Structural transition and antiferromagnetic ordering in the solid solution CePd1−xAuxAl (x = 0.1–0.9)
Abstract
The intermetallic solid solution CePd1−xAuxAl (x = 0.1–0.9) has been synthesized from the elements by arc-melting and subsequent annealing in induction followed by tube furnaces. The samples were characterized using the Guinier powder diffraction technique and the structures of the nominal compositions CeAuAl and CePd0.2Au0.8Al were refined from single crystal X-ray diffractometer data. For small values of x = 0.1–0.3, the compounds crystallize in the hexagonal ZrNiAl-type structure (space group P
Dedicated to: Professor Robert Glaum on the occasion of his 60th birthday.
Acknowledgments
We thank Dipl.-Ing. Ute Ch. Rodewald and Dr. R.-D. Hoffmann for the single crystal intensity data collections.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (on DVD; release 2019/20); ASM International®: Materials Park, Ohio (USA), 2019.Suche in Google Scholar
2. Janka, O., Niehaus, O., Pöttgen, R., Chevalier, B. Z. Naturforsch. 2016, 71b, 737. https://doi.org/10.1515/znb-2016-0101.Suche in Google Scholar
3. Pöttgen, R., Chevalier, B. Z. Naturforsch. 2015, 70b, 289. https://doi.org/10.1515/znb-2015-0018.Suche in Google Scholar
4. Pöttgen, R., Janka, O., Chevalier, B. Z. Naturforsch. 2016, 71b, 165. https://doi.org/10.1515/znb-2016-0013.Suche in Google Scholar
5. Pöttgen, R., Chevalier, B. Z. Naturforsch. 2015, 70b, 695. https://doi.org/10.1515/znb-2015-0109.Suche in Google Scholar
6. Prchal, J., Kitazawa, H., Suzuki, O. J. Alloys Compd. 2007, 437, 117. https://doi.org/10.1016/j.jallcom.2006.07.078.Suche in Google Scholar
7. Janka, O., Baumbach, R. E., Ronning, F., Thompson, J. D., Bauer, E. D., Kauzlarich, S. M. Z. Anorg. Allg. Chem. 2012, 638, 1996. https://doi.org/10.1002/zaac.201200173.Suche in Google Scholar
8. Niehaus, O., Rodewald, U. Ch., Abdala, P. M., Touzani, R. S., Fokwa, B. P. T., Janka, O. Inorg. Chem. 2014, 53, 2471. https://doi.org/10.1021/ic402414f.Suche in Google Scholar PubMed
9. Niehaus, O., Janka, O. Z. Anorg. Allg. Chem. 2015, 641, 1792. https://doi.org/10.1002/zaac.201500139.Suche in Google Scholar
10. Ślebarski, A., Glogowski, W., Goraus, J., Kaczorowski, D. Phys. Rev. B 2008, 77, 125135. https://doi.org/10.1103/PhysRevB.77.125135.Suche in Google Scholar
11. Fritsch, V., Huang, C.-L., Bagrets, N., Grube, K., Schumann, S., Löhneysen, H. V. Phys. Status Solidi B 2013, 250, 506. https://doi.org/10.1002/pssb.201200931.Suche in Google Scholar
12. Eilers-Rethwisch, M., Niehaus, O., Janka, O. Z. Anorg. Allg. Chem. 2014, 640, 153. https://doi.org/10.1002/zaac.201300485.Suche in Google Scholar
13. Grin, Y. N., Hiebl, K., Rogl, P. J. Less Common Met. 1985, 110, 299. https://doi.org/10.1016/0022-5088(85)90336-4.Suche in Google Scholar
14. Hulliger, F. J. Alloys Compd. 1993, 196, 225. https://doi.org/10.1016/0925-8388(93)90600-r.Suche in Google Scholar
15. Kitazawa, H., Matsushita, A., Matsumoto, T., Suzuki, T. Phys. B Condens. Matter 1994, 199–200, 28. https://doi.org/10.1016/0921-4526(94)91726-4.Suche in Google Scholar
16. Li, D. X., Nimori, S., Kitazawa, H., Shiokawa, Y. Phys. B Condens. Matter 2006, 378–380, 805. https://doi.org/10.1016/j.physb.2006.01.294.Suche in Google Scholar
17. Menon, L., Malik, S. K. Phys. Rev. B 1995, 51, 5858. https://doi.org/10.1103/physrevb.51.5858.Suche in Google Scholar
18. Adroja, D. T., Rainford, B. D., Latika, M., Malik, S. K. J. Phys. Condens. Matter 1997, 9, 4743. https://doi.org/10.1088/0953-8984/9/22/024.Suche in Google Scholar
19. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachzeitsch. 1999, 43, 133.Suche in Google Scholar
20. Niepmann, D., Prots, Y. M., Pöttgen, R., Jeitschko, W. J. Solid State Chem. 2000, 154, 329. https://doi.org/10.1006/jssc.2000.8789.Suche in Google Scholar
21. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73. https://doi.org/10.1107/s0021889877012898.Suche in Google Scholar
