Startseite Three of a kind? The non-isotypic triple CsCe[P2Se6], CsSm[P2Se6] and CsEr[P2Se6]
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Three of a kind? The non-isotypic triple CsCe[P2Se6], CsSm[P2Se6] and CsEr[P2Se6]

  • Beate M. Schulz , Pia L. Lange und Thomas Schleid EMAIL logo
Veröffentlicht/Copyright: 28. Oktober 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Three new compounds of the CsLn[P2Se6] family with Ln = Ce, Sm and Er have been prepared and structurally characterized. Plate-shaped, amber-colored single crystals of these cesium lanthanoid(III) hexaselenodiphosphates(IV) were obtained by heating stoichiometric amounts of Ln, P and Se with CsCl as a reactive flux in fused silica ampoules at 800 °C for four days. CsCe[P2Se6] crystallizes monoclinically in space group P21/c with a = 1297.86(9), b = 776.24(5), c = 1198.43(8) pm, β = 106.589(3)° and Z = 4. The structure is isotypic with that of KLa[P2Se6], the Cs+ cations being ten-fold coordinated by selenium atoms to form double layers of condensed [CsSe10]19− polyhedra. Ce3+ resides in a nine-fold coordination and the [CeSe9]15− polyhedra also form double layers parallel to (100). CsSm[P2Se6] crystallizes in the orthorhombic space group P212121 with a = 688.67(5), b = 754.48(5), c = 2215.21(15) pm and Z = 4. Its structure is isotypic with that of KY[P2Se6] and the Cs+ cations reside in an eleven-fold coordination of selenium atoms constituting monolayers of condensed [CsSe11]21− polyhedra within the (001) plane. Sm3+ exhibits an eight-fold coordination sphere of selenium atoms and the [SmSe8]13− polyhedra are also linked to build up parallel monolayers. CsEr[P2Se6] crystallizes in the monoclinic space group P21/c again, but forms its own structure type with the lattice parameters a = 753.81(5), b = 1281.92(9), c = 1276.47(9) pm and β = 106.898(3)° and Z = 4. The Cs+ cations are twelve-fold coordinated by selenium atoms and erects a three-dimensional framework of condensed [CsSe12]23− polyhedra. The Er3+ cations show seven selenium atoms as neighbors and the [ErSe7]11− polyhedra are edge-connected to form discrete dimers [Er2Se12]18−. All three structures have similar ethane-like [P2Se6]4– anions in staggered conformation with bond lengths of 219–226 pm for d(P1–P2) and 213–222 pm for d(P–Se), which connect the Cs+ and Ln3+ coordination polyhedra into three-dimensional crystal structures.


Dedicated to: Professor Robert Glaum on the occasion of his 60th birthday.



Corresponding author: Thomas Schleid, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569Stuttgart, Germany, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Emsbo, P., McLaughlin, P. I., Breit, G. N., Du Bray, E. A., Koenig, A. E. Gondwana Res. 2015, 27, 776–785; https://doi.org/10.1016/j.gr.2014.10.008.Suche in Google Scholar

2. Halappa, P., Mathur, A., Delville, M. H., Shivakumara, C. J. Alloys Compd. 2018, 740, 1086–1098; https://doi.org/10.1016/j.jallcom.2018.01.087.Suche in Google Scholar

3. Ni, Y., Hughes, J. M., Mariano, A. N. Am. Mineral. 1995, 80, 21–26; https://doi.org/10.2138/am-1995-1-203.Suche in Google Scholar

4. Clavier, N., Podor, R., Dacheux, N. J. Am. Ceram. Soc. 2011, 31, 941–976; https://doi.org/10.1016/j.jeurceramsoc.2010.12.019.Suche in Google Scholar

5. Beall, G. W., Boatner, L. A., Mullica, D. F., Milligan, W. O. J. Inorg. Nucl. Chem. 1981, 43, 101–105; https://doi.org/10.1016/0022-1902(81)80443-5.Suche in Google Scholar

6. Mullica, D. F., Grossie, D. A., Boatner, L. A. J. Solid State Chem. 1985, 58, 71–77; https://doi.org/10.1016/0022-4596(85)90269-5.Suche in Google Scholar

7. Milligan, W. O., Mullica, D. F., Beall, G. W., Boatner, L. A. Acta Crystallogr. 1983, C39, 23–24; https://doi.org/10.1107/s0108270183003467.Suche in Google Scholar

8. Lohmüller, G. V., Schmidt, G., Deppisch, B., Gramlich, V., Scheringer, C. Acta Crystallogr. 1973, B29, 141–142; https://doi.org/10.1107/s0567740873002098.Suche in Google Scholar

9. Zhang, F. X., Lang, M., Ewing, R. C., Lian, J., Wang, Z. W., Hu, J., Boatner, L. A. J. Solid State Chem. 2008, 181, 2633–2638; https://doi.org/10.1016/j.jssc.2008.06.042.Suche in Google Scholar

