Ternary plumbides ATPb2 (A = Ca, Sr, Ba, Eu; T = Rh, Pd, Pt) with distorted, lonsdaleite-related substructures of tetrahedrally connected lead atoms
Abstract
The plumbides CaTPb2 (T = Rh, Pd), EuTPb2 (T = Rh, Pd, Pt), SrTPb2 (T = Rh, Pd, Pt) and BaTPb2 (T = Pd, Pt) were obtained by direct reactions of the elements in sealed tantalum tubes in an induction furnace. The moisture sensitive polycrystalline samples were characterized by X-ray powder diffraction. They crystallize with the orthorhombic MgCuAl2-type structure, space group Cmcm. The structures of CaRhPb2 (a = 433.78(3), b = 1102.06(8), c = 798.43(6) pm, wR = 0.0285, 432 F2 values and 16 variables) and EuPdPb2 (a = 457.24(5), b = 1158.27(13), c = 775.73(8), wR = 0.0464, 464 F2 values and 16 variables) were refined from single crystal X-ray diffractometer data. The characteristic structural motif is the distorted tetrahedral substructure built up by the lead atoms with Pb–Pb distances of 326–327 pm in CaRhPb2 and of 315–345 pm in EuPdPb2. With increasing size of the alkaline earth (Eu) cation, the lead substructure becomes more anisotropic with a shift of the [TPb2] polyanions from three- to two-dimensional, leading to significantly increased moisture sensitivity. Temperature dependent magnetic susceptibility studies reveal Pauli paramagnetism for SrRhPb2, SrPtPb2, BaPdPb2 and BaPtPb2. EuRhPb2 and EuPdPb2 are Curie–Weiss paramagnets with stable divalent europium as is also evident from 151Eu Mössbauer spectra. EuRhPb2 is a ferromagnet with TC = 17.7(2) K, while EuPdPb2 orders antiferromagnetically at TN = 15.9 K. This is in agreement with the full magnetic hyperfine field splitting of the 151Eu Mössbauer spectra at T = 6 K.
Acknowledgments
We thank Dipl. -Ing. J. Kösters for the intensity data collections.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Adachi, G.-Y., Imanaka, N., Fuzhong, Z. Rare earth carbides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr., Eyring, L., Eds. North-Holland, Amsterdam, Vol. 15, 1991.10.1016/S0168-1273(05)80005-4Suche in Google Scholar
2. Babizhetskyy, V., Kotur, B., Levytskyy, V., Michor, H. Alloy systems and compounds containing rare earth metals and carbon. In Handbook on the Physics and Chemistry of Rare Earths; Bünzli, J.-C. G., Pecharsky, V. K., Eds. Elsevier: North-Holland, Amsterdam, Vol. 52, Chapter 298, 2017; https://doi.org/10.1016/bs.hpcre.2017.09.001.Suche in Google Scholar
3. Parthé, E., Chabot, B. Crystal structures and crystal chemistry of ternary rare earth-transition metal borides, silicides, and homologues. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr., Eyring, L., Eds. North-Holland, Amsterdam, Vol. 6, 1984; p. 113.10.1016/S0168-1273(84)06005-0Suche in Google Scholar
4. Rogl, P. Phase equilibria in ternary and higher order systems with rare earth elements and silicon. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr., Eyring, L., Eds. North-Holland, Amsterdam, Vol. 7, 1984; p. 1.10.1016/S0168-1273(84)07004-5Suche in Google Scholar
5. Salamakha, P. S., Sologub, O. L., Bodak, O. I. Ternary rare-earth-germanium systems. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr., Eyring, L., Eds. Elsevier Science: Amsterdam, Vol. 27, 1999; p. 1.10.1016/S0168-1273(99)27004-3Suche in Google Scholar
