Abstract
The aerobic oxidation of copper(I) to copper(II) was studied in the ionic liquid (IL) 1-n-butyl-3-methylimidazolium acetate [BMIm][OAc]. Temperatures above 100 °C promote the deprotonation of the C2 atom of the imidazolium ring and the dissolution of CuCl. 1H and 13C NMR spectra indicate the formation of the N-heterocyclic carbene (NHC) complex [NHC] CuICl under inert conditions. Upon aerobic oxidation, air-stable blue-green crystals of [BMIm]2[CuII 2(OAc)4Cl2] precipitate in high yield and the NHC is recovered. X-ray diffraction on a single-crystal of the complex salt revealed a monoclinic structure with space group P21/n. The centrosymmetric dinuclear acetate complex [Cu2(OAc)4Cl2]2– has the paddle-wheel motif and is weakly paramagnetic.
Acknowledgments
The authors thank Dr. I. Kuhnert for performing the DSC and TG measurements, Dr. G. S. Thakur and F. Pabst for the measurement and discussion of data on the magnetism and M. A. Herz for help in crystal structure solution. We are grateful to Prof. Dr. S. Kaskel for access to the Biologic device to record the cyclic voltammogram and to Prof. Dr. E. Brunner for access to the NMR, Raman and UV–Vis spectrometers.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest: The authors declare no conflict of interest.
References
1. Wasserscheid, P., Ed. Ionic Liquids in Synthesis; Wiley VCH: Weinheim (Germany), 2002.10.1002/3527600701Search in Google Scholar
2. Hammond, O. S., Mudring, A.-V. Chem. Commun. 2022, 58, 3865–3892; https://doi.org/10.1039/d1cc06543b.Search in Google Scholar PubMed
3. Zhang, T., Doert, T., Wang, H., Zhang, S., Ruck, M. Angew. Chem. Int. Ed. 2021, 60, 22148–22165; https://doi.org/10.1002/anie.202104035.Search in Google Scholar PubMed PubMed Central
4. Taubert, A. Inorganic Nanomaterials Synthesis Using Ionic Liquids. In Encyclopedia of Inorganic and Bioinorganic Chemistry; Scott, R. A., Ed.; John Wiley & Sons: Hoboken, NJ, 2016; pp. 1–14.10.1002/9781119951438.eibc0355.pub2Search in Google Scholar
5. Janiak, C. AIMS Mater. Sci. 2014, 1, 41–44.10.3934/matersci.2014.1.41Search in Google Scholar
6. Nockemann, P., Thijs, B., Pittois, S., Thoen, J., Glorieux, C., Van Hecke, K., Van Meervelt, L., Kirchner, B., Binnemans, K. J. Phys. Chem. B 2006, 110, 20978–20992; https://doi.org/10.1021/jp0642995.Search in Google Scholar PubMed
7. Dupont, D., Renders, E., Raiguel, S., Binnemans, K. Chem. Commun. 2016, 52, 7032–7035; https://doi.org/10.1039/c6cc02350a.Search in Google Scholar PubMed
8. Richter, J., Ruck, M. Molecules 2020, 25, 78; https://doi.org/10.3390/molecules25010078.Search in Google Scholar PubMed PubMed Central
9. Hollóczki, O., Gerhard, D., Massone, K., Szarvas, L., Németh, B., Veszprémi, T., Nyulászi, L. New J. Chem. 2010, 34, 3004; https://doi.org/10.1039/c0nj00380h.Search in Google Scholar
10. Rodríguez, H., Gurau, G., Holbrey, J. D., Rogers, R. D. Chem. Commun. 2011, 47, 3222; https://doi.org/10.1039/c0cc05223j.Search in Google Scholar PubMed
11. Chiarotto, I., Feroci, M., Inesi, A. New J. Chem. 2017, 41, 7840–7843; https://doi.org/10.1039/c7nj00779e.Search in Google Scholar
12. Braunstein, P., Danopoulos, A. A., Simler, T. Chem. Rev. 2019, 119, 3730–3961; https://doi.org/10.1021/acs.chemrev.8b00505.Search in Google Scholar PubMed
13. Lin, J. C. Y., Huang, R. T. W., Lee, C. S., Bhattacharyya, A., Hwang, W. S., Lin, I. J. B. Chem. Rev. 2009, 109, 3561–3598; https://doi.org/10.1021/cr8005153.Search in Google Scholar PubMed
14. Meng, G., Kakalis, L., Nolan, S. P., Szostak, M. Tetrahedron Lett. 2019, 60, 378–381; https://doi.org/10.1016/j.tetlet.2018.12.059.Search in Google Scholar
15. Gurau, G., Rodriguez, H., Kelley, S. P., Janiczek, P., Kalb, R. S., Rogers, R. D. Angew. Chem. Int. Ed. 2011, 50, 12024–12026; https://doi.org/10.1002/anie.201105198.Search in Google Scholar PubMed
16. Xu, A., Guo, X., Xu, R. Int. J. Biol. Macromol. 2015, 81, 1000–1004; https://doi.org/10.1016/j.ijbiomac.2015.09.058.Search in Google Scholar PubMed
17. Liebner, F., Patel, I., Ebner, G., Becker, E., Horix, M., Potthast, A., Rosenau, T. Holzforschung 2010, 64, 161–166.10.1515/hf.2010.033Search in Google Scholar
18. Richter, J., Knies, M., Ruck, M. Chemistry 2021, 10, 97–109; https://doi.org/10.1002/open.202000231.Search in Google Scholar PubMed PubMed Central
19. Richter, J., Ruck, M. RSC Adv. 2019, 9, 29699–29710; https://doi.org/10.1039/c9ra06423k.Search in Google Scholar PubMed PubMed Central
