, X., Zhang, Z., Liu, W., Deng, Y. Nano Energy 2017, 35, 299–320; https://doi.org/10.1016/j.nanoen.2017.04.001.Suche in Google Scholar

66. Ahamed, M. I., Asiri, A. M., Luqman, M. Adv. Mater. Sci. Eng. 2019, 2019, 4764198.10.1155/2019/4764198Suche in Google Scholar

67. Jalani, N. H., Dunn, K., Datta, R. Electrochim. Acta 2005, 51, 553–560.10.1016/j.electacta.2005.05.016Suche in Google Scholar

68. Ali, A., Hussain, Z., Zahid, M., Qamar, L., Zada, A., Arain, M. B., Salman, S. M., Mohammed Khan, K. Int. J. Environ. Anal. Chem. 2020, 1–16; https://doi.org/10.1080/03067319.2020.1760860.Suche in Google Scholar

69. Tran, L. T., Tran, H. V., Le, T. D., Bach, G. L., Tran, L. D. Adv. Polym. Technol. 2019, 2019, 8124351; https://doi.org/10.1155/2019/8124351.Suche in Google Scholar

70. Zada, A., Ali, N., Subhan, F., Anwar, N., Shah, M. I. A., Ateeq, M., Hussain, Z., Zaman, K., Khan, M. Prog. Nat. Sci. Mat. Int. 2019, 29, 138–144; https://doi.org/10.1016/j.pnsc.2019.03.004.Suche in Google Scholar

71. Malik, M. S., Qaiser, A. A., Arif, M. A. RSC Adv. 2016, 6, 115046–115054; https://doi.org/10.1039/C6RA24594C.Suche in Google Scholar

72. Khan, M. F., Bakhtiar, S. H., Zada, A., Raziq, F., Saleemi, H. A., Khan, M. S., Ismail, P. M., Alguno, A. C., Capangpangan, R. Y., Ali, A., Hayat, S., Ali, S., Ismail, A., Zahid, M. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100711; https://doi.org/10.1016/j.enmm.2022.100711.Suche in Google Scholar

73. Mitzel, J., Arena, F., Walter, T., Stefener, M., Hempelmann, R. Z. Phys. Chem. 2013, 227, 497–540; https://doi.org/10.1524/zpch.2013.0341.Suche in Google Scholar

74. Burjanadze, M., Karatas, Y., Kaskhedikar, N., Kogel, L. M., Kloss, S., Gentschev, A., Hiller, M. M., Müller, R. A., Stolina, R., Vettikuzha, P., Wiemhöfer, H. Z. Phys. Chem. 2010, 224, 1439–1473; https://doi.org/10.1524/zpch.2010.0046.Suche in Google Scholar

75. Cui, N., Zada, A., Song, J., Yang, Y., Liu, M., Wang, Y., Wu, Y., Qi, K., Selvaraj, R., Liu, S., Jin, G. Desalination Water Treat. 2022, 245, 247–254; https://doi.org/10.5004/dwt.2022.27976.Suche in Google Scholar

Received: 2022-04-08
Accepted: 2022-07-21
Published Online: 2022-08-17
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Original Papers
  3. Suppression of steel corrosion via some gemini cationic surfactant-based Schiff base: experimental and theoretical investigations
  4. Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential
  5. Eco-benign preparation of biosorbent using Momordica Charantia for the efficient removal of Cr(VI) ions from wastewater
  6. Oil mediated green synthesis of nano silver in the presence of surfactants for catalytic and food preservation application
  7. Adsorption properties of metal functionalized fullerene (C59Au, C59Hf, C59Ag, and C59Ir) nanoclusters for application as a biosensor for hydroxyurea (HXU): insight from theoretical computation
  8. Evaluation of diethylenetriaminepentaacetic acid modified chitosan immobilized in amino-carbmated alginate matrix as a low cost adsorbent for effective Cu(II) recovery
  9. Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract
  10. Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites
  11. Optical and topographic characteristics of silver films deposited from a colloidal solution on polyelectrolytes for IgG-FITC fluorescence analysis
  12. The three pyridazines, three naphthyridines and two azoles: effect of the position of the second heteroatom on pKaH of their eight conjugate acids
  13. Theoretical study on the origins of sildenafil tautomers’ relative stability
  14. Application of the Lennard-Jones potential for calculating the surface tension and the formation enthalpy of a binary solution
  15. Ultrasonic supported dye removal by a novel biomass
  16. A novel synthesis of graphene oxide-titanium dioxide (GO-TiO2) and graphene oxide-zinc oxide (GO-ZnO) nanocomposites and their application as effective, reusable photocatalysts for degradation of methylene blue (MB) dye
  17. Review Article
  18. Photocatalytic hydrogen generation using TiO2: a state-of-the-art review
Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2022-0051/html
Button zum nach oben scrollen