6. Salamakha, P. S. Crystal structures and crystal chemistry of ternary rare-earth germanides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr., Eyring, L., Eds. Elsevier Science: Amsterdam, Vol. 27, 1999; p. 225.10.1016/S0168-1273(99)27005-5Suche in Google Scholar
7. Skolozdra, R. V. Stannides of rare-earth and transition metals. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr., Eyring, L., Eds. Elsevier Science: Amsterdam, Vol. 24, 1997; p. 399.10.1016/S0168-1273(97)24009-2Suche in Google Scholar
8. Pöttgen, R., Z. Naturforsch. 2006, 61b, 677.10.1515/znb-2006-0607Suche in Google Scholar
9. Pöttgen, R., Rodewald, U. C., Rare Earth–Transition Metal–Plumbides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneider, K. A.Jr., Pecharsky, V. K., Bünzli, J.-C., Eds. Elsevier: Amsterdam, Vol. 38, 2008; p. 55.10.1016/S0168-1273(07)38002-1Suche in Google Scholar
10. Kanatzidis, M. G., Pöttgen, R., Jeitschko, W. Angew. Chem. Int. Ed. 2005, 44, 6996.10.1002/anie.200462170Suche in Google Scholar PubMed
11. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2019/20); ASM International®: Materials Park, Ohio (USA), 2019.Suche in Google Scholar
12. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Suche in Google Scholar
13. Melnyk, G., Gulay, L. D., Tremel, W. J. Alloys Compd. 2012, 528, 70.10.1016/j.jallcom.2012.01.063Suche in Google Scholar
14. Heletta, L., Klenner, S., Block, T., Pöttgen, R. Z. Naturforsch. 2017, 72b, 989.10.1515/znb-2017-0166Suche in Google Scholar
15. Pöttgen, R., Arpe, P. E., Felser, C., Kußmann, D., Müllmann, R., Mosel, B. D., Künnen, B., Kotzyba, G. J. Solid State Chem. 1999, 145, 668.10.1006/jssc.1998.8280Suche in Google Scholar
16. Fornasini, M. L., Merlo, F., Pani, M. Z. Kristallogr. NCS 2001, 216, 24.10.1524/ncrs.2001.216.14.24Suche in Google Scholar
17. Venturini, G., Kamta, M., Mc Rae, E., Marêché, J. F., Malaman, B., Roques, B. Mater. Res. Bull. 1986, 21, 1203.10.1016/0025-5408(86)90048-6Suche in Google Scholar
18. Movshovich, R., Lawrence, J. M., Hundley, M. F., Neumeier, J., Thompson, J. D., Lacerda, A., Fisk, Z. Phys. Rev. B 1996, 53, 5465.10.1103/PhysRevB.53.5465Suche in Google Scholar
19. Pöttgen, R., Fugmann, A., Hoffmann, R.-D., Rodewald, U. Ch., Niepmann, D. Z. Naturforsch. 2000, 55b, 155.10.1515/znb-2000-0204Suche in Google Scholar
20. Hermes, W., Rayaprol, S., Pöttgen, R. Z. Naturforsch. 2007, 62b, 901.10.1515/znb-2007-0705Suche in Google Scholar
21. Hermes, W., Rodewald, U. Ch., Chevalier, B., Matar, S. F., Eyert, V., Pöttgen, R. Solid State Sci. 2010, 12, 929.10.1016/j.solidstatesciences.2010.01.029Suche in Google Scholar
22. Heletta, L., Pöttgen, R. Z. Naturforsch. 2018, 73b, 251.10.1515/znb-2018-0012Suche in Google Scholar
23. Heletta, L., Pöttgen, R. Z. Naturforsch. 2018, 73b, 1015.10.1515/znb-2018-0213Suche in Google Scholar
24. Heletta, L., Pöttgen, R. Z. Naturforsch. 2019, 74b, 227.10.1515/znb-2018-0256Suche in Google Scholar
25. Perlitz, H., Westgren, A. Ark. Kemi. Mineral. Geol. B 1943, 16, 1.Suche in Google Scholar
26. Heying, B., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 2005, 60b, 491.10.1515/znb-2005-0502Suche in Google Scholar
27. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133.Suche in Google Scholar
28. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143.10.1524/zkri.1999.214.3.143Suche in Google Scholar
29. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73.10.1107/S0021889877012898Suche in Google Scholar
30. Hoffmann, R.-D., Pöttgen, R., Landrum, G. A., Dronskowski, R., Künnen, B., Kotzyba, G. Z. Anorg. Allg. Chem. 1999, 625, 789.10.1002/(SICI)1521-3749(199905)625:5<789::AID-ZAAC789>3.0.CO;2-QSuche in Google Scholar
31. Hoffmann, R.-D., Kußmann, D., Rodewald, U. Ch., Pöttgen, R., Rosenhahn, C., Mosel, B. D. Z. Naturforsch. 1999, 54b, 709.10.1515/znb-1999-0602Suche in Google Scholar
32. Pöttgen, R., Kußmann, D. Z. Anorg. Allg. Chem. 2001, 627, 55.10.1002/1521-3749(200101)627:1<55::AID-ZAAC55>3.0.CO;2-2Suche in Google Scholar
33. Galadzhun, Y. V., Hoffmann, R.-D., Kotzyba, G., Künnen, B., Pöttgen, R. Eur. J. Inorg. Chem. 1999, 975.10.1002/(SICI)1099-0682(199906)1999:6<975::AID-EJIC975>3.0.CO;2-6Suche in Google Scholar
34. Klenner, S., Heletta, L., Pöttgen, R. Dalton Trans. 2019, 48, 3648.10.1039/C9DT00035FSuche in Google Scholar
35. Kraft, R., Pöttgen, R. Z. Anorg. Allg. Chem. 2004, 630, 1738.10.1002/zaac.200470090Suche in Google Scholar
36. Čurlík, I., Giovannini, M., Gastaldo, F., Strydom, A. M., Reiffers, M., Sereni, J. G. J. Phys.: Condens. Matter 2018, 30, 495802.10.1088/1361-648X/aae7aeSuche in Google Scholar
37. Hoffmann, R.-D., Rodewald, U. C., Pöttgen, R. Z. Naturforsch. 1999, 54b, 38.10.1515/znb-1999-0110Suche in Google Scholar
38. Liu, S., Corbett, J. D. Inorg. Chem. 2003, 42, 4898.10.1021/ic030089kSuche in Google Scholar
39. Hoffmann, R.-D., Pöttgen, R. Chem. Eur. J. 2001, 7, 382.10.1002/1521-3765(20010119)7:2<382::AID-CHEM382>3.0.CO;2-ISuche in Google Scholar
40. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345.10.1515/zkri-2014-1737Suche in Google Scholar
41. Long, G. J., Cranshaw, T. E, Longworth, G. Moessbauer Eff. Ref. Data J. 1983, 2, 42.Suche in Google Scholar
42. Brand, R. A. WinNormos for Igor6 (version for Igor 6.2 or above: 22/02/2017); Universität Duisburg: Duisburg, Germany, 2017.Suche in Google Scholar
43. Pöttgen, R., Lukachuk, M., Hoffmann, R.-D. Z. Kristallogr. 2006, 221, 435.10.1524/zkri.2006.221.5-7.435Suche in Google Scholar
44. Pöttgen, R., Hoffmann, R.-D., Möller, M. H., Kotzyba, G., Künnen, B., Rosenhahn, C., Mosel, B. D. J. Solid State Chem. 1999, 145, 174.10.1006/jssc.1999.8236Suche in Google Scholar
45. Kußmann, D., Pöttgen, R. Z. Naturforsch. 2001, 56b, 446.10.1515/znb-2001-4-522Suche in Google Scholar
46. Iandelli, A. Z. Anorg. Allg. Chem. 1964, 330, 221.10.1002/zaac.19643300315Suche in Google Scholar
47. Wang, D., Yu, Y., Liu, X. J., Wang, C. P. Calphad Comput. Coupling Phase Diagrams Thermochem. 2013, 41, 20.10.1016/j.calphad.2013.01.007Suche in Google Scholar
48. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Suche in Google Scholar
49. Stegemann, F., Block, T., Klenner, S., Zhang, Y., Fokwa, B. P. T., Timmer, A., Mönig, H., Doerenkamp, C., Eckert, H., Janka, O. Chem. Eur. J. 2019, 25, 10735.10.1002/chem.201901867Suche in Google Scholar PubMed
50. Radzieowski, M., Stegemann, F., Doerenkamp, C., Matar, S. F., Eckert, H., Dosche, C., Wittstock, G., Janka, O. Inorg. Chem. 2019, 58, 7010.10.1021/acs.inorgchem.9b00648Suche in Google Scholar PubMed
51. McGuire, T. R., Shafer, M. W. J. Appl. Phys. 1964, 35, 984.10.1063/1.1713568Suche in Google Scholar
52. McWhan, B. D., Souers, P. C., Jura, G. Phys. Rev. 1966, 143, 385.10.1103/PhysRev.143.385Suche in Google Scholar
