Abstract
The new supertetrahedral compounds MSiAs2, MGaSiAs3 and mC/tI-M4Ga5SiAs9 (M = Sr, Eu) have been synthesized by solid-state reactions at high temperatures. The structures were determined by single crystal or powder X-ray diffraction. MSiAs2 and MGaSiAs3 crystallize in the monoclinic TlGaSe2- and RbCuSnS3-type structures, respectively (space group C2/c). These are topologically hierarchical variants of the tetragonal HgI2-type structure with stacked layers of T2 or T3 supertetrahedra. The T4 compounds M4Ga5SiAs9 are dimorphic and form new structure types in the space groups C2/c and I41/amd, respectively. The latter exhibits coinciding layer stacking as known from tetragonal HgI2. The T4 compounds close the gap between the longer known T2 types and the recently reported compounds with T5 and T6 supertetrahedra. Measurements of the optical band gap, electrical resistivity and Hall Effect support the semiconducting nature of M4Ga5SiAs9. Magnetization measurements confirm Eu2+ in Eu4Ga5SiAs9 and indicate ferromagnetism below T = 2 K.
Dedicated to: Professor Robert Glaum on the occasion of his 60th birthday.
Funding source: Deutsche Forschungsgemeinschaft
Acknowledgements
Financial support by the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This study was funded by Deutsche Forschungsgemeinschaft.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. O’Keeffe, M., Eddaoudi, M., Li, H., Reineke, T., Yaghi, O. M. J. Solid State Chem. 2000, 152, 3–20.10.1006/jssc.2000.8723Suche in Google Scholar
2. Li, H., Laine, A., O’Keeffe, M., Yaghi, O. M. Science 1999, 283, 1145.10.1126/science.283.5405.1145Suche in Google Scholar
3. Li, H., Kim, J., Groy, T. L., O’Keeffe, M., Yaghi, O. M. J. Am. Chem. Soc. 2001, 123, 4867–4868.10.1021/ja010413fSuche in Google Scholar
4. Wang, C., Bu, X., Zheng, N., Feng, P. J. Am. Chem. Soc. 2002, 124, 10268–10269.10.1021/ja020735zSuche in Google Scholar
5. Wang, L., Wu, T., Zuo, F., Zhao, X., Bu, X., Wu, J., Feng, P. J. Am. Chem. Soc. 2010, 132, 3283–3285.10.1021/ja9100672Suche in Google Scholar
6. Wang, L., Wu, T., Bu, X., Zhao, X., Zuo, F., Feng, P. Inorg. Chem. 2013, 52, 2259–2261.10.1021/ic301965wSuche in Google Scholar
7. Férey, G. Angew. Chem. Int. Ed. 2003, 42, 2576–2579.10.1002/anie.200201621Suche in Google Scholar
8. Kienle, L., Duppel, V., Simon, A., Schlosser, M., Jarchow, O. J. Solid State Chem. 2004, 177, 6–16.10.1016/S0022-4596(03)00244-5Suche in Google Scholar
9. Haffner, A., Bräuniger, T., Johrendt, D. Angew. Chem. Int. Ed. 2016, 55, 13585–13588.10.1002/anie.201607074Suche in Google Scholar PubMed
10. Weippert, V., Haffner, A., Stamatopoulos, A., Johrendt, D. J. Am. Chem. Soc. 2019, 141, 11245–11252.10.1021/jacs.9b04712Suche in Google Scholar PubMed
11. Xu, X., Wang, W., Liu, D., Hu, D., Wu, T., Bu, X., Feng, P. J. Am. Chem. Soc. 2018, 140, 888–891.10.1021/jacs.7b12092Suche in Google Scholar PubMed
12. Döch, M., Hammerschmidt, A., Pütz, S., Krebs, B. Phosphorus Sulfur Silicon Relat. Elem. 2004, 179, 933–935.10.1080/10426500490428933Suche in Google Scholar
13. Li, Z.-Q., Mo, C.-J., Guo, Y., Xu, N.-N., Zhu, Q.-Y., Dai, J. J. Mater. Chem. A 2017, 5, 8519–8525.10.1039/C7TA00247ESuche in Google Scholar
14. Wagatha, P., Pust, P., Weiler, V., Wochnik, A. S., Schmidt, P. J., Scheu, C., Schnick, W. Chem. Mater. 2016, 28, 1220–1226.10.1021/acs.chemmater.5b04929Suche in Google Scholar
15. Haffner, A., Hatz, A.-K., Moudrakovski, I., Lotsch, B. V., Johrendt, D. Angew. Chem. Int. Ed. 2018, 57, 6155–6160.10.1002/anie.201801405Suche in Google Scholar PubMed
