Startseite Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract

  • Sahar Esmaili , Paniz Zinsaz , Omid Ahmadi , Yahya Najian , Hamideh Vaghari und Hoda Jafarizadeh-Malmiri EMAIL logo
Veröffentlicht/Copyright: 28. Oktober 2022

Abstract

Using hydro-alcoholic extract of Willow leaf, zinc oxide nanoparticles (ZnO NPs) were synthesized via four accelerated different heating methods namely, Bain-Marie heating (40 °C for 2 h), Conventional heating with stirrer (80 °C for 2 h), hydrothermal autoclave (1.5 atm and 121 °C for 15 min) and microwave irradiation (800 W and 160 °C for 3 min). Calcination process was finally completed on the obtained colloidal solutions in a furnace (350 °C for 2 h). The characteristics of the resulted ZnO NPs including particle size, grain size, crystallinity, specific surface area, morphology, photocatalytic, antioxidant bactericidal activities were estimated using X-ray diffractometry, scanning electron microscopy and Ultraviolet-visible spectroscopy techniques. Attained results indicated that among four different utilized synthetic methods, the fabricated ZnO NPs via Bain-Marie heating, had desired physico-chemical characteristics and bactericidal effect including small particle size (70 nm), high specific area (284 m2/gr), antioxidant activity (28.5%), photocatalytic activity (degradation of 50% of Methylene Blue), and bactericidal effects against Escherichia coli (clear zone diameter of 1.4 ± 0.1 cm) and Staphylococcus aureus (1.3 ± 0.1 cm).


Corresponding author: Hoda Jafarizadeh-Malmiri, Department of Food Engineering, Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran, E-mail:

Acknowledgments

The authors would like to thank the Food Engineering Research Institute of the Sahand University of Technology for material and financial supports.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare that they have no conflict of interest.

References

1. Eshghi, M., Kamali-Shojaei, A., Vaghari, H., Najian, Y., Mohebian, Z., Ahmadi, O., Jafarizadeh-Malmiri, H. Green Process. Synth. 2021, 10, 606; https://doi.org/10.1515/gps-2021-0062.Suche in Google Scholar

2. Bharathi, D., Bhuvaneshwari, V. Res. Chem. Intermed. 2019, 45, 2065; https://doi.org/10.1007/s11164-018-03717-9.Suche in Google Scholar

3. Singh, A., Singh, N., Afzal, S., Singh, T., Hussain, I. J. Mater. Sci. 2018, 53, 185; https://doi.org/10.1007/s10853-017-1544-1.Suche in Google Scholar

4. Yedurkar, S., Maurya, C., Mahanwar, P. OJSTA 2016, 5, 1; https://doi.org/10.4236/ojsta.2016.51001.Suche in Google Scholar

5. Padalia, H., Chanda, S. Artif. Cell Nanomed. Biotechnol. 2017, 45, 1751; https://doi.org/10.1080/21691401.2017.1282868.Suche in Google Scholar PubMed

6. Sayyar, Z., Jafarizadeh-Malmiri, H. Z.Kristallogr. Cryst. Mater. 2019, 234, 307; https://doi.org/10.1515/zkri-2018-2096.Suche in Google Scholar

7. Vahidi, A., Vaghari, H., Najian, Y., Najian, M. J., Jafarizadeh-Malmiri, H. Green Process. Synth. 2019, 8, 302; https://doi.org/10.1515/gps-2018-0097.Suche in Google Scholar

8. Anvarinezhad, M., Javadi, A., Jafarizadeh-Malmiri, H. Green Process. Synth. 2020, 9, 375; https://doi.org/10.1515/gps-2020-0040.Suche in Google Scholar

9. Anvarinezhad, M., Jafarizadeh-Malmiri, H., Javadi, A., Azadmard-Damirchi, S. Green Process. Synth. 2021, 20, 78.Suche in Google Scholar

10. Saemi, R., Taghavi, E., Jafarizadeh-Malmiri, H., Anarjan, N. Green Process. Synth. 2021, 10, 112; https://doi.org/10.1515/gps-2021-0011.Suche in Google Scholar

11. Saravanan, M., Gopinath, V., Chaurasia, M. K., Syed, A., Ameen, F., Purushothaman, N. Microb. Pathog. 2018, 115, 57; https://doi.org/10.1016/j.micpath.2017.12.039.Suche in Google Scholar PubMed

12. Xu, J., Huang, Y., Zhu, S., Abbes, N., Jing, X., Zhang, L. J. Eng. Fibers Fabr. 2021, 16, 1; https://doi.org/10.1177/15589250211046242.Suche in Google Scholar

13. Naveed Ul Haq, A., Nadhman, A., Ullah, I., Mustafa, G., Yasinzai, M., Khan, I. J. Nanomater. 2017, 5, 24.10.1155/2017/8510342Suche in Google Scholar

14. Rajakumar, G., Thiruvengadam, M., Mydhili, G., Gomathi, T., Chung, I.-M. Bioprocess biosyst. Eng. 2018, 41, 21; https://doi.org/10.1007/s00449-017-1840-9.Suche in Google Scholar PubMed

15. Ahmadi, O., Jafarizadeh-Malmiri, H., Jodeiri, N. Green Process. Synth. 2018, 7, 231; https://doi.org/10.1515/gps-2017-0039.Suche in Google Scholar

16. Agarwal, H., Kumar, S. V., Rajeshkumar, S. Resource-Efficient Technol 2017, 3, 406; https://doi.org/10.1016/j.reffit.2017.03.002.Suche in Google Scholar

17. Sulaiman, G. M., Hussien, N. N., Marzoog, T. R., Awad, H. A. Am. J. Biochem. Biotechnol. 2013, 9, 41.10.3844/ajbbsp.2013.41.46Suche in Google Scholar

18. Hanaa, R. F., Abdou, Z. A., Salama, D. A., Ibrahim, M. A., Sror, H. Anm. Agric. Sci. 2011, 56, 1.10.1016/j.aoas.2011.05.007Suche in Google Scholar

19. Lashkarev, G., Demydiuk, P., Yurkov, G. Y., Dmitriev, O., Bykov, O., Klochkov, L., Pyratinskiy, Y., Slynko, E., Khandozhko, A., Popkov, O. Наноструктурное материаловедение. 2010, 8, 663–673; https://dspace.nbuv.gov.ua/handle/123456789/73137.Suche in Google Scholar

20. Anzabi, Y. Green Process. Synth. 2018, 7, 114; https://doi.org/10.1515/gps-2017-0014.Suche in Google Scholar

21. Kawano, T., Imai, H. Cryst. Growth Des. 2006, 6, 1054; https://doi.org/10.1021/cg050338a.Suche in Google Scholar

22. Iqbal, J., Abbasi, B. A., Mahmood, T., Kanwal, S., Ahmad, R., Ashraf, M. J. Mol. Struct. 2019, 1189, 315; https://doi.org/10.1016/j.molstruc.2019.04.060.Suche in Google Scholar

23. Fardood, S. T., Ramazani, A., Moradi, S., Asiabi, P. A. J. Mater. Sci. Mater. Electron. 2017, 28, 13596; https://doi.org/10.1007/s10854-017-6850-5.Suche in Google Scholar

24. Singh, K., Singh, J., Rawat, M. SN Appl. Sci. 2019, 1, 624; https://doi.org/10.1007/s42452-019-0610-5.Suche in Google Scholar

25. Ogunyemi, S. O., Abdallah, Y., Zhang, M., Fouad, H., Hong, X., Ibrahim, E., Masum, M. M. I., Hossain, A., Mo, J., Li, B. Artif. Cell Nanomed. Biotechnol. 2019, 47, 341; https://doi.org/10.1080/21691401.2018.1557671.Suche in Google Scholar PubMed

26. Eskandari-Nojehdehi, M., Jafarizadeh-Malmiri, H., Rahbar-Shahrouzi, J. Nanotechnol. Rev. 2016, 5, 537; https://doi.org/10.1515/ntrev-2016-0064.Suche in Google Scholar

27. Fardsadegh, B., Jafarizadeh-Malmiri, H. Green Process. Synth. 2019, 8, 399; https://doi.org/10.1515/gps-2019-0007.Suche in Google Scholar

Received: 2022-03-07
Accepted: 2022-10-14
Published Online: 2022-10-28
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Original Papers
  3. Suppression of steel corrosion via some gemini cationic surfactant-based Schiff base: experimental and theoretical investigations
  4. Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential
  5. Eco-benign preparation of biosorbent using Momordica Charantia for the efficient removal of Cr(VI) ions from wastewater
  6. Oil mediated green synthesis of nano silver in the presence of surfactants for catalytic and food preservation application
  7. Adsorption properties of metal functionalized fullerene (C59Au, C59Hf, C59Ag, and C59Ir) nanoclusters for application as a biosensor for hydroxyurea (HXU): insight from theoretical computation
  8. Evaluation of diethylenetriaminepentaacetic acid modified chitosan immobilized in amino-carbmated alginate matrix as a low cost adsorbent for effective Cu(II) recovery
  9. Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract
  10. Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocomposites
  11. Optical and topographic characteristics of silver films deposited from a colloidal solution on polyelectrolytes for IgG-FITC fluorescence analysis
  12. The three pyridazines, three naphthyridines and two azoles: effect of the position of the second heteroatom on pKaH of their eight conjugate acids
  13. Theoretical study on the origins of sildenafil tautomers’ relative stability
  14. Application of the Lennard-Jones potential for calculating the surface tension and the formation enthalpy of a binary solution
  15. Ultrasonic supported dye removal by a novel biomass
  16. A novel synthesis of graphene oxide-titanium dioxide (GO-TiO2) and graphene oxide-zinc oxide (GO-ZnO) nanocomposites and their application as effective, reusable photocatalysts for degradation of methylene blue (MB) dye
  17. Review Article
  18. Photocatalytic hydrogen generation using TiO2: a state-of-the-art review
Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2022-0036/html?lang=de
Button zum nach oben scrollen