Home Structure and spectroscopic properties of etherates of the beryllium halides
Article
Licensed
Unlicensed Requires Authentication

Structure and spectroscopic properties of etherates of the beryllium halides

  • Deniz F. Bekiş , Lewis R. Thomas-Hargreaves , Chantsalmaa Berthold , Sergei I. Ivlev and Magnus R. Buchner EMAIL logo
Published/Copyright: March 8, 2023
Become an author with De Gruyter Brill

Abstract

The synthesis of beryllium halide etherates and the solution behavior in benzene, dichloromethane, and chloroform was studied by NMR, IR, and Raman spectroscopy. Mononuclear units of [BeX2(L)2] (X = Cl, Br, I; L = Et2O, thf) were identified as the favorably formed species in solution. Treatment of the mononuclear diethyl ether beryllium halide adduct with one equivalent beryllium halide formed the dinuclear compounds [BeX2(OEt2)]2 (X = Cl, Br, I). The solid-state structures of [BeCl2(thf)2] and [BeBr2(thf)2] have been determined by single crystal X-ray diffraction analysis. [BeI2(thf)2] decomposed in all solvents. In CD2Cl2 the salt [Be(thf)4]I2 was formed, whereas in C6D6 and CDCl3, BeI2 precipitated and [BeI(thf)3]+, [Be(thf)4]2+ together with the thf ring-opening product [Be(μ2-O(CH2)4I)I(thf)]2 were observed in solution.


Dedicated to Professor Gerhard Müller on the occasion of his 70th birthday.



Corresponding author: Magnus R. Buchner, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany, E-mail:

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: BU2725/8-1

Award Identifier / Grant number: BU2725/8-2

Acknowledgement

M.R.B. thanks Prof. F. Kraus for moral and financial support as well as the provision of laboratory space. The DFG is gratefully acknowledged for financial support (BU2725/8-1/2).

  1. Author contributions: D.F.B., L.R.T-H. and C.B. performed the experiments as well as the IR and Raman spectroscopic measurements. D.F.B. and S.I.I. carried out the X-ray single crystal analysis. D.F.B., L.R.T-H. and M.R.B. performed the NMR spectroscopic measurements. M.R.B. originated the central idea and coordinated the work. D.F.B. and M.R.B. analysed the data and wrote the manuscript.

  2. Research funding: Deutsche Forschungsgemeinschaft: BU2725/8-1/2.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Buchner, M. R. Chem. Eur J. 2019, 25, 12018–12036; https://doi.org/10.1002/chem.201901766.Search in Google Scholar PubMed

2. Walley, J. E., Gilliard, R. J.Jr. Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons, Ltd: Hoboken, New Jersey, United States, 2021; pp. 1–14.10.1002/9781119951438.eibc2788Search in Google Scholar

3. Ruhlandt-Senge, K., Bartlett, R. A., Olmstead, M. M., Power, P. P. Inorg. Chem. 1993, 32, 1724–1728; https://doi.org/10.1021/ic00061a031.Search in Google Scholar

4. Niemeyer, M., Power, P. P. Inorg. Chem. 1997, 36, 4688–4696; https://doi.org/10.1021/ic970319t.Search in Google Scholar PubMed

5. Paparo, A., Jones, C. Chem. Asian J. 2019, 14, 486–490; https://doi.org/10.1002/asia.201801800.Search in Google Scholar PubMed

6. Paparo, A., Smith, C. D., Jones, C. Angew. Chem. Int. Ed. 2019, 58, 11459–11463; https://doi.org/10.1002/anie.201906609.Search in Google Scholar PubMed

7. Jones, C., Stasch, A. Anal. Sci.: X-Ray Struct. Anal. Online 2007, 23, X115–X116; https://doi.org/10.2116/analscix.23.x115.Search in Google Scholar

