Abstract
The new double salt with the empirical formula (NH4)4[SO4][CB11H12]2 can be obtained by the reaction between an aqueous solution of the free acid of the closo-carbaborate (H3O)[CB11H12] and aqueous ammonia (NH3), when the incorporated sulfate anions are introduced by a cation exchanger due to its regeneration with sulfuric acid (H2SO4). (NH4)4[SO4][CB11H12]2 is yielded as colorless, prismatically shaped crystals with a considerable size up to 1 mm. This ammonium sulfate carbaborate crystallizes in the monoclinic space group C2/c with the lattice parameters a = 2715.32(9), b = 713.91(2), c = 1391.24(5) pm and β = 109.203(2)° with four formula units per unit cell. Due to the formation of bridging hydrogen bonds, the [SO4]2− anions and the (NH4)+ cations form
Acknowledgment
We like to thank Dr. Falk Lissner for the single-crystal X-ray diffraction measurement.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Duchêne, L.; Kühnel, R.-S.; Rentsch, D.; Remhof, A.; Hagemann, H.; Battaglia, C. A Highly Stable Sodium Solid-State Electrolyte Based on a Dodeca/decaborate Equimolar Mixture. Chem. Comm. 2017, 53, 4195–4198; https://doi.org/10.1039/c7cc00794a.Suche in Google Scholar PubMed
2. Garcia, A.; Müller, G.; Černý, R.; Rentsch, D.; Asakura, R.; Battaglia, C.; Remhof, A. Li4[B10H10][B12H12] as Solid Electrolyte for Solid-State Lithium Batteries. J. Mater. Chem. A 2023, 11, 18996–19003; https://doi.org/10.1039/d3ta03914e.Suche in Google Scholar
3. Tang, W. S.; Unemoto, A.; Zhou, W.; Stavila, V.; Matsuo, M.; Wu, H.; Orimo, S.-I.; Udovic, T. J. Unparalleled Lithium and Sodium Superionic Conduction in Solid Electrolytes with Large Monovalent Cage-like Anions. Energy Environ. Sci. 2015, 8, 3637–3645; https://doi.org/10.1039/c5ee02941d.Suche in Google Scholar PubMed PubMed Central
4. Hakkak, R. A.; Schleid, Th. Crystal Structure and Thermal Behavior of Three Potential High-Energy Compounds of Hydro-Closo-Borates with Guanidinium. J. Solid State Chem. 2024, 329, 124416 (7 pages).10.1016/j.jssc.2023.124416Suche in Google Scholar
5. Zimmermann, L. W.; Hakkak, R. A.; Ranjbar, M.; Schleid, Th. Crystal Structures and Thermal Analyses of Three New High-Energy Hydrazinium Hydro-Closo-Borates. Int. J. Hydrogen Energy 2024, 49, 1469–1477.10.1016/j.ijhydene.2023.10.078Suche in Google Scholar
6. Derdziuk, J.; Malinowski, P. J.; Jaroń, T. Synthesis, Structural Characterization and Thermal Decomposition Studies of (N2H5)2[B12H12] and its Solvates. Int. J. Hydrogen Energy 2019, 44, 27030–27038; https://doi.org/10.1016/j.ijhydene.2019.08.158.Suche in Google Scholar
7. Bareiß, K. U.; Friedly, A.; Schleid, Th. Die unerwartete Kristallstruktur des Cäsium-Dodekahydro-Monocarba-closo-Dodekaborats Cs[CB11H12]. Z. Naturforsch. 2020, 75b, 1049–1059.10.1515/znb-2020-0172Suche in Google Scholar
8. Černý, R.; Brighi, M.; Wu, H.; Zhou, W.; Dimitrievska, M.; Murgia, F.; Gulino, V.; Jongh, P. E. de.; Trump, B. A.; Udovic, T. J. Thermal Polymorphism in Cs[CB11H12]. Molecules 2023, 28, 2296 (12 pages); https://doi.org/10.3390/molecules28052296.Suche in Google Scholar PubMed PubMed Central
9. Tiritiris, I.; Schleid, Th. Die Dodekahydro‐closo‐Dodekaborate M2[B12H12] der schweren Alkalimetalle (M+ = K+, Rb+, NH4+, Cs+) und ihre formalen Iodid‐Addukte M3I[B12H12] (≡ MI ∙ M2[B12H12]). Z. Anorg. Allg. Chem. 2003, 629, 1390–1402; https://doi.org/10.1002/zaac.200300098.Suche in Google Scholar
