Abstract
A (pyrrolidinyldimethylsilyl)tetramethyl zincocene was obtained by salt elimination reaction of the corresponding sodium cyclopentadienide with zinc(II) chloride and was characterized in solution and in the solid state, including the determination of its crystal structure. Furthermore, the zinc center was shown to exhibit Lewis-acidic character by coordination of an N-heterocyclic carbene.
Acknowledgements
Instrumentation and technical assistance for this work were provided by the Service Center X-ray Diffraction, with financial support from Saarland University and the German Science Foundation (INST256/506-1).
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: Support and funding by the Deutsche Forschungsgemeinschaft (DFG; Emmy Noether programme SCHA1915/3-2) is gratefully acknowledged.
-
Data availability: Not applicable.
References
1. Kealy, T. J.; Pauson, P. L. Nature 1951, 168, 1039–1040; https://doi.org/10.1038/1681039b0.Search in Google Scholar
2. Miller, S. A.; Tebboth, J. A.; Tremaine, J. F. J. Chem. Soc. 1952, 632–635; https://doi.org/10.1039/jr9520000632.Search in Google Scholar
3. Laszlo, P.; Hoffmann, R. Angew. Chem. Int. Ed. 2000, 39, 123–124. https://doi.org/10.1002/(sici)1521-3773(20000103)39:1<123::aid-anie123>3.3.co;2-q.10.1002/(SICI)1521-3773(20000103)39:1<123::AID-ANIE123>3.3.CO;2-QSearch in Google Scholar
4. Pauson, P. L. J. Organomet. Chem. 2001, 637–639, 3–6; https://doi.org/10.1016/s0022-328x(01)01126-3.Search in Google Scholar
5. Werner, H. Angew. Chem. Int. Ed. 2012, 51, 6052–6058; https://doi.org/10.1002/anie.201201598.Search in Google Scholar
6. Fischer, E. O.; Hofmann, H. P.; Treiber, A. Z. Naturforsch. B 1959, 14b, 599–600.10.1515/znb-1959-8-922Search in Google Scholar
7. Budzelaar, P. H. M.; Boersma, J.; van der Kerk, G. J. M.; Spek, A. L.; Duisenberg, A. J. M. J. Organomet. Chem. 1985, 281, 123–130; https://doi.org/10.1016/0022-328x(85)87100-x.Search in Google Scholar
8. Haaland, A.; Samdal, S.; Tverdova, N. V.; Girichev, G. V.; Giricheva, N. I.; Shlykov, S. A.; Garkusha, O. G.; Lokshin, B. V. J. Organomet. Chem. 2003, 684, 351–358; https://doi.org/10.1016/s0022-328x(03)00770-8.Search in Google Scholar
9. Fischer, B.; Wijkens, P.; Boersma, J.; van Koten, G.; Smeets, W. J. J.; Spek, A. L.; Budzelaar, P. H. M. J. Organomet. Chem. 1989, 376, 223–233; https://doi.org/10.1016/0022-328x(89)85132-0.Search in Google Scholar
10. Fernández, R.; Grirrane, A.; Resa, I.; Rodríguez, A.; Carmona, E.; Álvarez, E.; Gutiérrez-Puebla, E.; Monge, Á.; López del Amo, J. M.; Limbach, H.-H.; Lledós, A.; Maseras, F.; del Río, D. Chem. Eur. J. 2009, 15, 924–935; https://doi.org/10.1002/chem.200801917.Search in Google Scholar
11. Burkey, D. J.; Hanusa, T. P. J. Organomet. Chem. 1996, 512, 165–173; https://doi.org/10.1016/0022-328x(95)05952-l.Search in Google Scholar
12. Fernández, R.; Resa, I.; del Río, D.; Carmona, E.; Gutiérrez-Puebla, E.; Monge, Á. Organometallics 2003, 22, 381–383; https://doi.org/10.1021/om021018g.Search in Google Scholar
13. Chilleck, M. A.; Braun, T.; Herrmann, R.; Braun, B. Organometallics 2013, 32, 1067–1074; https://doi.org/10.1021/om301181e.Search in Google Scholar
14. Chilleck, M. A.; Braun, T.; Braun, B.; Mebs, S. Organometallics 2014, 33, 551–560; https://doi.org/10.1021/om401076g.Search in Google Scholar
