Startseite The crystal structure of ZrCr2D≈4 at 50 K ≤ T ≤ 200 K
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The crystal structure of ZrCr2D≈4 at 50 K ≤ T ≤ 200 K

  • Holger Kohlmann EMAIL logo
Veröffentlicht/Copyright: 13. Oktober 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Many Laves phases take up considerable amounts of hydrogen to form metallic Laves phase hydrides. They frequently undergo phase transitions driven by ordering phenomena for the hydrogen atom distribution. The cubic Laves phase ZrCr2 takes up hydrogen to form a hydride with almost four hydrogen atoms per formula unit, which undergoes a phase transition to a monoclinic modification at a critical temperature Tc = 250.2 K. Its crystal structure was refined based on neutron powder diffraction data on the deuteride (ZrCr2D3.8 type [T = 1.6 K, C2/c]) at four temperatures in the range 50 K ≤ T ≤ 200 K. The monoclinic low-temperature modification features a strongly distorted square anti-prism ZrD8 and three CrD4 polyhedra with almost fully occupied deuterium sites in saddle-like, distorted tetrahedral and planar configurations. Zr–D distances are in the range 201.4(7) pm ≤ d(Zr–D) ≤ 208.5(8) pm and Cr–D distances in the range 172.9(7) pm ≤ d(Cr–D) ≤ 182.4(8) pm.


Dedicated to: Professor Robert Glaum on the occasion of his 60th birthday.



Corresponding author: Holger Kohlmann, Institut für Anorganische Chemie, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany, E-mail:

Acknowledgments

We acknowledge the Institut-Laue Langevin for provision of beamtime at the powder diffractometer D1A and Dr. François Fauth for help with the diffraction experiment.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Shaltiel, D., Jacob, I., Davidov, D. J. Less Common. Met. 1977, 53, 117–131; https://doi.org/10.1016/0022-5088(77)90162-x.Suche in Google Scholar

2. Shaltiel, D. J. Less Common. Met. 1978, 62, 407–416; https://doi.org/10.1016/0022-5088(78)90055-3.Suche in Google Scholar

3. Shoemaker, D. P., Shoemaker, C. B. J. Less Common. Met. 1979, 68, 43–58; https://doi.org/10.1016/0022-5088(79)90271-6.Suche in Google Scholar

4. Yvon, K., Fischer, P. Top. Appl. Phys. 1988, 63, 87–138; https://doi.org/10.1007/3540183337_11.Suche in Google Scholar

5. Moriwaki, Y., Gamo, T., Seri, H., Iwaki, T. J. Less Common. Met. 1991, 172–174, 1211–1218; https://doi.org/10.1016/s0022-5088(06)80029-9.Suche in Google Scholar

6. Hong, K. J. Alloys Compd. 2001, 321, 307–313; https://doi.org/10.1016/s0925-8388(01)00957-4.Suche in Google Scholar

7. Kohlmann, H. Z. Kristallogr. 2020, 235, 319–332; https://doi.org/10.1515/zkri-2020-0043.Suche in Google Scholar

8. Kohlmann, H., Fauth, F., Yvon, K. J. Alloys Compd. 1999, 285, 204–211; https://doi.org/10.1016/s0925-8388(99)00027-4.Suche in Google Scholar

9. Ting, V. P., Henry, P. F., Kohlmann, H., Wilson, C. C., Weller, M. T. Phys. Chem. Chem. Phys. 2010, 12, 2083–2088; https://doi.org/10.1039/b914135a.Suche in Google Scholar PubMed

10. Weller, M. T., Henry, P. F., Ting, V. P., Wilson, C. C. Chem. Commun.(Cambridge, U.K.) 2009, 2973–2989; https://doi.org/10.1039/B821336D.Suche in Google Scholar

11. Bonhomme, F., Yvon, K., Zolliker, M. J. Alloys Compd. 1993, 199, 129–132; https://doi.org/10.1016/0925-8388(93)90438-s.Suche in Google Scholar

12. Gingl, F., Yvon, K., Zavaliy, I. Yu., Yartys, V. A., Fischer, P. J. Alloys Compd. 1995, 226, 1–4; https://doi.org/10.1016/0925-8388(95)01589-2.Suche in Google Scholar

13. Černý, R., Bonhomme, F., Yvon, K., Fischer, P., Zolliker, P., Cox, D. E., Hewat, A. J. Alloys Compd. 1992, 187, 233–241.10.1016/0925-8388(92)90537-JSuche in Google Scholar

14. Černý, R., Joubert, J.-M., Kohlmann, H., Yvon, K. J. Alloys Compd. 2002, 340, 180–188; https://doi.org/10.1016/S0925-8388(02)00050-6.Suche in Google Scholar

15. Zolliker, P., Yvon, K., Jorgensen, J. D., Rotella, F. J. Inorg. Chem. 1986, 25, 3590–3593; https://doi.org/10.1021/ic00240a012.Suche in Google Scholar

16. Olofsson-Martenson, M., Kritikos, M., Noreus, D. J. Am. Chem. Soc. 1999, 121, 10908–10912; https://doi.org/10.1021/ja991047r.Suche in Google Scholar

17. Bronger, W., Müller, P., Schmitz, D., Spittank, H. Z. Anorg. Allg. Chem. 1984, 516, 35–41; https://doi.org/10.1002/zaac.19845160906.Suche in Google Scholar

18. Irodova, A. V., Glazkov, V. P., Somenko, V. A., Shil’stein, S. Sh. Sov. Phys. Solid State 1980, 22, 45–50.Suche in Google Scholar

19. Kohlmann, H., Yvon, K. J. Alloys Compd. 2000, 309, 123–126; https://doi.org/10.1016/s0925-8388(00)01040-9.Suche in Google Scholar

20. Kohlmann, H., Fauth, F., Fischer, P., Skripov, A. V., Yvon, K. J. Alloys Compd. 2001, 327, L4–L9; https://doi.org/10.1016/s0925-8388(01)01565-1.Suche in Google Scholar

21. Rodríguez-Carvajal, J. FullProf (version 5.30); Institut Laue-Langevin: Grenoble (France), 2012.Suche in Google Scholar

22. Caglioti, G., Paoletti, A., Ricci, F. P. Nucl. Instrum. 1958, 3, 223–228; https://doi.org/10.1016/0369-643x(58)90029-X.Suche in Google Scholar

Received: 2020-08-27
Accepted: 2020-09-18
Published Online: 2020-10-13
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2020-0150/html
Button zum nach oben scrollen