Abstract
The methanol extract of the stem heartwood of Garcinia brevipedicellata has furnished three new flavonoid C–O–C dimers, brevipedicilones A (6), B (8) and C (10), along with five previously reported flavonoid dimers, viz. amentoflavone (1), 4″′-O-methylamentoflavone (2), robustaflavone (3), 4′-O-methyl robustaflavone (4) and tetrahinokiflavone (5). The new structures, which are composed of flavanone–flavanonol or flavanonol–flavanonol sub-units, were established based on spectroscopic analysis including 1D and 2D NMR (1H-1H COSY, HSQC, HMBC, and NOESY) spectroscopy, and by comparing their spectral data with those reported for related compounds.
Acknowledgments
We thank the University of Yaounde for financial support, Mr. Lionel Debost for mass spectra and Mr. Nana Victor of the National Herbarium Yaounde for the collection and the identification of plant material.
References
1. Hutchinson J. The families of flowering plants. Oxford University Press, London, 1973.Search in Google Scholar
2. Nkongmeneck BA. Le genre Garcinia (Guttifereae) au Cameroun, diversités et utilisations traditionnelles, Editions universitaires, 2000.Search in Google Scholar
3. Tewtrakul S, Wattanapiromsakul C, Mahabusarakam W. Effects of compounds from Garcinia mangostana on inflammatory mediators in raw 264.7 macrophage cells. J Ethnopharmacol 2009;121:379–82.10.1016/j.jep.2008.11.007Search in Google Scholar
4. Ngoupayou J, Noungoue DT, Lenta BT, Tabopda KT, Khan SN, Ngouela S, et al. Brevipsidone, a new depsidone and other α-glucosidase inhibitors from Garcinia brevipedicellata (Clusiaceae). Nat Prod Commun 2007;2:1141–4.10.1177/1934578X0700201119Search in Google Scholar
5. Ngoupayou J, Tabopda KT, Ali SM, Tsamo E. Alpha-glucosidase inhibitors from Garcinia brevipedicellata (Clusiaceae). Chem Pharm Bull 2008;56:1466–9.10.1248/cpb.56.1466Search in Google Scholar
6. Ndongo JT, Shaaban M, Ngo-Mbing J, Ngono BD, Atchadé AT, Pegnyemb DE, et al. Phenolic dimers and an indole alkaloid from Campylospermum flavum (Ochnaceae). Phytochemistry 2010;71:1872–8.10.1016/j.phytochem.2010.08.006Search in Google Scholar
7. Biswanath D, Guram M, Yerra KR, Anabathula P, Bharatam J. Biflavonoids from Cycas beddomei. Chem Pharm Bull 2005;53:135–6.10.1248/cpb.53.135Search in Google Scholar
8. Gattuso G, Barreca D, Gargiulli C, Leuzzi U, Caristi C. Flavonoid composition of Citrus juices. Molecules 2007;12: 1641–73.10.3390/12081641Search in Google Scholar
9. Agrawal PK. Carbon-13 NMR of flavonoids. Studies in Organic Chemistry Series, 39th ed. Elsevier, Amsterdam, 1990.Search in Google Scholar
10. Venkata SP, Ruo H. Isolation and spectral studies of dihydromyricetin. J Pharmacogn Phytochem 2013;2:113–5.Search in Google Scholar
11. Pelter A, Warren R, Chexal KK, Handa BK, Rahman W. Biflavonyls from Guttifereae: Garcinia livingstonii. Tetrahedron Lett 1971;27:1625–34.10.1016/S0040-4020(01)98028-7Search in Google Scholar
12. Tsukassa I. The structure and distribution of the flavonoids in plants. J Plant Res 2000;113:287–99.10.1007/PL00013940Search in Google Scholar
13. Mohamed K, Khan NA, Sarwar AM, Ilyas MA. A biflavone from Ochna pumila Phytochemistry 1987;26:1171–3.10.1016/S0031-9422(00)82372-9Search in Google Scholar
14. Tih AE, Ghogomu TR, Sondengam BL, Caux C, Bodo B. Minor biflavonoids from Lophira alata leaves. J Nat Prod 2006;69:1206–8.10.1021/np050169wSearch in Google Scholar PubMed