10. Schwarz, H. Z. Anorg. Allg. Chem. 1963, 323, 44–56; https://doi.org/10.1002/zaac.19633230106.Suche in Google Scholar

11. Mooney, R. C. L. J. Chem. Phys. 1948, 16, 1003; https://doi.org/10.1063/1.1746668.Suche in Google Scholar

12. Mooney, R. C. L. Acta Crystallogr. 1950, 3, 337–340; https://doi.org/10.1107/s0365110x50000963.Suche in Google Scholar

13. Wibbelmann, C., Brockner, W., Eisenmann, B., Schäfer, H. Z. Naturforsch. 1984, 39a, 190–194; https://doi.org/10.1515/zna-1984-0213.Suche in Google Scholar

14. Komm, T., Gudat, D., Schleid, Th. Z. Naturforsch. 2006, 61b, 766–774; https://doi.org/10.1515/znb-2006-0618.Suche in Google Scholar

15. Komm, T., Schleid, Th. Z. Anorg. Allg. Chem. 2006, 632, 42–48; https://doi.org/10.1002/zaac.200500332.Suche in Google Scholar

16. Cleary, D. A., Twamley, B. Inorg. Chim. Acta. 2003, 353, 183–186; https://doi.org/10.1016/s0020-1693(03)00290-1.Suche in Google Scholar

17. Schoop, L. M., Eger, R., Nuss, J., Pielnhofer, F., Lotsch, B. V. Z. Anorg. Allg. Chem. 2017, 643, 1818–1823; https://doi.org/10.1002/zaac.201700309.Suche in Google Scholar

18. Schoop, L. M., Eger, R., Kremer, R. K., Kuhn, A., Nuss, J., Lotsch, B. V. Inorg. Chem. 2017, 56, 1121–1131; https://doi.org/10.1021/acs.inorgchem.6b02052.Suche in Google Scholar PubMed

19. Chen, J. H., Dorhout, P. K., Ostenson, J. E. Inorg. Chem. 1996, 35, 5627–5633; https://doi.org/10.1021/ic9516121.Suche in Google Scholar PubMed

20. Knaust, J. M., Dorhout, P. K. J. Chem. Crystallogr. 2005, 36, 217–223.10.1007/s10870-005-9050-8Suche in Google Scholar

21. Schulz, B. M., Schleid, Th. Z. Kristallogr. 2018, S38, 97–97.10.4324/9780429495779-4Suche in Google Scholar

22. Schleid, Th., Hartenbach, I., Komm, T. Z. Anorg. Allg. Chem. 2006, 628, 7–9.10.1002/1521-3749(200201)628:1<7::AID-ZAAC7>3.0.CO;2-SSuche in Google Scholar

23. Evenson, C. R., Dorhout, P. K. Inorg. Chem. 2001, 40, 2884–2891; https://doi.org/10.1021/ic000596r.Suche in Google Scholar

24. Aitken, J. A., Evain, M., Iordanidis, L., Kanatzidis, M. G. Inorg. Chem. 2002, 41, 180–191; https://doi.org/10.1021/ic010618p.Suche in Google Scholar

25. Orgzall, I., Lorenz, B., Dorhout, P. K., van Calcar, P. M., Brister, K., Sander, T., Hochheimer, H. D. J. Phys. Chem. Solids 2000, 61, 123–124; https://doi.org/10.1016/s0022-3697(99)00012-8.Suche in Google Scholar

26. Schulz, B. M., Schleid, Th. Z. Kristallogr. 2019, 39, 97–97.10.1111/pbaf.12238Suche in Google Scholar

27. Chen, J. H., Dorhout, P. K. Inorg. Chem. 1995, 34, 5705–5706; https://doi.org/10.1021/ic00127a003.Suche in Google Scholar

28. Gaune-Escard, M., Rycerz, L., Ingier-Stocka, E., Min, G. S. Proc. Extr. Metals 2012, 123, 35–42.10.1179/0371955313Z.00000000066Suche in Google Scholar

29. Meyer, G. Prog. Solid State Chem. 1982, 14, 141–219; https://doi.org/10.1016/0079-6786(82)90005-x.Suche in Google Scholar

30. Seifert, H. J., Sandrock, J., Thiel, G. Thermal Anal. 1988, 33, 1309–1318.10.1007/BF02138565Suche in Google Scholar

31. Thiel, G., Seifert, H. J. Thermochim. Acta 1988, 133, 275–282; https://doi.org/10.1016/0040-6031(88)87169-7.Suche in Google Scholar

32. Roffe, M., Seifert, H. J. J. Alloys Compd. 1997, 257, 128–133; https://doi.org/10.1016/s0925-8388(96)03119-2.Suche in Google Scholar

33. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767; https://doi.org/10.1107/s0567739476001551.Suche in Google Scholar

Received: 2020-08-24
Accepted: 2020-09-21
Published Online: 2020-10-28
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2020-0148/html
Button zum nach oben scrollen