16. Manos, M., Iyer, R., Quarez, E., Liao, J., Kanatzidis, M. Angew. Chem. Int. Ed. 2005, 44, 3552–3555.10.1002/anie.200500214Suche in Google Scholar PubMed
17. Huggins, M. L., Magill, P. L. J. Am. Chem. Soc. 1927, 49, 2357–2367.10.1021/ja01409a003Suche in Google Scholar
18. Hostettler, M., Birkedal, H., Schwarzenbach, D. Acta Crystallogr 2002, B58, 903–913.10.1107/S010876810201618XSuche in Google Scholar
19. Lin, H., Shen, J.-N., Chen, L., Wu, L.-M. Inorg. Chem. 2013, 52, 10726–10728.10.1021/ic4018618Suche in Google Scholar PubMed
20. Müller, D., Hahn, H. Z. Anorg. Allg. Chem. 1978, 438, 258–272.10.1002/zaac.19784380128Suche in Google Scholar
21. Eisenmann, B., Hoffmann, A. Z. Kristallogr. 1991, 195, 318.10.1524/zkri.1991.195.3-4.318Suche in Google Scholar
22. Kim, J., Hughbanks, T. J. Solid State Chem. 2000, 149, 242–251.10.1006/jssc.1999.8523Suche in Google Scholar
23. Huang, F. Q., Deng, B., Ellis, D. E., Ibers, J. A. J. Solid State Chem. 2005, 178, 2128–2132.10.1016/j.jssc.2005.04.007Suche in Google Scholar
24. Kumari, A., Vidyasagar, K. Acta Crystallogr 2005, E61, i193–i195.10.1107/S1600536805024815Suche in Google Scholar
25. Friedrich, D., Schlosser, M., Pfitzner, A. Z. Anorg. Allg. Chem. 2017, 643, 1589–1592.10.1002/zaac.201700288Suche in Google Scholar
26. Friedrich, D., Schlosser, M., Pfitzner, A. Cryst. Growth Des. 2016, 16, 3983–3992.10.1021/acs.cgd.6b00532Suche in Google Scholar
27. Liao, J. H., Kanatzidis, M. G. Chem. Mater. 1993, 5, 1561–1569.10.1021/cm00034a029Suche in Google Scholar
28. Li, H., Malliakas, C. D., Liu, Z., Peters, J. A., Jin, H., Morris, C. D., Zhao, L., Wessels, B. W., Freeman, A. J., Kanatzidis, M. G. Chem. Mater. 2012, 24, 4434–4441.10.1021/cm302838vSuche in Google Scholar
29. Li, H., Malliakas, C. D., Peters, J. A., Liu, Z., Im, J., Jin, H., Morris, C. D., Zhao, L.-D., Wessels, B. W., Freeman, A. J., Kanatzidis, M. G. Chem. Mater. 2013, 25, 2089–2099.10.1021/cm400634vSuche in Google Scholar
30. Sharmin, M., Choudhury, S., Akhtar, N., Begum, T. J. Bangladesh Acad. Sci. 2012, 36, 97–107.10.3329/jbas.v36i1.10926Suche in Google Scholar
31. Lueken, H. Magnetochemie; B. G. Teubner: Stuttgart, Leipzig, 1999.10.1007/978-3-322-80118-0Suche in Google Scholar
32. Apex3 (version 2016.5-0); Bruker AXS Inc.: Madison, USA, 2016.10.1016/S1359-6128(16)30316-0Suche in Google Scholar
33. Sheldrick, G. M. Sadabs (version 2012/1); Bruker AXS Inc.: Madison, USA, 2012.Suche in Google Scholar
34. Sheldrick, G. M. Xprep (version 2008/2); Bruker AXS Inc.: Madison, USA, 2008.Suche in Google Scholar
35. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790.10.1107/S0021889807029238Suche in Google Scholar
36. Palatinus, L., Prathapa, S. J., van Smaalen, S. J. Appl. Crystallogr. 2012, 45, 575–580.10.1107/S0021889812016068Suche in Google Scholar
37. Sheldrick, G. Acta Crystallogr. 2015, C71, 3–8.Suche in Google Scholar
38. Villars, P., Cenzual, K., Eds. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2016/17); ASM International®: Materials Park, Ohio (USA), 2016.Suche in Google Scholar
39. Coelho, A. Topas-Academic (version 6); Coelho Software: Brisbane, Australia, 2016.Suche in Google Scholar
40. SmartSEM (version 5.07 Beta); Carl Zeiss Microscopy Ltd.: Cambridge, UK, 2014.Suche in Google Scholar
41. Quantax 200 (version 1.9.4.3448); Bruker Nano GmbH: Berlin, Germany, 2013.Suche in Google Scholar
42. Kubelka, P., Munk, F. Z. Tech. Phys. 1931, 12, 593–601.Suche in Google Scholar
43. PPMS MultiVu (version 1.5.11); Quantum Design Inc.: San Diego (USA), 2013.Suche in Google Scholar
Supplementary material
The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2020-0152).
