Startseite Lebenswissenschaften Monoterpenes induce the heat shock response in Arabidopsis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Monoterpenes induce the heat shock response in Arabidopsis

  • Masakazu Hara EMAIL logo , Naoya Yamauchi und Yoshiki Sumita
Veröffentlicht/Copyright: 4. Dezember 2017

Abstract

Monoterpenes are common constituents of essential oils produced by plants. Although it has been reported that monoterpenes enhanced the heat tolerance of plants, the mechanism has not been elucidated. Here, we tested whether 13 monoterpenes promoted the heat shock response (HSR) in Arabidopsis. To assess the HSR-inducing activity of monoterpenes, we produced transgenic Arabidopsis, which has the β-glucuronidase gene driven by the promoter of a small heat shock protein (HSP17.6C-CI) gene. Results indicated that two monocyclic and four bicyclic monoterpenes showed HSR-inducing activities using the reporter gene system. In particular, (−)-perillaldehyde, which is a monocyclic monoterpene, demonstrated the most potent HSR-inducing activity. (−)-Perillaldehyde significantly inhibited the reduction of chlorophyll content by heat shock in Arabidopsis seedlings. Our previous study indicated that chemical HSR inducers such as geldanamycin and sanguinarine inhibited the activity of plant chaperones in vitro. (−)-Perillaldehyde also inhibited chaperone activity, indicating that it might promote the expression of heat shock protein genes by inhibiting chaperones in the plant cell.

References

1. Deryng D, Conway D, Ramankutty N, Price J, Warren R. Global crop yield response to extreme heat stress under multiple climate change futures. Environ Res Lett 2014;9:034011.10.1088/1748-9326/9/3/034011Suche in Google Scholar

2. Wahid A, Gelani S, Ashraf M, Foolad MR. Heat tolerance in plants: an overview. Environ Exp Bot 2007;61:199–223.10.1016/j.envexpbot.2007.05.011Suche in Google Scholar

3. Ruelland E, Zachowski A. How plants sense temperature. Environ Exp Bot 2010;69:225–32.10.1016/j.envexpbot.2010.05.011Suche in Google Scholar

4. Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD. Complexity of the heat stress response in plants. Curr Opin Plant Biol 2007;10:310–6.10.1016/j.pbi.2007.04.011Suche in Google Scholar PubMed

5. Bita CE, Gerats T. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 2013;4:273.10.3389/fpls.2013.00273Suche in Google Scholar PubMed PubMed Central

6. Waters ER. The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot 2013;64:391–403.10.1093/jxb/ers355Suche in Google Scholar PubMed

7. Dat JF, Lopez-Delgado H, Foyer CH, Scott IM. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 1998;116:1351–7.10.1104/pp.116.4.1351Suche in Google Scholar PubMed PubMed Central

8. Saidi Y, Finka A, Chakhporanian M, Zrÿd JP, Schaefer DG, Goloubinoff P. Controlled expression of recombinant proteins in Physcomitrella patens by a conditional heat-shock promoter: a tool for plant research and biotechnology. Plant Mol Biol 2005;59:697–711.10.1007/s11103-005-0889-zSuche in Google Scholar PubMed

9. Saidi Y, Domini M, Choy F, Zryd JP, Schwitzguebel JP, Goloubinoff P. Activation of the heat shock response in plants by chlorophenols: transgenic Physcomitrella patens as a sensitive biosensor for organic pollutants. Plant Cell Environ 2007;30:753–63.10.1111/j.1365-3040.2007.01664.xSuche in Google Scholar PubMed

10. Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M. Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem 2007;282:37794–804.10.1074/jbc.M707168200Suche in Google Scholar PubMed

11. Hara M, Harazaki A, Tabata K. Administration of isothiocyanates enhances heat tolerance in Arabidopsis thaliana. Plant Growth Regul 2013;69:71–7.10.1007/s10725-012-9748-5Suche in Google Scholar

12. Hara M, Kurita I. The natural alkaloid sanguinarine promotes the expression of heat shock protein genes in Arabidopsis. Acta Physiol Plant 2014;36:3337–43.10.1007/s11738-014-1681-ySuche in Google Scholar

13. Yamauchi Y, Kunishima M, Mizutani M, Sugimoto Y. Reactive short-chain leaf volatiles act as powerful inducers of abiotic stress-related gene expression. Sci Rep 2015;26:8030.10.1038/srep08030Suche in Google Scholar PubMed PubMed Central

14. Dudareva N, Pichersky E, Gershenzon J. Biochemistry of plant volatiles. Plant Physiol 2004;135:1893–902.10.1104/pp.104.049981Suche in Google Scholar PubMed PubMed Central

15. Mithöfer A, Boland W. Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 2012;63:431–50.10.1146/annurev-arplant-042110-103854Suche in Google Scholar PubMed

16. Macías FA, Molinillo JM, Varela RM, Galindo JC. Allelopathy – a natural alternative for weed control. Pest Manag Sci 2007;63:327–48.10.1002/ps.1342Suche in Google Scholar PubMed

