Home N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
Article
Licensed
Unlicensed Requires Authentication

N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid

  • Sameera Shah , Tobias Pietsch and Michael Ruck EMAIL logo
Published/Copyright: March 8, 2023
Become an author with De Gruyter Brill

Abstract

The aerobic oxidation of copper(I) to copper(II) was studied in the ionic liquid (IL) 1-n-butyl-3-methylimidazolium acetate [BMIm][OAc]. Temperatures above 100 °C promote the deprotonation of the C2 atom of the imidazolium ring and the dissolution of CuCl. 1H and 13C NMR spectra indicate the formation of the N-heterocyclic carbene (NHC) complex [NHC] CuICl under inert conditions. Upon aerobic oxidation, air-stable blue-green crystals of [BMIm]2[CuII 2(OAc)4Cl2] precipitate in high yield and the NHC is recovered. X-ray diffraction on a single-crystal of the complex salt revealed a monoclinic structure with space group P21/n. The centrosymmetric dinuclear acetate complex [Cu2(OAc)4Cl2]2– has the paddle-wheel motif and is weakly paramagnetic.


Corresponding author: Michael Ruck, Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, 01062 Dresden, Germany; and Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany, E-mail: . https://tu-dresden.de/mn/chemie/ac/ac2/
Supporting information for this article is available online. See note at the end of the document for availability. Dedicated to Professor Gerhard Müller on the occasion of his 70th birthday.

Acknowledgments

The authors thank Dr. I. Kuhnert for performing the DSC and TG measurements, Dr. G. S. Thakur and F. Pabst for the measurement and discussion of data on the magnetism and M. A. Herz for help in crystal structure solution. We are grateful to Prof. Dr. S. Kaskel for access to the Biologic device to record the cyclic voltammogram and to Prof. Dr. E. Brunner for access to the NMR, Raman and UV–Vis spectrometers.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest: The authors declare no conflict of interest.

References

1. Wasserscheid, P., Ed. Ionic Liquids in Synthesis; Wiley VCH: Weinheim (Germany), 2002.10.1002/3527600701Search in Google Scholar

2. Hammond, O. S., Mudring, A.-V. Chem. Commun. 2022, 58, 3865–3892; https://doi.org/10.1039/d1cc06543b.Search in Google Scholar PubMed

3. Zhang, T., Doert, T., Wang, H., Zhang, S., Ruck, M. Angew. Chem. Int. Ed. 2021, 60, 22148–22165; https://doi.org/10.1002/anie.202104035.Search in Google Scholar PubMed PubMed Central

4. Taubert, A. Inorganic Nanomaterials Synthesis Using Ionic Liquids. In Encyclopedia of Inorganic and Bioinorganic Chemistry; Scott, R. A., Ed.; John Wiley & Sons: Hoboken, NJ, 2016; pp. 1–14.10.1002/9781119951438.eibc0355.pub2Search in Google Scholar

5. Janiak, C. AIMS Mater. Sci. 2014, 1, 41–44.10.3934/matersci.2014.1.41Search in Google Scholar

6. Nockemann, P., Thijs, B., Pittois, S., Thoen, J., Glorieux, C., Van Hecke, K., Van Meervelt, L., Kirchner, B., Binnemans, K. J. Phys. Chem. B 2006, 110, 20978–20992; https://doi.org/10.1021/jp0642995.Search in Google Scholar PubMed

7. Dupont, D., Renders, E., Raiguel, S., Binnemans, K. Chem. Commun. 2016, 52, 7032–7035; https://doi.org/10.1039/c6cc02350a.Search in Google Scholar PubMed

8. Richter, J., Ruck, M. Molecules 2020, 25, 78; https://doi.org/10.3390/molecules25010078.Search in Google Scholar PubMed PubMed Central

9. Hollóczki, O., Gerhard, D., Massone, K., Szarvas, L., Németh, B., Veszprémi, T., Nyulászi, L. New J. Chem. 2010, 34, 3004; https://doi.org/10.1039/c0nj00380h.Search in Google Scholar

