Abstract
Three new compounds of the CsLn[P2Se6] family with Ln = Ce, Sm and Er have been prepared and structurally characterized. Plate-shaped, amber-colored single crystals of these cesium lanthanoid(III) hexaselenodiphosphates(IV) were obtained by heating stoichiometric amounts of Ln, P and Se with CsCl as a reactive flux in fused silica ampoules at 800 °C for four days. CsCe[P2Se6] crystallizes monoclinically in space group P21/c with a = 1297.86(9), b = 776.24(5), c = 1198.43(8) pm, β = 106.589(3)° and Z = 4. The structure is isotypic with that of KLa[P2Se6], the Cs+ cations being ten-fold coordinated by selenium atoms to form double layers of condensed [CsSe10]19− polyhedra. Ce3+ resides in a nine-fold coordination and the [CeSe9]15− polyhedra also form double layers parallel to (100). CsSm[P2Se6] crystallizes in the orthorhombic space group P212121 with a = 688.67(5), b = 754.48(5), c = 2215.21(15) pm and Z = 4. Its structure is isotypic with that of KY[P2Se6] and the Cs+ cations reside in an eleven-fold coordination of selenium atoms constituting monolayers of condensed [CsSe11]21− polyhedra within the (001) plane. Sm3+ exhibits an eight-fold coordination sphere of selenium atoms and the [SmSe8]13− polyhedra are also linked to build up parallel monolayers. CsEr[P2Se6] crystallizes in the monoclinic space group P21/c again, but forms its own structure type with the lattice parameters a = 753.81(5), b = 1281.92(9), c = 1276.47(9) pm and β = 106.898(3)° and Z = 4. The Cs+ cations are twelve-fold coordinated by selenium atoms and erects a three-dimensional framework of condensed [CsSe12]23− polyhedra. The Er3+ cations show seven selenium atoms as neighbors and the [ErSe7]11− polyhedra are edge-connected to form discrete dimers [Er2Se12]18−. All three structures have similar ethane-like [P2Se6]4– anions in staggered conformation with bond lengths of 219–226 pm for d(P1–P2) and 213–222 pm for d(P–Se), which connect the Cs+ and Ln3+ coordination polyhedra into three-dimensional crystal structures.
Dedicated to: Professor Robert Glaum on the occasion of his 60th birthday.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Emsbo, P., McLaughlin, P. I., Breit, G. N., Du Bray, E. A., Koenig, A. E. Gondwana Res. 2015, 27, 776–785; https://doi.org/10.1016/j.gr.2014.10.008.Suche in Google Scholar
2. Halappa, P., Mathur, A., Delville, M. H., Shivakumara, C. J. Alloys Compd. 2018, 740, 1086–1098; https://doi.org/10.1016/j.jallcom.2018.01.087.Suche in Google Scholar
3. Ni, Y., Hughes, J. M., Mariano, A. N. Am. Mineral. 1995, 80, 21–26; https://doi.org/10.2138/am-1995-1-203.Suche in Google Scholar
4. Clavier, N., Podor, R., Dacheux, N. J. Am. Ceram. Soc. 2011, 31, 941–976; https://doi.org/10.1016/j.jeurceramsoc.2010.12.019.Suche in Google Scholar
5. Beall, G. W., Boatner, L. A., Mullica, D. F., Milligan, W. O. J. Inorg. Nucl. Chem. 1981, 43, 101–105; https://doi.org/10.1016/0022-1902(81)80443-5.Suche in Google Scholar
6. Mullica, D. F., Grossie, D. A., Boatner, L. A. J. Solid State Chem. 1985, 58, 71–77; https://doi.org/10.1016/0022-4596(85)90269-5.Suche in Google Scholar
