Startseite Heteroplasmy and atrazine resistance in Chenopodium album and Senecio vulgaris
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Heteroplasmy and atrazine resistance in Chenopodium album and Senecio vulgaris

  • Michaela Bühler , Arno Bogenrieder , Heinrich Sandermann und Dieter Ernst EMAIL logo
Veröffentlicht/Copyright: 28. Juli 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Atrazine-resistant weeds are well known, and the resistance is primarily caused by a point mutation in the psbA chloroplast gene encoding the photosystem II D1 protein. Heteroplasmy, the presence of different types of chloroplasts in an individual plant, is also very common. Thus, atrazine-resistant weeds may also partly possess the atrazine-binding sequence and vice versa. The region of the psbA gene containing the mutation was sequenced from atrazine-resistant and atrazine-sensitive Chenopodium album and Senecio vulgaris plants. In atrazine-sensitive C. album plants, the expected AGT triplet was found. The atrazine-resistant plants contained the expected base substitution (AGT to GGT); however, in addition the AGT triplet was found. The atrazine-resistant S. vulgaris plants contained the expected GGT sequence, whereas the atrazine-sensitive plants contained both the AGT and GGT sequences. This clearly indicates that in addition to Gly264 also Ser264 is present in atrazine-resistant plants, and vice versa in atrazine-sensitive plants, indicating heteroplasmy in these weeds.


Dedicated to: This article is dedicated to our late colleague Prof. Dr. Heinrich Sandermann who initiated this herbicide project.


Acknowledgments

This work was supported by the Bundesministerium für Bildung und Forschung (BMBF), formerly BMFT, and the Fonds der Chemischen Industrie. We wish to thank Evi Bieber and Elke Gerstner for their excellent technical assistance.

References

1. LeBaron HM, McFarland JE, Burnside OC. The triazine herbicides: a milestone in the development of weed control technology. In: LeBaron HM, McFarland JE, Burnside OC, editors. The triazine herbicides. San Diego: Elsevier, 2008:1–12.10.1016/B978-044451167-6.50004-0Suche in Google Scholar

2. Elmore CL, Lange AH. Triazine herbicides for weed control in fruit and nut crops. In: LeBaron HM, McFarland JE, Burnside OC, editors. The triazine herbicides. San Diego: Elsevier, 2008:211–23.10.1016/B978-044451167-6.50020-9Suche in Google Scholar

3. Ahrens JF, Newton M. Benefiits of triazine herbicides in the production of ornamentals and conifer trees. In: LeBaron HM, McFarland JE, Burnside OC, editors. The triazine herbicides. San Diego: Elsevier, 2008:225–34.10.1016/B978-044451167-6.50021-0Suche in Google Scholar

4. Mitchell PD. Market-level assessment of the economic benefits of atrazine in the United States. Pest Manag Sci 2014;70:1684–96.10.1002/ps.3703Suche in Google Scholar PubMed PubMed Central

5. Australian Pesticides and Veterinary Medicines Authority. Atrazine chemical review. Available at: http://apvma.gov.au/node/12371, 2015. Last accessed Jan 14, 2015.Suche in Google Scholar

6. Stroh K. Pflanzenschutzmittel - Stoffgruppen und Anwendungen. In: UmweltWissen am Bayerischen Landesamt für Umwelt, editor. UmweltWissen. Augsburg, Bayerisches Landesamt für Umwelt, 2008:1–12.Suche in Google Scholar

7. Sass JB, Colangelo A. European Union bans atrazine, while the United States negotiates continued use. Int J Occup Environ Health 2006;12:260–7.10.1179/oeh.2006.12.3.260Suche in Google Scholar PubMed

8. Ryan GF. Resistance of common groundsel to simazine and atrazine. Weed Sci 1970;18:614–6.10.1017/S0043174500034330Suche in Google Scholar

9. Trebst A. The mode of action of triazine herbicides in plants. In: LeBaron HM, McFarland JE, Burnside OC, editors. The triazine herbicides. San Diego: Elsevier, 2008:101–10.10.1016/B978-044451167-6.50011-8Suche in Google Scholar

10. Warwick SI. Herbicide resistance in weedy plants: physiology and population biology. Annu Rev Ecol Syst 1991;22:95–114.10.1146/annurev.es.22.110191.000523Suche in Google Scholar

11. Shukla A, Devine MD. Basis of crop selectivity and weed resistance to triazine herbicides. In: LeBaron HM, McFarland JE, Burnside OC, editors. The triazine herbicides. San Diego: Elsevier, 2008:111–8.10.1016/B978-044451167-6.50012-XSuche in Google Scholar