15. Abderamane B, Tih AE, Ghogomu TR, Blonde A, Bodo B. Isoflavonoid derivatives from Lophira alata stem heartwood. Z Naturforsch 2011;66c:87–92.10.1515/znc-2011-3-401Search in Google Scholar
16. Lin YM, Chen FC, Lee KH. Hinokiflavone, a cytotoxic principle from Rhus succedanea and the cytotoxicity of the related biflavonoids. Planta Med 1989;55:166–8.10.1055/s-2006-961914Search in Google Scholar
17. Jayaprakasam B. Damu AG. Gunaseker D, Blond A, Bodo B. A biflavonone from Cycas beddomei. Phytochemistry 2000;53:515–7.10.1016/S0031-9422(99)00567-1Search in Google Scholar
18. Biswanath D, Gurram M, Yerra KR, Ponnaboina T. A new biflavonoid from Cycas beddomei. Indian J Chem 2006;45B:1933–5.Search in Google Scholar
19. Kumar N, Singh B, Bhandari P, Gupta AP, Uniyal SK, Kaul VK. Biflavonoids from Lonicera japonica. Phytochemistry 2005;66:2740–4.10.1016/j.phytochem.2005.10.002Search in Google Scholar
20. Lenta NB, Tantangmo F, Devkota PK, Wansi JD, Chouna JR, Fongang SR, et al. Bioactive constituents of the stem bark of Beilschmiedia zenkeri. J Nat Prod 2009;72:2130–4.10.1021/np900341fSearch in Google Scholar
21. Gómez-Garibay F, Calderón JS, Quijano L, Téllez O, Olivares MS. An unusual prenyl biflavanol from Tephrosia tepicana. Phytochemistry 1997;46:1151–301.10.1016/S0031-9422(97)80029-5Search in Google Scholar
22. Graham JB, Hiok-Huang L. Xanthones from Guttiferae. Phytochemistry 1989;28:967–98.10.1016/0031-9422(89)80170-0Search in Google Scholar
23. Yuan-Jian JX, Yee-Hing L, Zamrie I, Swee-Hock G. Xanthones from Garcinia parvifolia. J Nat Prod 2001;64:1191–5.10.1021/np0101393Search in Google Scholar PubMed
24. Na-Pattalung P, Thongtheeraparp W, Wiriyachitra P, Taylor WC. Xanthones of Garcinia cowa. Planta Med 1994;60:365–8.10.1055/s-2006-959502Search in Google Scholar PubMed
25. Ragasa CY, Crisostomo JJ, Garcia KD, Shen CC. Antimicrobial xanthones from Garcinia mangostana L. Philipp Scient 2010;47:63–75.Search in Google Scholar
26. Zeng X, Lei H, Xiao HC, Xiao FZ, Xiao JQ, Gong KF, et al. Cytotoxic xanthones from the pericap of Garcinia magostana. Molecules 2014;19:1820–7.10.3390/molecules19021820Search in Google Scholar PubMed PubMed Central
27. Lip JM, Khalid R, Abas F, Shaari K, Hui LS, Stanslas J, et al. Cytotoxic xanthones from Garcinia penangiana Pierre. Z Naturforsch 2007;62c:786–92.10.1515/znc-2007-11-1202Search in Google Scholar PubMed
28. Han QB, Tian HL, Yang NY, Qiao CF, Song JZ, Chang DC, et al. Polyprenylated xanthones from Garcinia lancilimba. showing apoptotic effects against HeLa-C3 cells. Chem Biodivers 2008;5:2710–7.10.1002/cbdv.200890225Search in Google Scholar PubMed
29. Nontakham J, Charoenram N, Upamai W, Taweechotipatr M, Suksamrarn S. Anti Helicobacter pylori xanthones from Garcinia fusca. Arch Pharm Res 2014;37:972–7.10.1007/s12272-013-0266-4Search in Google Scholar PubMed
30. Osorio E, Londoño J, Bastida J. Low-density lipoprotein (LDL)-antioxidant biflavonoids from Garcinia madruno. Molecules 2013;18:6092–100.10.3390/molecules18056092Search in Google Scholar PubMed PubMed Central
31. Ferreira RO, Carvalho MG, Tania MS. Occurrence of biflavonoids in Clusiaceae: chemical and pharmacological aspects. Quím Nova 2012;35:2271–7.10.1590/S0100-40422012001100035Search in Google Scholar