7. Milligan, W. O., Mullica, D. F., Beall, G. W., Boatner, L. A. Acta Crystallogr. 1983, C39, 23–24; https://doi.org/10.1107/s0108270183003467.Suche in Google Scholar
8. Lohmüller, G. V., Schmidt, G., Deppisch, B., Gramlich, V., Scheringer, C. Acta Crystallogr. 1973, B29, 141–142; https://doi.org/10.1107/s0567740873002098.Suche in Google Scholar
9. Zhang, F. X., Lang, M., Ewing, R. C., Lian, J., Wang, Z. W., Hu, J., Boatner, L. A. J. Solid State Chem. 2008, 181, 2633–2638; https://doi.org/10.1016/j.jssc.2008.06.042.Suche in Google Scholar
10. Schwarz, H. Z. Anorg. Allg. Chem. 1963, 323, 44–56; https://doi.org/10.1002/zaac.19633230106.Suche in Google Scholar
11. Mooney, R. C. L. J. Chem. Phys. 1948, 16, 1003; https://doi.org/10.1063/1.1746668.Suche in Google Scholar
12. Mooney, R. C. L. Acta Crystallogr. 1950, 3, 337–340; https://doi.org/10.1107/s0365110x50000963.Suche in Google Scholar
13. Wibbelmann, C., Brockner, W., Eisenmann, B., Schäfer, H. Z. Naturforsch. 1984, 39a, 190–194; https://doi.org/10.1515/zna-1984-0213.Suche in Google Scholar
14. Komm, T., Gudat, D., Schleid, Th. Z. Naturforsch. 2006, 61b, 766–774; https://doi.org/10.1515/znb-2006-0618.Suche in Google Scholar
15. Komm, T., Schleid, Th. Z. Anorg. Allg. Chem. 2006, 632, 42–48; https://doi.org/10.1002/zaac.200500332.Suche in Google Scholar
16. Cleary, D. A., Twamley, B. Inorg. Chim. Acta. 2003, 353, 183–186; https://doi.org/10.1016/s0020-1693(03)00290-1.Suche in Google Scholar
17. Schoop, L. M., Eger, R., Nuss, J., Pielnhofer, F., Lotsch, B. V. Z. Anorg. Allg. Chem. 2017, 643, 1818–1823; https://doi.org/10.1002/zaac.201700309.Suche in Google Scholar
18. Schoop, L. M., Eger, R., Kremer, R. K., Kuhn, A., Nuss, J., Lotsch, B. V. Inorg. Chem. 2017, 56, 1121–1131; https://doi.org/10.1021/acs.inorgchem.6b02052.Suche in Google Scholar PubMed
19. Chen, J. H., Dorhout, P. K., Ostenson, J. E. Inorg. Chem. 1996, 35, 5627–5633; https://doi.org/10.1021/ic9516121.Suche in Google Scholar PubMed
20. Knaust, J. M., Dorhout, P. K. J. Chem. Crystallogr. 2005, 36, 217–223.10.1007/s10870-005-9050-8Suche in Google Scholar
21. Schulz, B. M., Schleid, Th. Z. Kristallogr. 2018, S38, 97–97.10.4324/9780429495779-4Suche in Google Scholar
22. Schleid, Th., Hartenbach, I., Komm, T. Z. Anorg. Allg. Chem. 2006, 628, 7–9.10.1002/1521-3749(200201)628:1<7::AID-ZAAC7>3.0.CO;2-SSuche in Google Scholar
23. Evenson, C. R., Dorhout, P. K. Inorg. Chem. 2001, 40, 2884–2891; https://doi.org/10.1021/ic000596r.Suche in Google Scholar
24. Aitken, J. A., Evain, M., Iordanidis, L., Kanatzidis, M. G. Inorg. Chem. 2002, 41, 180–191; https://doi.org/10.1021/ic010618p.Suche in Google Scholar
25. Orgzall, I., Lorenz, B., Dorhout, P. K., van Calcar, P. M., Brister, K., Sander, T., Hochheimer, H. D. J. Phys. Chem. Solids 2000, 61, 123–124; https://doi.org/10.1016/s0022-3697(99)00012-8.Suche in Google Scholar
26. Schulz, B. M., Schleid, Th. Z. Kristallogr. 2019, 39, 97–97.10.1111/pbaf.12238Suche in Google Scholar
27. Chen, J. H., Dorhout, P. K. Inorg. Chem. 1995, 34, 5705–5706; https://doi.org/10.1021/ic00127a003.Suche in Google Scholar
28. Gaune-Escard, M., Rycerz, L., Ingier-Stocka, E., Min, G. S. Proc. Extr. Metals 2012, 123, 35–42.10.1179/0371955313Z.00000000066Suche in Google Scholar