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Editorial
- Robert Glaum zum 60. Geburtstag gewidmet
- Research Articles
- Structural transition and antiferromagnetic ordering in the solid solution CePd1−xAuxAl (x = 0.1–0.9)
- Ternary plumbides ATPb2 (A = Ca, Sr, Ba, Eu; T = Rh, Pd, Pt) with distorted, lonsdaleite-related substructures of tetrahedrally connected lead atoms
- Intergrowth of niobium tungsten oxides of the tetragonal tungsten bronze type
- FeBiS2Cl – A new iron-containing member of the MPnQ2X family
- Thallium diphosphates
- Behavior of beryllium halides and triflate in acetonitrile solutions
- Hydroflux syntheses and crystal structures of hydrogarnets Ba3[RE(OH)6]2 (RE = Sc, Y, Ho–Lu)
- Three of a kind? The non-isotypic triple CsCe[P2Se6], CsSm[P2Se6] and CsEr[P2Se6]
- The crystal structure of ZrCr2D≈4 at 50 K ≤ T ≤ 200 K
- High-pressure synthesis and crystal structure of HP-Al2B3O7(OH)
- New layered supertetrahedral compounds T2-MSiAs2, T3-MGaSiAs3 and polytypic T4-M4Ga5SiAs9 (M = Sr, Eu)
- Comparative photophysical study of Pt(II) complex-nanoclay hybrid materials as dry powders and hydrogels
- Carbon subsulfide C3S2 – synthesis by flash vacuum pyrolysis and crystal structure determination
Artikel in diesem Heft
- Frontmatter
- In this issue
- Editorial
- Robert Glaum zum 60. Geburtstag gewidmet
- Research Articles
- Structural transition and antiferromagnetic ordering in the solid solution CePd1−xAuxAl (x = 0.1–0.9)
- Ternary plumbides ATPb2 (A = Ca, Sr, Ba, Eu; T = Rh, Pd, Pt) with distorted, lonsdaleite-related substructures of tetrahedrally connected lead atoms
- Intergrowth of niobium tungsten oxides of the tetragonal tungsten bronze type
- FeBiS2Cl – A new iron-containing member of the MPnQ2X family
- Thallium diphosphates
- Behavior of beryllium halides and triflate in acetonitrile solutions
- Hydroflux syntheses and crystal structures of hydrogarnets Ba3[RE(OH)6]2 (RE = Sc, Y, Ho–Lu)
- Three of a kind? The non-isotypic triple CsCe[P2Se6], CsSm[P2Se6] and CsEr[P2Se6]
- The crystal structure of ZrCr2D≈4 at 50 K ≤ T ≤ 200 K
- High-pressure synthesis and crystal structure of HP-Al2B3O7(OH)
- New layered supertetrahedral compounds T2-MSiAs2, T3-MGaSiAs3 and polytypic T4-M4Ga5SiAs9 (M = Sr, Eu)
- Comparative photophysical study of Pt(II) complex-nanoclay hybrid materials as dry powders and hydrogels
- Carbon subsulfide C3S2 – synthesis by flash vacuum pyrolysis and crystal structure determination