53. Stroka, B., Wosnitza, J., Scheer, E., von Löhneysen, H., Park, W., Fischer, K. Z. Phys. Condens. Matter 1992, 89, 39.10.1007/BF01320827Suche in Google Scholar
54. Lueken, H. Magnetochemie; B. G. Teubner Stuttgart: Leipzig, 1999.10.1007/978-3-322-80118-0Suche in Google Scholar
55. Pöttgen, R. J. Mater. Chem. 1996, 6, 63.10.1039/JM9960600063Suche in Google Scholar
56. Klenner, S., Bönnighausen, J., Pöttgen, R. Z. Anorg. Allg. Chem. 2020, 646, in press, https://doi.org/10.1002/zaac.202000075.Suche in Google Scholar
57. Müllmann, R., Mosel, B. D., Eckert, H., Kotzyba, G., Pöttgen, R. J. Solid State Chem. 1998, 137, 174.10.1006/jssc.1998.7750Suche in Google Scholar
58. Müllmann, R., Ernet, U., Mosel, B. D., Eckert, H., Kremer, R. K., Hoffmann, R.-D., Pöttgen, R. J. Mater. Chem. 2001, 11, 1133.10.1039/b100055lSuche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Editorial
- Robert Glaum zum 60. Geburtstag gewidmet
- Research Articles
- Structural transition and antiferromagnetic ordering in the solid solution CePd1−xAuxAl (x = 0.1–0.9)
- Ternary plumbides ATPb2 (A = Ca, Sr, Ba, Eu; T = Rh, Pd, Pt) with distorted, lonsdaleite-related substructures of tetrahedrally connected lead atoms
- Intergrowth of niobium tungsten oxides of the tetragonal tungsten bronze type
- FeBiS2Cl – A new iron-containing member of the MPnQ2X family
- Thallium diphosphates
- Behavior of beryllium halides and triflate in acetonitrile solutions
- Hydroflux syntheses and crystal structures of hydrogarnets Ba3[RE(OH)6]2 (RE = Sc, Y, Ho–Lu)
- Three of a kind? The non-isotypic triple CsCe[P2Se6], CsSm[P2Se6] and CsEr[P2Se6]
- The crystal structure of ZrCr2D≈4 at 50 K ≤ T ≤ 200 K
- High-pressure synthesis and crystal structure of HP-Al2B3O7(OH)
- New layered supertetrahedral compounds T2-MSiAs2, T3-MGaSiAs3 and polytypic T4-M4Ga5SiAs9 (M = Sr, Eu)
- Comparative photophysical study of Pt(II) complex-nanoclay hybrid materials as dry powders and hydrogels
- Carbon subsulfide C3S2 – synthesis by flash vacuum pyrolysis and crystal structure determination
Artikel in diesem Heft
- Frontmatter
- In this issue
- Editorial
- Robert Glaum zum 60. Geburtstag gewidmet
- Research Articles
- Structural transition and antiferromagnetic ordering in the solid solution CePd1−xAuxAl (x = 0.1–0.9)
- Ternary plumbides ATPb2 (A = Ca, Sr, Ba, Eu; T = Rh, Pd, Pt) with distorted, lonsdaleite-related substructures of tetrahedrally connected lead atoms
- Intergrowth of niobium tungsten oxides of the tetragonal tungsten bronze type
- FeBiS2Cl – A new iron-containing member of the MPnQ2X family
- Thallium diphosphates
- Behavior of beryllium halides and triflate in acetonitrile solutions
- Hydroflux syntheses and crystal structures of hydrogarnets Ba3[RE(OH)6]2 (RE = Sc, Y, Ho–Lu)
- Three of a kind? The non-isotypic triple CsCe[P2Se6], CsSm[P2Se6] and CsEr[P2Se6]
- The crystal structure of ZrCr2D≈4 at 50 K ≤ T ≤ 200 K
- High-pressure synthesis and crystal structure of HP-Al2B3O7(OH)
- New layered supertetrahedral compounds T2-MSiAs2, T3-MGaSiAs3 and polytypic T4-M4Ga5SiAs9 (M = Sr, Eu)
- Comparative photophysical study of Pt(II) complex-nanoclay hybrid materials as dry powders and hydrogels
- Carbon subsulfide C3S2 – synthesis by flash vacuum pyrolysis and crystal structure determination