Abstract
Tautomers of sildenafil (5-{2-Ethoxy-5-[(4-methylpiperazin-1-yl)sulfonyl]phenyl}-1-methyl-3-propyl-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one), a drug commonly used for treating the erectile dysfunction and pulmonary arterial hypertension were studied computationally at the DFT (B3LYP/6-311++G**) level. Four possible structures of sildenafil tautomers structures were considered. The geometries and chemical shifts of carbon and nitrogen nuclei were calculated and compared with available experimental data. The theoretical calculations proved to be consistent with experimental data and indicate the same lowest energy sildenafil structure. The energies of the all considered sildenafil tautomers were determined and ranked according to their energy values. This article presents calculations of several properties (aromaticity, atomic charges, atomic energies, intramolecular hydrogen bonding) and discusses their influence on the relative energies of sildenafil tautomers.
Acknowledgments
This research was carried out with the support of the Interdisciplinary Centre for Mathematical and Computational Modelling at the University of Warsaw (ICM UW).
-
Author contribution: This paper in a journal version of the BSc work of Dariusz Pajka entitled “Równowagi tautomeryczne sildenafilu” (in Polish). Dariusz Pajka performed calculations and elaborated data under supervision of Krzysztof K. Zborowski. Both authors interpreted data and prepared the draft of the manuscript. Urszula Lelek-Borkowska helped in preparation of the final manuscript version.
-
Research funding: None declared.
-
Conflict of interest statement: No potential conflict of interest was reported by the authors.
References
1. Bell, A. S., Brown, D., Terrett, N. K. Pyrazolopyrimidinone Antianginal Agents. U.S. Patent 5250534, 1993. https://patents.google.com/patent/US5250534.Suche in Google Scholar
2. Burls, A., Clark, W., Gold, L., Simpson, S. Sildenafil: An Oral Drug for the Treatment of Male Erectile Dysfunction; West Midlands Development and Evaluation Committee Report, Department of Public Health and Epidemiology, University of Birmingham: Birmingham, 1998.Suche in Google Scholar
3. Cheitlin, M. D., Hutter, A. M.Jr, Brindis, R. G., Ganz, P., Kaul, S., Russell, R. O.Jr, Zusman, R. M. J. Am. Coll. Cardiol. 1999, 33, 273–282; https://doi.org/10.1016/s0735-1097(98)00656-1.Suche in Google Scholar PubMed
4. Galiè, N., Ghofrani, H. A., Torbicki, A., Barst, R. J., Rubin, L. J., Badesch, D., Fleming, T., Parpia, T., Burgess, G., Branzi, A., Grimminger, F., Kurzyna, M., Simonneau, G. N. Engl. J. Med. 2005, 17, 2148–2157; https://doi.org/10.1056/nejmoa050010.Suche in Google Scholar
5. Schalcher, C., Schad, K., Brunner-La Rocca, H. P., Schindler, R., Oechslin, E., Scharf, C., Suetsch, G., Bertel, O., Kiowski, W. Hypertension 2002, 40, 763–767; https://doi.org/10.1161/01.hyp.0000036027.71527.3e.Suche in Google Scholar PubMed
6. Francis, S. H., Corbin, J. D. Expert Opin. Drug. Met. Toxicol. 2005, 1, 283–293; https://doi.org/10.1517/17425255.1.2.283.Suche in Google Scholar PubMed
7. Elguero, J., Katritzky, A. R., Denisko, O. V. Prototropic tautomerism of heterocycles: heteroaromatic tautomerism – general overview and methodology. In Advances in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Vol. 76, Academic Press: London, 2000; pp. 2–85.10.1016/S0065-2725(00)76003-XSuche in Google Scholar
8. IUPAC Gold Book. Tautomerism. https://goldbook.iupac.org/terms/view/T06252.Suche in Google Scholar
9. Zefirov, N. S., Trach, S. S. Zh. Org. Khim. 1976, 12, 697–718.Suche in Google Scholar
10. Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652; https://doi.org/10.1063/1.464913.Suche in Google Scholar
11. McLean, A. D., Chandler, G. S. J. Chem. Phys. 1980, 72, 5639–5648; https://doi.org/10.1063/1.438980.Suche in Google Scholar
12. Clark, T., Chandrasekhar, J., Spitznagel, G. W., Schleyer, P. v. R. J. Comput. Chem. 1983, 4, 294–301; https://doi.org/10.1002/jcc.540040303.Suche in Google Scholar
13. Francl, M. M., Pietro, W. J., Hehre, W. J., Binkley, J. S., DeFrees, D. J., Pople, J. A., Gordon, M. S. J. Chem. Phys. 1982, 77, 3654–3665; https://doi.org/10.1063/1.444267.Suche in Google Scholar
14. Woliński, K., Hilton, J. F., Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251–8260; https://doi.org/10.1021/ja00179a005.Suche in Google Scholar
15. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A.Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. Gaussian‘09 Revision D.01; Gaussian Inc: Wallingford, 2013.Suche in Google Scholar
16. Todd, A. K. AIMAll (Version 11.10.16); TK Gristmill Software, 2011.Suche in Google Scholar
17. Bader, R. W. F. Atoms in Molecules: A Quantum Theory; Clarendon Press: Oxford, 1990.10.1093/oso/9780198551683.001.0001Suche in Google Scholar
18. Kruszewski, J., Krygowski, T. M. Tetrahedron Lett. 1972, 13, 3839–3842; https://doi.org/10.1016/s0040-4039(01)94175-9.Suche in Google Scholar
19. Krygowski, T. M. J. Chem. Inf. Comput. Sci. 1993, 33, 70–78; https://doi.org/10.1021/ci00011a011.Suche in Google Scholar
20. Schleyer, P. v. R., Marker, C., Dransfeld, A., Jiao, H. J., van Eikema Hommes, N. J. R. J. Am. Chem. Soc. 1996, 118, 6317–6318; https://doi.org/10.1021/ja960582d.Suche in Google Scholar PubMed
21. Stepanovs, D., Mishnev, A. Z. Naturforsch. 2012, 67b, 491–494; https://doi.org/10.5560/znb.2012-0073.Suche in Google Scholar
22. Barbas, R., Font-Bardia, M., Prohens, R. Cryst. Growth Des. 2018, 18, 3740–3746.10.1021/acs.cgd.8b00683Suche in Google Scholar
23. Wawer, I., Pisklak, M., Chlimonczyk, Z. J. Pharm. Biomed. Anal. 2005, 38, 865–870.10.1016/j.jpba.2005.01.046Suche in Google Scholar PubMed
24. Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B., Nesbitt, D. J. Pure Appl. Chem. 2011, 83, 1637–1641; https://doi.org/10.1351/pac-rec-10-01-02.Suche in Google Scholar
25. Grabowski, S. Hydrogen Bonding – New Insights; Springer-Verlag: New York, 2006.10.1007/978-1-4020-4853-1Suche in Google Scholar
26. Legon, A. C., Millen, D. J. Chem. Soc. Rev. 1987, 16, 467–498; https://doi.org/10.1039/cs9871600467.Suche in Google Scholar
27. Popelier, P. Atoms in Molecules. An Introduction; Pearson Education Limited: Harlow, 2000.Suche in Google Scholar
28. Krygowski, T. M., Szatyłowicz, H. Chem. Texts 2015, 1, 12; https://doi.org/10.1007/s40828-015-0012-2.Suche in Google Scholar PubMed PubMed Central
29. Krygowski, T. M., Stępień, B. T. Chem. Rev. 2005, 105, 3482–3512; https://doi.org/10.1021/cr030081s.Suche in Google Scholar PubMed
30. Zborowski, K. K. Chemistry 2019, 2, 47.Suche in Google Scholar
31. Zborowski, K. K., Jezierski, G., Kim, Y., Proniewicz, L. M. Z. Phys. Chem. 2013, 227, 481–491; https://doi.org/10.1524/zpch.2013.0351.Suche in Google Scholar
32. Mohammadpour, M., Zborowski, K. K., Heidarpoor, S., Żuchowski, G., Proniewicz, L. M. Comput. Theor. Chem. 2016, 1078, 96–103; https://doi.org/10.1016/j.comptc.2015.12.023.Suche in Google Scholar
33. Zborowski, K. K. Chem. Phys. Lett. 2012, 545, 144–146; https://doi.org/10.1016/j.cplett.2012.07.036.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Suppression of steel corrosion via some gemini cationic surfactant-based Schiff base: experimental and theoretical investigations
- Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential
- Eco-benign preparation of biosorbent using Momordica Charantia for the efficient removal of Cr(VI) ions from wastewater
- Oil mediated green synthesis of nano silver in the presence of surfactants for catalytic and food preservation application
- Adsorption properties of metal functionalized fullerene (C59Au, C59Hf, C59Ag, and C59Ir) nanoclusters for application as a biosensor for hydroxyurea (HXU): insight from theoretical computation
- Evaluation of diethylenetriaminepentaacetic acid modified chitosan immobilized in amino-carbmated alginate matrix as a low cost adsorbent for effective Cu(II) recovery
- Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract
- Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites
- Optical and topographic characteristics of silver films deposited from a colloidal solution on polyelectrolytes for IgG-FITC fluorescence analysis
- The three pyridazines, three naphthyridines and two azoles: effect of the position of the second heteroatom on pKaH of their eight conjugate acids
- Theoretical study on the origins of sildenafil tautomers’ relative stability
- Application of the Lennard-Jones potential for calculating the surface tension and the formation enthalpy of a binary solution
- Ultrasonic supported dye removal by a novel biomass
- A novel synthesis of graphene oxide-titanium dioxide (GO-TiO2) and graphene oxide-zinc oxide (GO-ZnO) nanocomposites and their application as effective, reusable photocatalysts for degradation of methylene blue (MB) dye
- Review Article
- Photocatalytic hydrogen generation using TiO2: a state-of-the-art review
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Suppression of steel corrosion via some gemini cationic surfactant-based Schiff base: experimental and theoretical investigations
- Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential
- Eco-benign preparation of biosorbent using Momordica Charantia for the efficient removal of Cr(VI) ions from wastewater
- Oil mediated green synthesis of nano silver in the presence of surfactants for catalytic and food preservation application
- Adsorption properties of metal functionalized fullerene (C59Au, C59Hf, C59Ag, and C59Ir) nanoclusters for application as a biosensor for hydroxyurea (HXU): insight from theoretical computation
- Evaluation of diethylenetriaminepentaacetic acid modified chitosan immobilized in amino-carbmated alginate matrix as a low cost adsorbent for effective Cu(II) recovery
- Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract
- Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites
- Optical and topographic characteristics of silver films deposited from a colloidal solution on polyelectrolytes for IgG-FITC fluorescence analysis
- The three pyridazines, three naphthyridines and two azoles: effect of the position of the second heteroatom on pKaH of their eight conjugate acids
- Theoretical study on the origins of sildenafil tautomers’ relative stability
- Application of the Lennard-Jones potential for calculating the surface tension and the formation enthalpy of a binary solution
- Ultrasonic supported dye removal by a novel biomass
- A novel synthesis of graphene oxide-titanium dioxide (GO-TiO2) and graphene oxide-zinc oxide (GO-ZnO) nanocomposites and their application as effective, reusable photocatalysts for degradation of methylene blue (MB) dye
- Review Article
- Photocatalytic hydrogen generation using TiO2: a state-of-the-art review