12. Jia X, Yuan J, Shi Y, Song Y, Wang G, Wang T, et al. A Ser–Gly substitution in plastid-encoded photosystem II D1 protein is responsible for atrazine resistance in foxtail millet (Setaria italica). Plant Growth Regul 2007;52:81–9.10.1007/s10725-007-9181-3Suche in Google Scholar

13. Cseh A, Cernák I, Taller J. Molecular characterization of atrazine resistance in common ragweed (Ambrosia artemisiifolia L.). J Appl Genet 2009;50:321–7.10.1007/BF03195690Suche in Google Scholar PubMed

14. van Oorschot JL. Chlorplastic resistance of weeds to triazines in Europe. In: Caseley JC, Cussans GW, Atkin RK, editors. Herbicide resistance in weeds and crops. Oxford: Butterworth-Heinemann, 1991:87–101.10.1016/B978-0-7506-1101-5.50010-3Suche in Google Scholar

15. Hirschberg J, McIntosh L. Molecular basis of herbicide resistance in Amaranthus hybridus. Science 1983;222:1346–9.10.1126/science.222.4630.1346Suche in Google Scholar

16. Holt JS. Mechanisms and agronomic aspects of herbicide resistance. Annu Rev Plant Phys 1993;44:203–29.10.1146/annurev.pp.44.060193.001223Suche in Google Scholar

17. Hirschberg J, Bleecker A, Kyle DJ, McIntosh L, Arntzen CJ. The molecular basis of triazine-herbicide resistance in higher-plant chloroplasts. Z Naturforsch 1984;39c:412–20.10.1515/znc-1984-0521Suche in Google Scholar

18. Mátyás KK, Taller J, Cseh A, Poczai P, Cernák I. Development of a simple PCR-based assay for the identification of triazine resistance in the noxious plant common ragweed (Ambrosia artemisiifolia) and its applicability in higher plants. Biotechnol Lett 2011;33:2509–15.10.1007/s10529-011-0714-5Suche in Google Scholar

19. Schwenger-Erger C, Thiemann J, Barz W, Johanningmeier U, Naber D. Metribuzin resistance in photoautotrophic Chenopodium rubrum cell cultures. FEBS Lett 1993;329:43–6.10.1016/0014-5793(93)80189-2Suche in Google Scholar

20. Smeda RJ, Hasegawa PM, Goldsbrough PB, Singh NK, Weller SC. A serine-to-threonine substitution in the triazine herbicide-binding protein in potato cells results in atrazine resistance without impairing productivity. Plant Physiol 1993;103:911–7.10.1104/pp.103.3.911Suche in Google Scholar PubMed PubMed Central

21. Sajjaphan K, Shapir N, Judd AK, Wackett LP, Sadowsky MJ. Novel psbA1 gene from a naturally occurring atrazine-resistant cyanobacterial isolate. Appl Environ Microbiol 2002;68:1358–66.10.1128/AEM.68.3.1358-1366.2002Suche in Google Scholar PubMed PubMed Central

22. Anderson MP, Gronwald JW. Atrazine resistance in a velvetleaf (Abutilon theophrasti) biotype due to enhanced glutathione S-transferase activity. Plant Physiol 1991;96:104–9.10.1104/pp.96.1.104Suche in Google Scholar PubMed PubMed Central

23. Gray JA, Balke NE, Stoltenberg DE. Increased glutathione conjugation of atrazine confers resistance in a Wisconsin velvetleaf (Abutilon theophrasti) biotype. Pestic Biochem Physiol 1996;55:157–71.10.1006/pest.1996.0045Suche in Google Scholar

24. Cherifi M, Raveton M, Picciocchi A, Ravanel P, Tissut M. Atrazine metabolism in corn seedlings. Plant Physiol Biochem 2001;39:665–72.10.1016/S0981-9428(01)01281-5Suche in Google Scholar

25. Hall LM, Moss SR, Powles SB. Mechanism of resistance to chlorotoluron in two biotypes of the grass weed Alopecurus myosuroides. Pestic Biochem Physiol 1995;53:180–92.10.1006/pest.1995.1066Suche in Google Scholar

26. Menendez J, Bastida F, de Prado R. Resistance to chlortoluron in a downy brome (Bromus tectorum) biotype. Weed Sci 2006;54:237–45.10.1614/WS-05-073R.1Suche in Google Scholar

27. Bettini P, McNally S, Sevignac M, Darmency H, Gasquez J, Dron M. Atrazine resistance in Chenopodium album: low and high levels of resistance to the herbicide are related to the same chloroplast psbA gene mutation. Plant Physiol 1987;84:1442–6.10.1104/pp.84.4.1442Suche in Google Scholar