32. Yang H, Figueroa M, To S, Baggett S, Jiang B, Basile MJ, et al. Bioactive benzophenones from Garcinia xanthochymus fruits. J Agric Food Chem 2010;58:4749–55.10.1021/jf9046094Search in Google Scholar PubMed
33. Kaikabo A, Eloff JN. Antibacterial activity of two biflavonoids from Garcinia livingstonei leaves against Mycobacterium smegmatis. J Ethnopharmacol 2011;138:253–5.10.1016/j.jep.2011.08.023Search in Google Scholar PubMed
34. Tetsuro I, Renpei Y, Tatsuya W, Koki M, Masayoshi O, Hideko N, et al. Isolation of six isoprenylated biflavonoids from the leaves of Garcinia subelliptica. Chem Pharm Bull 2013;61:551–8.10.1248/cpb.c12-01057Search in Google Scholar PubMed
©2016 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In vitro neuroprotective potential of the monoterpenes α-pinene and 1,8-cineole against H2O2-induced oxidative stress in PC12 cells
- Neem tree (Azadirachta indica) extract specifically suppresses the growth of tumors in H22-bearing Kunming mice
- Orofacial antinociceptive effect of the ethanolic extract of Annona vepretorum Mart. (Annonaceae)
- Identification and characterization of microRNAs and their target genes from Nile tilapia (Oreochromis niloticus)
- Chemotherapeutic effect of Berberis integerrima hydroalcoholic extract on colon cancer development in the 1,2-dimethyl hydrazine rat model
- New flavonoid C–O–C dimers and other chemical constituents from Garcinia brevipedicellata stem heartwood
- GDP-D-mannose pyrophosphorylase from Pogonatherum paniceum enhances salinity and drought tolerance of transgenic tobacco
- Hypoglycemic activity of Gleditsia caspica extract and its saponin-containing fraction in streptozotocin-induced diabetic rats
- Antinociceptive activity of Tibouchina pereirae, an endemic plant from the Brazilian semiarid region
- Heteroplasmy and atrazine resistance in Chenopodium album and Senecio vulgaris
- Extremely high boron tolerance in Puccinellia distans (Jacq.) Parl. related to root boron exclusion and a well-regulated antioxidant system
Articles in the same Issue
- Frontmatter
- In vitro neuroprotective potential of the monoterpenes α-pinene and 1,8-cineole against H2O2-induced oxidative stress in PC12 cells
- Neem tree (Azadirachta indica) extract specifically suppresses the growth of tumors in H22-bearing Kunming mice
- Orofacial antinociceptive effect of the ethanolic extract of Annona vepretorum Mart. (Annonaceae)
- Identification and characterization of microRNAs and their target genes from Nile tilapia (Oreochromis niloticus)
- Chemotherapeutic effect of Berberis integerrima hydroalcoholic extract on colon cancer development in the 1,2-dimethyl hydrazine rat model
- New flavonoid C–O–C dimers and other chemical constituents from Garcinia brevipedicellata stem heartwood
- GDP-D-mannose pyrophosphorylase from Pogonatherum paniceum enhances salinity and drought tolerance of transgenic tobacco
- Hypoglycemic activity of Gleditsia caspica extract and its saponin-containing fraction in streptozotocin-induced diabetic rats
- Antinociceptive activity of Tibouchina pereirae, an endemic plant from the Brazilian semiarid region
- Heteroplasmy and atrazine resistance in Chenopodium album and Senecio vulgaris
- Extremely high boron tolerance in Puccinellia distans (Jacq.) Parl. related to root boron exclusion and a well-regulated antioxidant system