10. Rodríguez, H., Gurau, G., Holbrey, J. D., Rogers, R. D. Chem. Commun. 2011, 47, 3222; https://doi.org/10.1039/c0cc05223j.Search in Google Scholar PubMed

11. Chiarotto, I., Feroci, M., Inesi, A. New J. Chem. 2017, 41, 7840–7843; https://doi.org/10.1039/c7nj00779e.Search in Google Scholar

12. Braunstein, P., Danopoulos, A. A., Simler, T. Chem. Rev. 2019, 119, 3730–3961; https://doi.org/10.1021/acs.chemrev.8b00505.Search in Google Scholar PubMed

13. Lin, J. C. Y., Huang, R. T. W., Lee, C. S., Bhattacharyya, A., Hwang, W. S., Lin, I. J. B. Chem. Rev. 2009, 109, 3561–3598; https://doi.org/10.1021/cr8005153.Search in Google Scholar PubMed

14. Meng, G., Kakalis, L., Nolan, S. P., Szostak, M. Tetrahedron Lett. 2019, 60, 378–381; https://doi.org/10.1016/j.tetlet.2018.12.059.Search in Google Scholar

15. Gurau, G., Rodriguez, H., Kelley, S. P., Janiczek, P., Kalb, R. S., Rogers, R. D. Angew. Chem. Int. Ed. 2011, 50, 12024–12026; https://doi.org/10.1002/anie.201105198.Search in Google Scholar PubMed

16. Xu, A., Guo, X., Xu, R. Int. J. Biol. Macromol. 2015, 81, 1000–1004; https://doi.org/10.1016/j.ijbiomac.2015.09.058.Search in Google Scholar PubMed

17. Liebner, F., Patel, I., Ebner, G., Becker, E., Horix, M., Potthast, A., Rosenau, T. Holzforschung 2010, 64, 161–166.10.1515/hf.2010.033Search in Google Scholar

18. Richter, J., Knies, M., Ruck, M. Chemistry 2021, 10, 97–109; https://doi.org/10.1002/open.202000231.Search in Google Scholar PubMed PubMed Central

19. Richter, J., Ruck, M. RSC Adv. 2019, 9, 29699–29710; https://doi.org/10.1039/c9ra06423k.Search in Google Scholar PubMed PubMed Central

20. Jenniefer, S. J., Muthiah, P. T. Chem. Cent. J. 2013, 7, 1.10.1186/1752-153X-7-35Search in Google Scholar PubMed PubMed Central

21. Serov, N. Y., Shtyrlin, V. G., Islamov, D. R., Kataeva, O. N., Krivolapov, D. B. Acta Crystallogr. Sect. E Crystallogr. Commun. 2018, 74, 981–986; https://doi.org/10.1107/s2056989018008538.Search in Google Scholar PubMed PubMed Central

22. Bette, S., Costes, A., Kremer, R. K., Eggert, G., Tang, C. C., Dinnebier, R. E. Z. Anorg. Allg. Chem. 2019, 645, 988–997; https://doi.org/10.1002/zaac.201900125.Search in Google Scholar

23. Seguin, A. K., Wrighton-Araneda, K., Cortés-Arriagada, D., Cruz, C., Venegas-Yazigi, D., Paredes-García, V. J. Mol. Struct. 2021, 1224, 129172; https://doi.org/10.1016/j.molstruc.2020.129172.Search in Google Scholar

24. Bleaney, B., Bowers, K. D. Proc. R. Soc. A 1952, 214, 451–465.10.1098/rspa.1952.0181Search in Google Scholar

25. Lin, Z., Han, D., Li, S. J. Therm. Anal. Calorim. 2012, 107, 471–475; https://doi.org/10.1007/s10973-011-1454-4.Search in Google Scholar

26. Efimova, A., Hubrig, G., Schmidt, P. Thermochim. Acta 2013, 573, 162–169; https://doi.org/10.1016/j.tca.2013.09.023.Search in Google Scholar