28. Gasquez J. Mutation for triazine resistance within susceptible populations of Chenopodium album L. In: Caseley JC, Cussans GW, Atkin RK, editors. Herbicide resistance in weeds and crops. Oxford: Butterworth-Heinemann, 1991:103–13.10.1016/B978-0-7506-1101-5.50011-5Suche in Google Scholar

29. Frey JE, Müller-Schärer H, Frey B, Frei D. Complex relation between triazine-susceptible phenotype and genotype in the weed Senecio vulgaris may be caused by chloroplast DNA polymorphism. Theor Appl Genet 1999;99:578–86.10.1007/s001220051271Suche in Google Scholar

30. Frey JE. Genetic flexibility of plant chloroplasts. Nature 1999;398:115–6.10.1038/18139Suche in Google Scholar

31. Frey JE, Frey B, Forcioli D. Quantitative assessment of heteroplasmy levels in Senecio vulgaris chloroplast DNA. Genetica 2005;123:255–61.10.1007/s10709-004-3711-ySuche in Google Scholar

32. Bühler M. Untersuchungen zum Phänomen der Atrazinresistenz bei Chenopodium album L. Freiburg: Doctoral Thesis, Albert-Ludwigs-Universität, 1993.Suche in Google Scholar

33. Bogenrieder A, Bühler M. Zwischen Beharren und Wandel – Pflanzengesellschaften unter dem Einfluß des wirtschaftenden Menschen. In: Hoppe A, editor. Markgräflerland-Entwicklung und Nutzung einer Landschaft. Freiburg: Berichte der Naturforschenden Gesellschaft Freiburg, Vol. 81, 1991:25–64.Suche in Google Scholar

34. Miles CD, Daniel DJ. A rapid screening technique for photosynthetic mutants of higher plants. Plant Sci Lett 1973;1:237–40.10.1016/0304-4211(73)90025-4Suche in Google Scholar

35. Schneiderbauer A, Sandermann H, Ernst D. Isolation of functional RNA from plant tissues rich in phenolic compounds. Anal Biochem 1991;197:91–5.10.1016/0003-2697(91)90360-6Suche in Google Scholar

36. Maniatis T, Fritsch EF, Sambrook J. Molecular cloning: a laboratory manual, 2nd ed. New York: Cold Spring Harbor Laboratory Press, 1989.Suche in Google Scholar

37. Naber D, Johanningmeier U, van Rensen JJ. A rapid method for partial mRNA and DNA sequence analysis of the photosystem II psbA gene. Z Naturforsch 1990;45c:418–22.10.1515/znc-1990-0518Suche in Google Scholar

38. Tautz D, Renz M. An optimed freeze-squeeze method for the recovery of DNA fragments from agarose gels. Anal Biochem 1983;132:14–9.10.1016/0003-2697(83)90419-0Suche in Google Scholar

39. Park KW, Mallory-Smith CA. psbA mutation (Asn266 to Thr) in Senecio vulgaris L. confers resistance to several PS II-inhibiting herbicides. Pest Manag Sci 2006;62:880–5.10.1002/ps.1252Suche in Google Scholar PubMed

40. Darmency H, Gasquez J. Appearance and spread of triazine resistance in common lambsquarters (Chenopodium album). Weed Technol 1990;4:173–7.10.1017/S0890037X00025197Suche in Google Scholar

41. Darmency H, Gasquez J. Inheritance of triazine resistance in Poa annua: consequences for population dynamics. New Phytol 1981;89:487–93.10.1111/j.1469-8137.1981.tb02329.xSuche in Google Scholar

42. Zhang Q, Liu Y, Sodmergen. Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant Cell Physiol 2003;44:941–51.10.1093/pcp/pcg121Suche in Google Scholar PubMed

43. Bendich AJ. Why do chloroplasts and mitochondria contain so many copies of their genome? BioEssays 1987;6:279–82.10.1002/bies.950060608Suche in Google Scholar PubMed

44. Oettmeier W. Herbicides of photosystem II. In: Barber J, editor. The Photosystems: structure, function and molecular biology. Amsterdam: Elsevier, 1992:349–408.10.1016/B978-0-444-89440-3.50018-7Suche in Google Scholar

Received: 2015-7-6
Revised: 2016-7-4
Accepted: 2016-7-4
Published Online: 2016-7-28
Published in Print: 2016-7-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znc-2015-0163/html?lang=de
Button zum nach oben scrollen