15. Nugent, K. W.; Beattie, J. K.; Hambley, T. W.; Snow, M. R. Aust. J. Chem. 1984, 37, 1601–1606; https://doi.org/10.1071/ch9841601.Search in Google Scholar
16. Jochmann, P.; Stephan, D. W. Chem. Eur. J. 2014, 20, 8370–8378; https://doi.org/10.1002/chem.201402875.Search in Google Scholar PubMed
17. Mohamad, M.; Lambert, J.; Wirtz, L.; Morgenstern, B.; Schäfer, A. Z. Naturforsch. 2023, 78b, 363–368.10.1515/znb-2023-0012Search in Google Scholar
18. Gridnev, I. D. Coord. Chem. Rev. 2008, 252, 1798–1818; https://doi.org/10.1016/j.ccr.2007.10.021.Search in Google Scholar
19. Fisher, B.; van Mier, G. P. M.; Boersma, J.; Smeets, W. J. J.; Spek, A. L. J. Organomet. Chem. 1987, 322, C37–C40.10.1016/S0022-328X(00)99371-9Search in Google Scholar
20. Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. Organometallics 2010, 29, 2176–2179; https://doi.org/10.1021/om100106e.Search in Google Scholar
21. Kuhn, N.; Kratz, T. Synthesis 1993, 1993, 561–562; https://doi.org/10.1055/s-1993-25902.Search in Google Scholar
22. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central
23. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar
24. Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B. J. Appl. Crystallogr. 2011, 44, 1281–1284; https://doi.org/10.1107/s0021889811043202.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Polyphosphoric acid (PPA): a new, highly efficient catalyst for the synthesis of functionalized azepino phthalazine hybrids
- State-dependent gas chromatography based on flexible and tunable porous coordination polymers
- A novel samarium(III) orotate complex [NaSm(orotate)4(H2O)10]·3H2O – crystal structure and vibrational spectra
- (NH4)4[SO4][CB11H12]2: a new double salt with carbaborate anions crystallizing in a monoclinic variant of the anti-K2NiF4-type structure
- K[Hg(CN)2][H3CCOO]: a pseudo-double salt with mercury(II)-cyanide molecules imbedded into an ionic matrix of potassium acetate
- An aminosilyl-functionalized zincocene
- The stannide SrPd2.23Sn1.73 with CaBe2Ge2-type structure
- Note
- Revisiting Na[C(CN)3] – refinement of the crystal structure from X-ray powder diffraction data, the Raman and IR spectra
- Corrigendum
- Corrigendum zu: Die Serie caesiumhaltiger Thioarsenate(V) der Lanthanoide vom Formeltyp Cs3 Ln[AsS4]2 mit Ln = La–Nd und Sm
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Polyphosphoric acid (PPA): a new, highly efficient catalyst for the synthesis of functionalized azepino phthalazine hybrids
- State-dependent gas chromatography based on flexible and tunable porous coordination polymers
- A novel samarium(III) orotate complex [NaSm(orotate)4(H2O)10]·3H2O – crystal structure and vibrational spectra
- (NH4)4[SO4][CB11H12]2: a new double salt with carbaborate anions crystallizing in a monoclinic variant of the anti-K2NiF4-type structure
- K[Hg(CN)2][H3CCOO]: a pseudo-double salt with mercury(II)-cyanide molecules imbedded into an ionic matrix of potassium acetate
- An aminosilyl-functionalized zincocene
- The stannide SrPd2.23Sn1.73 with CaBe2Ge2-type structure
- Note
- Revisiting Na[C(CN)3] – refinement of the crystal structure from X-ray powder diffraction data, the Raman and IR spectra
- Corrigendum
- Corrigendum zu: Die Serie caesiumhaltiger Thioarsenate(V) der Lanthanoide vom Formeltyp Cs3 Ln[AsS4]2 mit Ln = La–Nd und Sm