8. Blomstrand, C. W. Ber. Dtsch. Chem. Ges. 1876, 9, 853–862.10.1002/cber.187600901256Search in Google Scholar

9. Turova, N. Ya., Novoselova, A. V., Semenenko, K. N. Z. Neorg. Khim. 1960, 5, 117–123.Search in Google Scholar

10. Turova, N. Ya., Sitdykova, N. S., Novoselova, A. V., Semenenko, K. N. Z. Neorg. Khim. 1963, 8, 2115.Search in Google Scholar

11. Semenenko, K. N., Lobkovskii, É. B., Simonov, M. A., Shumakov, A. I. J. Struct. Chem. 1977, 17, 460–461; https://doi.org/10.1007/bf00746669.Search in Google Scholar

12. Bel’skii, V. K., Strel’tsova, N. R., Bulychev, B. M., Ivakina, L. V., Storozhenko, P. A. J. Struct. Chem. 1987, 28, 148–149.10.1007/BF00749567Search in Google Scholar

13. Müller, M., Buchner, M. R. Chem. Eur J. 2019, 25, 11147–11156.10.1002/chem.201902414Search in Google Scholar PubMed PubMed Central

14. Müller, M., Buchner, M. R. Inorg. Chem. 2019, 58, 13276–13284.10.1021/acs.inorgchem.9b02139Search in Google Scholar PubMed

15. Buchner, M. R., Mülle, M., Spang, N. Dalton Trans. 2020, 49, 7708–7712; https://doi.org/10.1039/d0dt01442g.Search in Google Scholar PubMed

16. Buchner, M. R., Thomas-Hargreaves, L. R., Kreuzer, L. K., Spang, N., Ivlev, S. I. Eur. J. Inorg. Chem. 2021, 2021, 4990–4997; https://doi.org/10.1002/ejic.202100812.Search in Google Scholar

17. Kovar, R. A., Morgan, G. L. J. Am. Chem. Soc. 1970, 92, 5067–5072; https://doi.org/10.1021/ja00720a011.Search in Google Scholar

18. Müller, M., Pielnhofer, F., Buchner, M. R. Dalton Trans. 2018, 47, 12506–12510.10.1039/C8DT01756ESearch in Google Scholar PubMed

19. Spang, N., Müller, M., Augustinov, W., Buchner, M. R. Z. Naturforsch. 2020, 75b, 939–949; https://doi.org/10.1515/znb-2020-0141.Search in Google Scholar

20. Plieger, P. G., John, K. D., Keizer, T. S., McCleskey, T. M., Burrell, A. K., Martin, R. L. J. Am. Chem. Soc. 2004, 126, 14651–14658; https://doi.org/10.1021/ja046712x.Search in Google Scholar PubMed

21. Buchanan, J. K., Plieger, P. G. Z. Naturforsch. 2020, 75b, 459–472; https://doi.org/10.1515/znb-2020-0007.Search in Google Scholar

22. Viesser, R. V., Ducati, L. C., Tormena, C. F., Autschbach J. Phys. Chem. Chem. Phys. 2018, 20, 11247–11259.10.1039/C8CP01249KSearch in Google Scholar

23. Paparo, A., de Bruin-Dickason, C. N., Jones, C. Aust. J. Chem. 2020, 73, 1144; https://doi.org/10.1071/ch20129.Search in Google Scholar

24. Braunschweig, H., Gruß, K. Z. Naturforsch. 2011, 66b, 55–57; https://doi.org/10.1515/znb-2011-0109.Search in Google Scholar

25. Müller, M., Buchner, M. R. Angew. Chem. Int. Ed. 2018, 57, 9180–9184.10.1002/anie.201803667Search in Google Scholar PubMed

26. Thomas-Hargreaves, L. R., Müller, M., Spang, N., Ivlev, S. I., Buchner, M. R. Organometallics 2021, 40, 3797–3807; https://doi.org/10.1021/acs.organomet.1c00524.Search in Google Scholar

27. Müller, M., Buchner, M. R. Chem. Eur J. 2019, 25, 16257–16269.10.1002/chem.201903439Search in Google Scholar PubMed PubMed Central