10. Schouwink, P.; Sadikin, Y.; van Beek, W.; Černý, R. Experimental Observation of Polymerization from [BH4]– to [B12H12]2– in Mixed-Anion A3[BH4][B12H12](A = Rb+, Cs+). Int. J. Hydrogen Energy 2015, 40, 10902–10907; https://doi.org/10.1016/j.ijhydene.2015.06.022.Suche in Google Scholar
11. Tiritiris, I.; Schneck, C.; Schleid, Th. Cs3B13H16: A Mixed-Anion Cesium Hydroborate According to Cs3[BH4][B12H12]. Z. Kristallogr. 2004, 21, 185.Suche in Google Scholar
12. Hakkak, R. A.; Tiritiris, I.; Schleid, Th. Synthesis and Characterization of High-Energy Anti-Perovskite Compounds Cs3X[B12H12] Based on Cesium Dodecahydro-Closo-Borate with Molecular Oxoanions (X– = [NO3]–, [ClO3]– and [ClO4]–). Molecules 2024, 29, 382 (13 pages); https://doi.org/10.3390/molecules29020382.Suche in Google Scholar PubMed PubMed Central
13. Körbe, S.; Schreiber, P. J.; Michl, J. Chemistry of the Carba-Closo-Dodecaborate(–) Anion, CB11H12–. Chem. Rev. 2006, 106, 5208–5249; https://doi.org/10.1021/cr050548u.Suche in Google Scholar PubMed
14. Dimitrieska, M.; Wu, H.; Stavila, V.; Babanova, O. A.; Skoryunov, R. V.; Soloninin, A. V.; Zhou, W.; Trump, B. A.; Andersson, M. S.; Skripov, A. V.; Udovic, T. J. Structural and Dynamical Properties of Potassium Dodecahydro-Monocarba-Closo-Dodecaborate: K[CB11H12]. J. Phys. Chem. C 2020, 33, 17992–18002.10.1021/acs.jpcc.0c05038Suche in Google Scholar PubMed PubMed Central
15. Bareiß, K. U.; Enseling, D.; Jüstel, T.; Schleid, Th. Crystal Structure, Raman Spectrum and Tl+ Lone-Pair Luminescence of Thallium(I) Dodecahydro-Monocarba-Closo-Dodecaborate Tl[CB11H12]. Crystals 2022, 12, 1840 (13 pages).10.3390/cryst12121840Suche in Google Scholar
16. Brighi, M.; Murgia, F.; Łodziana, Z.; Černý, R. Structural Phase Transitions in Closo-Dicarbadodecaboranes C2B10H12. Inorg. Chem. 2022, 61, 5813–5823; https://doi.org/10.1021/acs.inorgchem.1c04022.Suche in Google Scholar PubMed PubMed Central
17. Simon, A. Empty, Filled, and Condensed Metal Clusters. J. Solid State Chem. 1985, 57, 2–16; https://doi.org/10.1016/s0022-4596(85)80055-4.Suche in Google Scholar
18. Cordier, S.; Simon, A. The First Chlorofluoride in Niobium Cluster Chemistry Structure of the Double Salt: NaxNb7F21−yCly (x ∼ 2; y ∼ 8). Solid State Sci. 1999, 1, 199–209; https://doi.org/10.1016/s1293-2558(00)80075-8.Suche in Google Scholar
19. Sheldrick, G. M. Shelxl-97, Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen (Germany), 1997.Suche in Google Scholar
20. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar PubMed PubMed Central
21. Sheldrick, G. M. Shelxs-97 Program for the Solution of Crystal Structures; University of Göttingen: Göttingen (Germany), 1997.Suche in Google Scholar
22. Balz, D.; Plieth, K. Die Struktur des Kaliumnickelfluorids K2NiF4. Z. Elektrochem. 1955, 59, 545–551; https://doi.org/10.1002/bbpc.19550590613.Suche in Google Scholar
23. Tiritiris, I.; Weidlein, J.; Schleid, Th. Dodekahydro-closo-Dodekaborat-Halogenide der schweren Alkalimetalle mit der Formel M3X[B12H12] (M = K – Cs, NH4 ; X = Cl und Br) / Dodecahydro-closo-dodecaborate Halides of the Heavy Alkali Metals with the Formula M3X[B12H12] (M = K – Cs, NH4 ; X = Cl and Br). Z. Naturforsch. 2005, 60b, 627–639; https://doi.org/10.1515/znb-2005-0605.Suche in Google Scholar
24. Schlemper, E. O.; Hamilton, W. C. Neutron-Diffraction Study of the Structures of Ferroelectric and Paraelectric Ammonium Sulfate. J. Chem. Phys. 1966, 44, 4498–4509; https://doi.org/10.1063/1.1726666.Suche in Google Scholar