27. Efimova, A., Varga, J., Matuschek, G., Saraji-Bozorgzad, M. R., Denner, T., Zimmermann, R., Schmidt, P. J. Phys. Chem. B 2018, 122, 8738–8749; https://doi.org/10.1021/acs.jpcb.8b06416.Search in Google Scholar PubMed

28. Allen, S. E., Walvoord, R. R., Padilla-Salinas, R., Kozlowski, M. C. Chem. Rev. 2013, 113, 6234–6458; https://doi.org/10.1021/cr300527g.Search in Google Scholar PubMed PubMed Central

29. Elie, M., Sguerra, F., Di Meo, F., Weber, M. D., Marion, R ., Grimault, A., Lohier, J. F., Stallivieri, A., Brosseau, A., Pansu, R. B., Renaud, J. L., Linares, M., Hamel, M., Costa, R. D., Gaillard, S. ACS Appl. Mater. Interfaces 2016, 8, 14678–14691 https://doi.org/10.1021/acsami.6b04647.Search in Google Scholar PubMed

30. Vogler, A. Inorg. Chem. Commun. 2017, 84, 81–83; https://doi.org/10.1016/j.inoche.2017.06.031.Search in Google Scholar

31. Hamann, J. N., Tuczek, F. Chem. Commun. 2014, 50, 2298–2300; https://doi.org/10.1039/c3cc47888b.Search in Google Scholar PubMed

32. Cabaço, M. I., Besnard, M., Danten, Y., Coutinho, J. A. P. J. Phys. Chem. A 2012, 116, 1605–1620; https://doi.org/10.1021/jp211211n.Search in Google Scholar PubMed

33. Marekha, B. A., Bria, M., Moreau, M., De Waele, I., Miannay, F. A., Smortsova, Y., Takamuku, T., Kalugin, O. N., Kiselev, M., Idrissi, A. J. Mol. Liq. 2015, 210, 227–237; https://doi.org/10.1016/j.molliq.2015.05.015.Search in Google Scholar

34. Hollóczki, O., Firaha, D. S., Friedrich, J., Brehm, M., Cybik, R., Wild, M., Stark, A., Kirchner, B. J. Phys. Chem. B 2013, 117, 5898–5907; https://doi.org/10.1021/jp4004399.Search in Google Scholar PubMed

35. Vellé, A., Cebollada, A., Macías, R., Iglesias, M., Gil-Moles, M., Sanz Miguel, P. J. ACS Omega 2017, 2, 1392–1399; https://doi.org/10.1021/acsomega.7b00138.Search in Google Scholar PubMed PubMed Central

36. Besnard, M., Cabaço, M. I., Vaca Chávez, F., Pinaud, N., Sebastião, P. J., Coutinho, J. A. P., Mascetti, J., Danten, Y. J. Phys. Chem. A 2012, 116, 4890–4901; https://doi.org/10.1021/jp211689z.Search in Google Scholar PubMed

37. Hesse-Ertelt, S., Heinze, T., Kosan, B., Schwikal, K., Meister, FMacromol Symploke 2010, 294, 75–89; https://doi.org/10.1002/masy.201000009.Search in Google Scholar

38. Boysen, N., Philip, A., Rogalla, D., Karppinen, M., Devi, A. Chem. Eur J. 2022, 28, 1–12.10.1002/chem.202103798Search in Google Scholar PubMed PubMed Central

39. Zhu, S., Liang, R., Jiang, H. Tetrahedron 2012, 68, 7949–7955; https://doi.org/10.1016/j.tet.2012.07.009.Search in Google Scholar

40. Wang, Z., Sun, X., Xu, C., Ji, B. Front. Chem. 2019, 7, 1–10.10.3389/fchem.2019.00422Search in Google Scholar PubMed PubMed Central