22. Hulliger, F. J. Alloys Compd. 1993, 200, 75. https://doi.org/10.1016/0925-8388(93)90474-2.Suche in Google Scholar
23. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786. https://doi.org/10.1107/s0021889807029238.Suche in Google Scholar
24. Petříček, V., Dušek, M., Palatinus, L., Jana2006. The Crystallographic Computing System; Institute of Physics, Academy of Sciences of the Czech Republic: Prague (Czech Republic), 2006.Suche in Google Scholar
25. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345. https://doi.org/10.1515/zkri-2014-1737.Suche in Google Scholar
26. Emsley, J. The Elements; Clarendon Press, Oxford University Press: Oxford, New York, 1998.Suche in Google Scholar
27. Xue, B., Schwer, H., Hulliger, F. Acta Crystallogr. 1994, C50, 338. https://doi.org/10.1107/s0108270193007632.Suche in Google Scholar
28. Markiv, V. Y., Matushevskaya, N. F., Rozum, S. N., Kuz’ma, Y. B. Inorg. Mater. 1966, 2, 1356.Suche in Google Scholar
29. Shoemaker, C. B., Shoemaker, D. P. Acta Crystallogr. 1965, 18, 900. https://doi.org/10.1107/s0365110x65002189.Suche in Google Scholar
30. Hermes, W., Matar, S. F., Pöttgen, R. Z. Naturforsch. 2009, 64b, 901. https://doi.org/10.1515/znb-2009-0805.Suche in Google Scholar
31. Hill, H. H. in Plutonium and Other Actinides; Miner, W. N., Ed. AIME: New York, 1970, 2–19.Suche in Google Scholar
32. Becker, P. J., Coppens, P. Acta Crystallogr. 1974, A30, 129. https://doi.org/10.1107/s0567739474000337.Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Editorial
- Robert Glaum zum 60. Geburtstag gewidmet
- Research Articles
- Structural transition and antiferromagnetic ordering in the solid solution CePd1−xAuxAl (x = 0.1–0.9)
- Ternary plumbides ATPb2 (A = Ca, Sr, Ba, Eu; T = Rh, Pd, Pt) with distorted, lonsdaleite-related substructures of tetrahedrally connected lead atoms
- Intergrowth of niobium tungsten oxides of the tetragonal tungsten bronze type
- FeBiS2Cl – A new iron-containing member of the MPnQ2X family
- Thallium diphosphates
- Behavior of beryllium halides and triflate in acetonitrile solutions
- Hydroflux syntheses and crystal structures of hydrogarnets Ba3[RE(OH)6]2 (RE = Sc, Y, Ho–Lu)
- Three of a kind? The non-isotypic triple CsCe[P2Se6], CsSm[P2Se6] and CsEr[P2Se6]
- The crystal structure of ZrCr2D≈4 at 50 K ≤ T ≤ 200 K
- High-pressure synthesis and crystal structure of HP-Al2B3O7(OH)
- New layered supertetrahedral compounds T2-MSiAs2, T3-MGaSiAs3 and polytypic T4-M4Ga5SiAs9 (M = Sr, Eu)
- Comparative photophysical study of Pt(II) complex-nanoclay hybrid materials as dry powders and hydrogels
- Carbon subsulfide C3S2 – synthesis by flash vacuum pyrolysis and crystal structure determination
Artikel in diesem Heft
- Frontmatter
- In this issue
- Editorial
- Robert Glaum zum 60. Geburtstag gewidmet
- Research Articles
- Structural transition and antiferromagnetic ordering in the solid solution CePd1−xAuxAl (x = 0.1–0.9)
- Ternary plumbides ATPb2 (A = Ca, Sr, Ba, Eu; T = Rh, Pd, Pt) with distorted, lonsdaleite-related substructures of tetrahedrally connected lead atoms
- Intergrowth of niobium tungsten oxides of the tetragonal tungsten bronze type
- FeBiS2Cl – A new iron-containing member of the MPnQ2X family
- Thallium diphosphates
- Behavior of beryllium halides and triflate in acetonitrile solutions
- Hydroflux syntheses and crystal structures of hydrogarnets Ba3[RE(OH)6]2 (RE = Sc, Y, Ho–Lu)
- Three of a kind? The non-isotypic triple CsCe[P2Se6], CsSm[P2Se6] and CsEr[P2Se6]
- The crystal structure of ZrCr2D≈4 at 50 K ≤ T ≤ 200 K
- High-pressure synthesis and crystal structure of HP-Al2B3O7(OH)
- New layered supertetrahedral compounds T2-MSiAs2, T3-MGaSiAs3 and polytypic T4-M4Ga5SiAs9 (M = Sr, Eu)
- Comparative photophysical study of Pt(II) complex-nanoclay hybrid materials as dry powders and hydrogels
- Carbon subsulfide C3S2 – synthesis by flash vacuum pyrolysis and crystal structure determination