25. Comodi, P.; Fastelli, M.; Criniti, G.; Glazyrin, K.; Zucchini, A. High-Pressure Behavior of Mascagnite from Single Crystal Synchrotron X-Ray Diffraction Data. Crystals 2021, 11, 976 (13 pages); https://doi.org/10.3390/cryst11080976.Suche in Google Scholar
26. Malec, L. M.; Gryl, M.; Stadnicka, K. M. Unmasking the Mechanism of Structural Para-To-Ferroelectric Phase Transition in (NH4)2SO4. Inorg. Chem. 2018, 57, 4340–4351; https://doi.org/10.1021/acs.inorgchem.7b03161.Suche in Google Scholar PubMed
27. Černý, R.; Brighi, M.; Murgia, F.; Udovic, T. J. Thermal Polymorphism of Rb[CB11H12]. Unpublished Results, Personal Communication, 2023.Suche in Google Scholar
28. Kononova, E. G.; Bukalov, S. S.; Leites, L. A.; Lyssenko, K. A.; Ol’shevskaya, V. A. Vibrational Spectra and Structure of Cesium Salts of Icosahedral Monocarba-Closo-Dodecarborate Anion, [CB11H12]–, and its Nido-Derivative, [CB10H13]–. Russ. Chem. Bull. Int. 2003, 52, 85–92. https://doi.org/10.1023/a:1022436029305.10.1023/A:1022436029305Suche in Google Scholar
29. Venkateswarlu, P.; Bist, H. D.; Jain, Y. S. Laser-excited Raman Spectrum of Ammonium Sulfate Single Crystals. J. Raman Spectrosc. 1975, 3, 143–151; https://doi.org/10.1002/jrs.1250030205.Suche in Google Scholar
30. Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. 1976, A32, 751–767; https://doi.org/10.1107/s0567739476001551.Suche in Google Scholar
31. Sidey, V. On the Effective Ionic Radii for Ammonium. Acta Crystallogr. 2016, B72, 626–633; https://doi.org/10.1107/s2052520616008064.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research Articles
- Polyphosphoric acid (PPA): a new, highly efficient catalyst for the synthesis of functionalized azepino phthalazine hybrids
- State-dependent gas chromatography based on flexible and tunable porous coordination polymers
- A novel samarium(III) orotate complex [NaSm(orotate)4(H2O)10]·3H2O – crystal structure and vibrational spectra
- (NH4)4[SO4][CB11H12]2: a new double salt with carbaborate anions crystallizing in a monoclinic variant of the anti-K2NiF4-type structure
- K[Hg(CN)2][H3CCOO]: a pseudo-double salt with mercury(II)-cyanide molecules imbedded into an ionic matrix of potassium acetate
- An aminosilyl-functionalized zincocene
- The stannide SrPd2.23Sn1.73 with CaBe2Ge2-type structure
- Note
- Revisiting Na[C(CN)3] – refinement of the crystal structure from X-ray powder diffraction data, the Raman and IR spectra
- Corrigendum
- Corrigendum zu: Die Serie caesiumhaltiger Thioarsenate(V) der Lanthanoide vom Formeltyp Cs3 Ln[AsS4]2 mit Ln = La–Nd und Sm
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research Articles
- Polyphosphoric acid (PPA): a new, highly efficient catalyst for the synthesis of functionalized azepino phthalazine hybrids
- State-dependent gas chromatography based on flexible and tunable porous coordination polymers
- A novel samarium(III) orotate complex [NaSm(orotate)4(H2O)10]·3H2O – crystal structure and vibrational spectra
- (NH4)4[SO4][CB11H12]2: a new double salt with carbaborate anions crystallizing in a monoclinic variant of the anti-K2NiF4-type structure
- K[Hg(CN)2][H3CCOO]: a pseudo-double salt with mercury(II)-cyanide molecules imbedded into an ionic matrix of potassium acetate
- An aminosilyl-functionalized zincocene
- The stannide SrPd2.23Sn1.73 with CaBe2Ge2-type structure
- Note
- Revisiting Na[C(CN)3] – refinement of the crystal structure from X-ray powder diffraction data, the Raman and IR spectra
- Corrigendum
- Corrigendum zu: Die Serie caesiumhaltiger Thioarsenate(V) der Lanthanoide vom Formeltyp Cs3 Ln[AsS4]2 mit Ln = La–Nd und Sm