28. Müller, M., Buchner, M. R. Chem. Eur J. 2020, 26, 9915–9922.10.1002/chem.202000259Search in Google Scholar PubMed PubMed Central

29. Otero, A., Fernández-Baeza, J., Antiñolo, A., Carrillo-Hermosilla, F., Tejeda, J., Lara-Sánchez, A., Sánchez-Barba, L., Fernández-López, M., Rodríguez, A. M. López-Solera, I. Inorg. Chem. 2002, 41, 5193–5202; https://doi.org/10.1021/ic020319f.Search in Google Scholar PubMed

30. Fedushkin, I. L., Lukoyanov, A. N., Hummert, M., Schumann, H. Z. Anorg. Allg. Chem. 2008, 634, 357–361; https://doi.org/10.1002/zaac.200700411.Search in Google Scholar

31. Noor, A., Kretschmer, W. P., Glatz, G., Kempe, R. Inorg. Chem. 2011, 50, 4598–4606; https://doi.org/10.1021/ic200318h.Search in Google Scholar PubMed

32. Travia, N. E., Monreal, M. J., Scott, B. L., Kiplinger, J. L. Dalton Trans. 2012, 41, 14514–14523; https://doi.org/10.1039/c2dt31676e.Search in Google Scholar PubMed

33. Arrowsmith, M., Crimmin, R. M., Hill, M. S., Kociok-Köhn, G. Dalton Trans. 2013, 42, 9720–9726; https://doi.org/10.1039/c3dt51021b.Search in Google Scholar PubMed

34. Buchner, M. R. Chem. Commun. 2020, 56, 8895–8907; https://doi.org/10.1039/d0cc03802d.Search in Google Scholar PubMed

35. Buchner, M. R. Z. Naturforsch. 2020, 75b, 405–412; https://doi.org/10.1515/znb-2020-0006.Search in Google Scholar

36. Naglav, D., Buchner, M. R., Bendt, G., Kraus, F., Schulz, S. Angew. Chem. Int. Ed. 2016, 55, 10562–10576; https://doi.org/10.1002/anie.201601809.Search in Google Scholar PubMed

37. X-Area 1.8.1, STOE & Cie GmbH: Darmstadt, Germany, 2018.Search in Google Scholar

38. Ivlev, S. I., Conrad, M., Kraus, F. Z. Kristallogr. 2019, 234, 415–418; https://doi.org/10.1515/zkri-2018-2147.Search in Google Scholar

39. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

40. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar

41. Hübschle, C. B., Sheldrick, G. M., Dittrich, B. J. Appl. Crystallogr. 2011, 44, 1281–1284.10.1107/S0021889811043202Search in Google Scholar PubMed PubMed Central

42. Harris, R. K., Becker, E. D., Cabral de Menezes, S. M., Goodfellow, R., Granger, P. Pure Appl. Chem. 2001, 73, 1795–1818; https://doi.org/10.1351/pac200173111795.Search in Google Scholar

43. MestreNova 14.2.1; Mestrelab Research S. L.: Santiago de Compostela, Spain, 2021.Search in Google Scholar

44. Opus V7.2, Bruker Optik GmbH: Ettlingen, Germany, 2012.Search in Google Scholar

45. Vasilief, I. QtiPlot V1.0.0-Rc13; Bucuresti: Romania, 2020.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2023-0303).


Received: 2023-01-13
Accepted: 2023-01-16
Published Online: 2023-03-08
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung BChemical Sciences. zum 70. Geburtstag
  5. Research Articles
  6. Ferrocenylmethylation of theophylline
  7. Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
  8. Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
  9. 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
  10. The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
  11. N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
  12. Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
  13. Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
  14. Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
  15. Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
  16. Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
  17. Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
  18. Structure and spectroscopic properties of etherates of the beryllium halides
  19. The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
  20. Azido and desamino analogs of the marine natural product oroidin
  21. High-pressure high-temperature preparation of CeGe3
  22. On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
  23. A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
  24. Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
  25. Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
  26. Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies
Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2023-0303/html?lang=en
Scroll to top button