20. Jenniefer, S. J., Muthiah, P. T. Chem. Cent. J. 2013, 7, 1.10.1186/1752-153X-7-35Search in Google Scholar PubMed PubMed Central
21. Serov, N. Y., Shtyrlin, V. G., Islamov, D. R., Kataeva, O. N., Krivolapov, D. B. Acta Crystallogr. Sect. E Crystallogr. Commun. 2018, 74, 981–986; https://doi.org/10.1107/s2056989018008538.Search in Google Scholar PubMed PubMed Central
22. Bette, S., Costes, A., Kremer, R. K., Eggert, G., Tang, C. C., Dinnebier, R. E. Z. Anorg. Allg. Chem. 2019, 645, 988–997; https://doi.org/10.1002/zaac.201900125.Search in Google Scholar
23. Seguin, A. K., Wrighton-Araneda, K., Cortés-Arriagada, D., Cruz, C., Venegas-Yazigi, D., Paredes-García, V. J. Mol. Struct. 2021, 1224, 129172; https://doi.org/10.1016/j.molstruc.2020.129172.Search in Google Scholar
24. Bleaney, B., Bowers, K. D. Proc. R. Soc. A 1952, 214, 451–465.10.1098/rspa.1952.0181Search in Google Scholar
25. Lin, Z., Han, D., Li, S. J. Therm. Anal. Calorim. 2012, 107, 471–475; https://doi.org/10.1007/s10973-011-1454-4.Search in Google Scholar
26. Efimova, A., Hubrig, G., Schmidt, P. Thermochim. Acta 2013, 573, 162–169; https://doi.org/10.1016/j.tca.2013.09.023.Search in Google Scholar
27. Efimova, A., Varga, J., Matuschek, G., Saraji-Bozorgzad, M. R., Denner, T., Zimmermann, R., Schmidt, P. J. Phys. Chem. B 2018, 122, 8738–8749; https://doi.org/10.1021/acs.jpcb.8b06416.Search in Google Scholar PubMed
28. Allen, S. E., Walvoord, R. R., Padilla-Salinas, R., Kozlowski, M. C. Chem. Rev. 2013, 113, 6234–6458; https://doi.org/10.1021/cr300527g.Search in Google Scholar PubMed PubMed Central
29. Elie, M., Sguerra, F., Di Meo, F., Weber, M. D., Marion, R ., Grimault, A., Lohier, J. F., Stallivieri, A., Brosseau, A., Pansu, R. B., Renaud, J. L., Linares, M., Hamel, M., Costa, R. D., Gaillard, S. ACS Appl. Mater. Interfaces 2016, 8, 14678–14691 https://doi.org/10.1021/acsami.6b04647.Search in Google Scholar PubMed
30. Vogler, A. Inorg. Chem. Commun. 2017, 84, 81–83; https://doi.org/10.1016/j.inoche.2017.06.031.Search in Google Scholar
31. Hamann, J. N., Tuczek, F. Chem. Commun. 2014, 50, 2298–2300; https://doi.org/10.1039/c3cc47888b.Search in Google Scholar PubMed
32. Cabaço, M. I., Besnard, M., Danten, Y., Coutinho, J. A. P. J. Phys. Chem. A 2012, 116, 1605–1620; https://doi.org/10.1021/jp211211n.Search in Google Scholar PubMed
33. Marekha, B. A., Bria, M., Moreau, M., De Waele, I., Miannay, F. A., Smortsova, Y., Takamuku, T., Kalugin, O. N., Kiselev, M., Idrissi, A. J. Mol. Liq. 2015, 210, 227–237; https://doi.org/10.1016/j.molliq.2015.05.015.Search in Google Scholar
34. Hollóczki, O., Firaha, D. S., Friedrich, J., Brehm, M., Cybik, R., Wild, M., Stark, A., Kirchner, B. J. Phys. Chem. B 2013, 117, 5898–5907; https://doi.org/10.1021/jp4004399.Search in Google Scholar PubMed
35. Vellé, A., Cebollada, A., Macías, R., Iglesias, M., Gil-Moles, M., Sanz Miguel, P. J. ACS Omega 2017, 2, 1392–1399; https://doi.org/10.1021/acsomega.7b00138.Search in Google Scholar PubMed PubMed Central
36. Besnard, M., Cabaço, M. I., Vaca Chávez, F., Pinaud, N., Sebastião, P. J., Coutinho, J. A. P., Mascetti, J., Danten, Y. J. Phys. Chem. A 2012, 116, 4890–4901; https://doi.org/10.1021/jp211689z.Search in Google Scholar PubMed
37. Hesse-Ertelt, S., Heinze, T., Kosan, B., Schwikal, K., Meister, FMacromol Symploke 2010, 294, 75–89; https://doi.org/10.1002/masy.201000009.Search in Google Scholar
38. Boysen, N., Philip, A., Rogalla, D., Karppinen, M., Devi, A. Chem. Eur J. 2022, 28, 1–12.10.1002/chem.202103798Search in Google Scholar PubMed PubMed Central
39. Zhu, S., Liang, R., Jiang, H. Tetrahedron 2012, 68, 7949–7955; https://doi.org/10.1016/j.tet.2012.07.009.Search in Google Scholar
40. Wang, Z., Sun, X., Xu, C., Ji, B. Front. Chem. 2019, 7, 1–10.10.3389/fchem.2019.00422Search in Google Scholar PubMed PubMed Central
41. Funtan, S., Michael, P., Binder, W. H. Biomimetics 2019, 4, 24; https://doi.org/10.3390/biomimetics4010024.Search in Google Scholar PubMed PubMed Central
42. Thanneeru, S., Ayers, K. M., Anuganti, M., Zhang, L., Kumar, V. C., Ung, G., He, J. J. Mater. Chem. C 2020, 8, 2280–2288; https://doi.org/10.1039/c9tc04776j.Search in Google Scholar
43. Li, D., Ollevier, T. J. Organomet. Chem. 2020, 906, 121025; https://doi.org/10.1016/j.jorganchem.2019.121025.Search in Google Scholar
44. Domyati, D., Hope, S. L., Latifi, R., Hearns, M. D. Tahsini L. Inorg. Chem. 2016, 55, 11685–11693; https://doi.org/10.1021/acs.inorgchem.6b01646.Search in Google Scholar PubMed
45. Lauffer, R. B. Chem. Rev. 1987, 87, 901–927; https://doi.org/10.1021/cr00081a003.Search in Google Scholar