41. Funtan, S., Michael, P., Binder, W. H. Biomimetics 2019, 4, 24; https://doi.org/10.3390/biomimetics4010024.Search in Google Scholar PubMed PubMed Central

42. Thanneeru, S., Ayers, K. M., Anuganti, M., Zhang, L., Kumar, V. C., Ung, G., He, J. J. Mater. Chem. C 2020, 8, 2280–2288; https://doi.org/10.1039/c9tc04776j.Search in Google Scholar

43. Li, D., Ollevier, T. J. Organomet. Chem. 2020, 906, 121025; https://doi.org/10.1016/j.jorganchem.2019.121025.Search in Google Scholar

44. Domyati, D., Hope, S. L., Latifi, R., Hearns, M. D. Tahsini L. Inorg. Chem. 2016, 55, 11685–11693; https://doi.org/10.1021/acs.inorgchem.6b01646.Search in Google Scholar PubMed

45. Lauffer, R. B. Chem. Rev. 1987, 87, 901–927; https://doi.org/10.1021/cr00081a003.Search in Google Scholar

46. Filippov, A., Antzutkin, O. N., Shah, F. U. Phys. Chem. Chem. Phys. 2019, 21, 22531–22538; https://doi.org/10.1039/c9cp04504j.Search in Google Scholar PubMed

47. Choi, D. S., Kim, D. H., Shin, U. S., Deshmukh, R. R., Lee, S. G., Song, C. E. Chem. Commun. 2007, 2007, 3467–3469; https://doi.org/10.1039/b708044a.Search in Google Scholar PubMed

48. Barreca, D., Fois, E., Gasparotto, A., Seraglia, R., Tondello, E., Tabacchi, G. Chem. Eur J. 2011, 17, 10864–10870; https://doi.org/10.1002/chem.201101551.Search in Google Scholar PubMed

49. Martins, V. L., Sanchez-Ramírez, N., Calderon, J. A., Torresi, R. M. J. Mater. Chem. 2013, 1, 14177–14182; https://doi.org/10.1039/c3ta12992f.Search in Google Scholar

50. Abu-Eishah, S. I., Elsuccary, S. A. A., Al-Attar, T. H., Khanji, A. A., Butt, H. P., Mohamed, N. M. Production of 1-Butyl-3-Methylimidazolium Acetate [Bmim][Ac] Using 1-Butyl-3-Methylimidazolium Chloride [Bmim]Cl and Silver Acetate: A Kinetic Study. In Ionic Liquids - Thermophysical Properties and Applications; Sohel Murshed, S. M., Ed.; IntechOpen: London, 2021; pp. 1–21.10.5772/intechopen.96569Search in Google Scholar

51. Sheldrick, G. M. Sadabs, Area-Detector Absorption Correction; Bruker AXS Inc.: Madison, Wisconsin (USA), 2016.Search in Google Scholar

52. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2015, 71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

53. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

54. Olex2 (version 1.2). OlexSys Ltd.: Durham (UK), 2014.Search in Google Scholar

55. Sheldrick, G. M. Acta Crystallogr. Sect. C. Struct. Chem. 2015, 71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

56. Brandenburg, K. Diamond 4, Crystal and Molecular Structure Visualization (version 4.6.8); Crystal Impact GbR: Bonn (Germany), 2022.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2022-0305).


Received: 2022-12-21
Accepted: 2023-01-11
Published Online: 2023-03-08
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung BChemical Sciences. zum 70. Geburtstag
  5. Research Articles
  6. Ferrocenylmethylation of theophylline
  7. Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
  8. Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
  9. 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
  10. The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
  11. N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
  12. Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
  13. Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
  14. Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
  15. Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
  16. Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
  17. Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
  18. Structure and spectroscopic properties of etherates of the beryllium halides
  19. The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
  20. Azido and desamino analogs of the marine natural product oroidin
  21. High-pressure high-temperature preparation of CeGe3
  22. On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
  23. A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
  24. Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
  25. Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
  26. Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2022-0305/html?lang=en
Scroll to top button