17. Dayan FE, Cantrell CL, Duke SO. Natural products in crop protection. Bioorg Med Chem 2009;17:4022–34.10.1016/j.bmc.2009.01.046Suche in Google Scholar PubMed

18. Ghosh S, Singh UK, Meli VS, Kumar V, Kumar A, Irfan M, et al. Induction of senescence and identification of differentially expressed genes in tomato in response to monoterpene. PLoS One 2013;8:e76029.10.1371/journal.pone.0076029Suche in Google Scholar PubMed PubMed Central

19. Loreto F, Förster A, Dürr M, Csiky O, Seufert G. On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of Quercus ilex L. fumigated with selected monoterpenes. Plant Cell Environ 1998;21:101–7.10.1046/j.1365-3040.1998.00268.xSuche in Google Scholar

20. Peñuelas J, Llusià J. Linking photorespiration, monoterpenes and thermotolerance in Quercus. New Phytol 2002;155:227–37.10.1046/j.1469-8137.2002.00457.xSuche in Google Scholar

21. Jardine KJ, Jardine AB, Holm JA, Lombardozzi DL, Negron-Juarez RI, Martin ST, et al. Monoterpene ‘thermometer’ of tropical forest-atmosphere response to climate warming. Plant Cell Environ 2017;40:441–52.10.1111/pce.12879Suche in Google Scholar PubMed

22. Matsuoka E, Matsubara T, Takahashi I, Murano H, Hara M. The isoquinoline alkaloid sanguinarine which inhibits chaperone activity enhances the production of heat shock proteins in Arabidopsis. Plant Biotechnol 2016;33:409–13.10.5511/plantbiotechnology.16.1001aSuche in Google Scholar PubMed PubMed Central

23. McLellan CA, Turbyville TJ, Wijeratne EM, Kerschen A, Vierling E, Queitsch C, et al. A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP90 inhibitor. Plant Physiol 2007;145:174–82.10.1104/pp.107.101808Suche in Google Scholar PubMed PubMed Central

24. Murakami A. Modulation of protein quality control systems by food phytochemicals. J Clin Biochem Nutr 2013;52:215–27.10.3164/jcbn.12-126Suche in Google Scholar PubMed PubMed Central

25. Pichersky E. Raguso RA. Why do plants produce so many terpenoid compounds? New Phytol 2016. doi:10.1111/nph. 14178.10.1111/nph.14178Suche in Google Scholar PubMed

26. Godard KA, White R, Bohlmann J. Monoterpene-induced molecular responses in Arabidopsis thaliana. Phytochemistry 2008;69:1838–49.10.1016/j.phytochem.2008.02.011Suche in Google Scholar PubMed

27. Copolovici L, Kännaste A, Pazouki L, Niinemets U. Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments. J Plant Physiol 2012;169:664–72.10.1016/j.jplph.2011.12.019Suche in Google Scholar PubMed

28. Delfine S, Csiky O, Seufert G, Loreto F. Fumigation with exogenous monoterpenes of a non-isoprenoid-emitting oak (Quercus suber): monoterpene acquisition, translocation, and effect on the photosynthetic properties at high temperatures. New Phytol 2000;146:27–36.10.1046/j.1469-8137.2000.00612.xSuche in Google Scholar

29. Omari-Siaw E, Zhu Y, Wang H, Peng W, Firempong CK, Wang YW, et al. Hypolipidemic potential of perillaldehyde-loaded self-nanoemulsifying delivery system in high-fat diet induced hyperlipidemic mice: formulation, in vitro and in vivo evaluation. Eur J Pharm Sci 2016;85:112–22.10.1016/j.ejps.2016.02.003Suche in Google Scholar PubMed

30. Jacob P, Hirt H, Bendahmane A. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol J 2017;15:405–14.10.1111/pbi.12659Suche in Google Scholar PubMed PubMed Central

31. Weigel D, Glazebrook J. Arabidopsis: a laboratory manual. New York, USA: Cold Spring Harbor Laboratory Press, 2002.Suche in Google Scholar

32. Murano H, Matsubara T, Takahashi I, Hara M. A purine-type heat shock protein 90 inhibitor promotes the heat shock response in Arabidopsis. Plant Biotechnol Rep 2017;11:107–13.10.1007/s11816-017-0435-xSuche in Google Scholar

33. Lichtenthaler HK, Buschmann C. Chlorophylls and carotenoids – measurement and characterization by UV-VIS. Current Protocols in Food Analytical Chemistry (CPFA), (Supplement 1), F4.3.1–F4.3.8. New York, USA: John Wiley, 2001.10.1002/0471142913.faf0403s01Suche in Google Scholar


Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/znc-2017-0116).


Received: 2017-06-24
Revised: 2017-09-07
Accepted: 2017-10-27
Published Online: 2017-12-04
Published in Print: 2018-04-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znc-2017-0116/pdf
Button zum nach oben scrollen