29. Meyer, G. Prog. Solid State Chem. 1982, 14, 141–219; https://doi.org/10.1016/0079-6786(82)90005-x.Suche in Google Scholar
30. Seifert, H. J., Sandrock, J., Thiel, G. Thermal Anal. 1988, 33, 1309–1318.10.1007/BF02138565Suche in Google Scholar
31. Thiel, G., Seifert, H. J. Thermochim. Acta 1988, 133, 275–282; https://doi.org/10.1016/0040-6031(88)87169-7.Suche in Google Scholar
32. Roffe, M., Seifert, H. J. J. Alloys Compd. 1997, 257, 128–133; https://doi.org/10.1016/s0925-8388(96)03119-2.Suche in Google Scholar
33. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767; https://doi.org/10.1107/s0567739476001551.Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Editorial
- Robert Glaum zum 60. Geburtstag gewidmet
- Research Articles
- Structural transition and antiferromagnetic ordering in the solid solution CePd1−xAuxAl (x = 0.1–0.9)
- Ternary plumbides ATPb2 (A = Ca, Sr, Ba, Eu; T = Rh, Pd, Pt) with distorted, lonsdaleite-related substructures of tetrahedrally connected lead atoms
- Intergrowth of niobium tungsten oxides of the tetragonal tungsten bronze type
- FeBiS2Cl – A new iron-containing member of the MPnQ2X family
- Thallium diphosphates
- Behavior of beryllium halides and triflate in acetonitrile solutions
- Hydroflux syntheses and crystal structures of hydrogarnets Ba3[RE(OH)6]2 (RE = Sc, Y, Ho–Lu)
- Three of a kind? The non-isotypic triple CsCe[P2Se6], CsSm[P2Se6] and CsEr[P2Se6]
- The crystal structure of ZrCr2D≈4 at 50 K ≤ T ≤ 200 K
- High-pressure synthesis and crystal structure of HP-Al2B3O7(OH)
- New layered supertetrahedral compounds T2-MSiAs2, T3-MGaSiAs3 and polytypic T4-M4Ga5SiAs9 (M = Sr, Eu)
- Comparative photophysical study of Pt(II) complex-nanoclay hybrid materials as dry powders and hydrogels
- Carbon subsulfide C3S2 – synthesis by flash vacuum pyrolysis and crystal structure determination
Artikel in diesem Heft
- Frontmatter
- In this issue
- Editorial
- Robert Glaum zum 60. Geburtstag gewidmet
- Research Articles
- Structural transition and antiferromagnetic ordering in the solid solution CePd1−xAuxAl (x = 0.1–0.9)
- Ternary plumbides ATPb2 (A = Ca, Sr, Ba, Eu; T = Rh, Pd, Pt) with distorted, lonsdaleite-related substructures of tetrahedrally connected lead atoms
- Intergrowth of niobium tungsten oxides of the tetragonal tungsten bronze type
- FeBiS2Cl – A new iron-containing member of the MPnQ2X family
- Thallium diphosphates
- Behavior of beryllium halides and triflate in acetonitrile solutions
- Hydroflux syntheses and crystal structures of hydrogarnets Ba3[RE(OH)6]2 (RE = Sc, Y, Ho–Lu)
- Three of a kind? The non-isotypic triple CsCe[P2Se6], CsSm[P2Se6] and CsEr[P2Se6]
- The crystal structure of ZrCr2D≈4 at 50 K ≤ T ≤ 200 K
- High-pressure synthesis and crystal structure of HP-Al2B3O7(OH)
- New layered supertetrahedral compounds T2-MSiAs2, T3-MGaSiAs3 and polytypic T4-M4Ga5SiAs9 (M = Sr, Eu)
- Comparative photophysical study of Pt(II) complex-nanoclay hybrid materials as dry powders and hydrogels
- Carbon subsulfide C3S2 – synthesis by flash vacuum pyrolysis and crystal structure determination