46. Filippov, A., Antzutkin, O. N., Shah, F. U. Phys. Chem. Chem. Phys. 2019, 21, 22531–22538; https://doi.org/10.1039/c9cp04504j.Search in Google Scholar PubMed
47. Choi, D. S., Kim, D. H., Shin, U. S., Deshmukh, R. R., Lee, S. G., Song, C. E. Chem. Commun. 2007, 2007, 3467–3469; https://doi.org/10.1039/b708044a.Search in Google Scholar PubMed
48. Barreca, D., Fois, E., Gasparotto, A., Seraglia, R., Tondello, E., Tabacchi, G. Chem. Eur J. 2011, 17, 10864–10870; https://doi.org/10.1002/chem.201101551.Search in Google Scholar PubMed
49. Martins, V. L., Sanchez-Ramírez, N., Calderon, J. A., Torresi, R. M. J. Mater. Chem. 2013, 1, 14177–14182; https://doi.org/10.1039/c3ta12992f.Search in Google Scholar
50. Abu-Eishah, S. I., Elsuccary, S. A. A., Al-Attar, T. H., Khanji, A. A., Butt, H. P., Mohamed, N. M. Production of 1-Butyl-3-Methylimidazolium Acetate [Bmim][Ac] Using 1-Butyl-3-Methylimidazolium Chloride [Bmim]Cl and Silver Acetate: A Kinetic Study. In Ionic Liquids - Thermophysical Properties and Applications; Sohel Murshed, S. M., Ed.; IntechOpen: London, 2021; pp. 1–21.10.5772/intechopen.96569Search in Google Scholar
51. Sheldrick, G. M. Sadabs, Area-Detector Absorption Correction; Bruker AXS Inc.: Madison, Wisconsin (USA), 2016.Search in Google Scholar
52. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2015, 71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central
53. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar
54. Olex2 (version 1.2). OlexSys Ltd.: Durham (UK), 2014.Search in Google Scholar
55. Sheldrick, G. M. Acta Crystallogr. Sect. C. Struct. Chem. 2015, 71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar
56. Brandenburg, K. Diamond 4, Crystal and Molecular Structure Visualization (version 4.6.8); Crystal Impact GbR: Bonn (Germany), 2022.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/znb-2022-0305).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung B – Chemical Sciences. zum 70. Geburtstag
- Research Articles
- Ferrocenylmethylation of theophylline
- Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
- Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
- 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
- The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
- N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
- Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
- Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
- Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
- Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
- Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
- Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
- Structure and spectroscopic properties of etherates of the beryllium halides
- The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
- Azido and desamino analogs of the marine natural product oroidin
- High-pressure high-temperature preparation of CeGe3
- On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
- A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
- Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
- Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
- Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung B – Chemical Sciences. zum 70. Geburtstag
- Research Articles
- Ferrocenylmethylation of theophylline
- Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
- Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
- 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
- The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
- N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
- Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
- Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
- Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
- Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
- Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
- Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
- Structure and spectroscopic properties of etherates of the beryllium halides
- The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
- Azido and desamino analogs of the marine natural product oroidin
- High-pressure high-temperature preparation of CeGe3
- On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
- A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
- Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
- Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
- Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies