Abstract
Crystalline orthorhombic rare earth carbonate hydroxides Ln[CO3][OH] (Ln=La, Pr, Nd, Sm, Eu, Gd) were synthesised as phase pure powders via a simple hydrothermal reaction. CO2 from air acted as natural carbonate source and cetyltrimethylammonium bromide was added as templating agent to an aqueous rare earth nitrate solution. Single-crystal X-ray structure determination was performed on La[CO3][OH] (Pnma, a=7.4106(5), b=5.0502(3), c=8.5901(6) Å, 563 independent reflections, 38 refined parameters, wR2=0.037), Pr[CO3][OH] (Pnma, a=7.2755(4), b=4.9918(3), c=8.5207(5) Å, 744 independent reflections, 38 refined parameters, wR2=0.04), Eu[CO3][OH] (Pnma, a=7.1040(4), b=4.8940(3), c=8.4577(5) Å, 1649 independent reflections, 38 refined parameters, wR2=0.05) and Gd[CO3][OH] (Pnma, a=7.069(7), b=4.874(5), c=8.464(9) Å, 431 independent reflections, 38 refined parameters, wR2=0.051). These findings are supported by powder XRD, infrared spectroscopy, UV/Vis spectroscopy and, for Pr[CO3][OH] and Eu[CO3][OH], by measurements of the non-linear optical properties. Thermal analysis could demonstrate the possible use of the Ln[CO3][OH] phases as precursors for rare earth carbonate dioxides Ln2[CO3]O2 and rare earth oxides Ln2O3. The decomposition products inherit the precursor’s morphology. The lattice parameters of Pr2[CO3]O2 were refined from high-temperature powder XRD data.
Dedicated to: Professor Wolfgang Bensch on the Occasion of his 65th birthday.
Acknowledgements
The authors would like to thank R. Ettlinger (Universität Augsburg) for the EDX/SEM measurements and L. Bayarjargal (Universität Frankfurt) for testing our powder samples for non-linear optical SHG activity.
References
[1] S. G. Jantz, M. Dialer, L. Bayarjargal, B. Winkler, L. van Wüllen, F. Pielnhofer, J. Brgoch, R. Weihrich, H. A. Höppe, Adv. Opt. Mater.2018, 7, 1800497.10.1002/adom.201800497Suche in Google Scholar
[2] S. G. Jantz, F. Pielnhofer, M. Dialer, H. A. Höppe, Z. Anorg. Allg. Chem.2017, 643, 2024.10.1002/zaac.201700334Suche in Google Scholar
[3] S. G. Jantz, F. Pielnhofer, M. Dialer, H. A. Höppe, Z. Anorg. Allg. Chem.2017, 643, 2031.10.1002/zaac.201700335Suche in Google Scholar
[4] S. G. Jantz, F. Pielnhofer, L. van Wüllen, R. Weihrich, M. J. Schäfer, H. A. Höppe, Chem. Eur. J.2018, 24, 443.10.1002/chem.201704324Suche in Google Scholar PubMed
[5] P. Netzsch, P. Gross, H. Takahashi, H. A. Höppe, Inorg. Chem.2018, 57, 8530.10.1021/acs.inorgchem.8b01234Suche in Google Scholar PubMed
[6] A. M. Kaczmarek, L. Miermans, R. van Deun, Dalton Trans.2013, 42, 4639.10.1039/c3dt32799jSuche in Google Scholar PubMed
[7] M.-H. Lee, W.-S. Jung, Bull. Kor. Chem. Soc.2013, 34, 3609.10.5012/bkcs.2013.34.12.3609Suche in Google Scholar
[8] B. Pan, Q. Xie, H. Wang, J. Zhu, Y. Zhang, W. Su, X. Wang, J. Mater. Chem. A2013, 1, 6629.10.1039/c3ta01553jSuche in Google Scholar
[9] Y.-C. Chen, L. Qin, Z.-S. Meng, D.-F. Yang, C. Wu, Z. Fu, Y.-Z. Zheng, J.-L. Liu, R. Tarasenko, M. Orendáč, J. Prokleška, V. Sechovskýe, M.-L. Tong, J. Mater. Chem. A2014, 2, 9851.10.1039/C4TA01646GSuche in Google Scholar
[10] J. M. Calderon Moreno, V. G. Pol, S.-H. Suh, M. Popa, Inorg. Chem.2010, 49, 10067.10.1021/ic101414xSuche in Google Scholar PubMed
[11] L. M. D’Assunção, I. Giolito, M. Ionashiro, Thermochim. Acta1989, 137, 319.10.1016/0040-6031(89)87224-7Suche in Google Scholar
[12] P. Jeevanandam, Y. Koltypin, O. Palchik, A. Gedanken, J. Mater. Chem.2001, 11, 869.10.1039/b007370iSuche in Google Scholar
[13] A. M. Kaczmarek, K. van Hecke, R. van Deun, Chem. Soc. Rev.2015, 44, 2032.10.1039/C4CS00433GSuche in Google Scholar PubMed
[14] Z. Xu, S. Bian, J. Wang, T. Liu, L. Wang, Y. Gao, RSC Adv2013, 3, 1410.10.1039/C2RA22480ASuche in Google Scholar
[15] Y. Zhang, Z. Xu, X. Yin, Z. Fang, W. Zhu, H. He, Cryst. Res. Technol.2010, 45, 1183.10.1002/crat.201000342Suche in Google Scholar
[16] L. Bischoff, M. Stephan, C. S. Birkel, C. F. Litterscheid, A. Dreizler, B. Albert, Sci. Rep.2018, 8, 602.10.1038/s41598-017-18942-2Suche in Google Scholar PubMed PubMed Central
[17] S. Huang, D. Wang, Y. Wang, L. Wang, X. Zhang, P. Yang, J. Alloys Compd.2012, 529, 140.10.1016/j.jallcom.2012.02.156Suche in Google Scholar
[18] Y. Zhang, L. Jin, K. Sterling, Z. Luo, T. Jiang, R. Miao, C. Guild, S. L. Suib, Green Chem.2015, 17, 3600.10.1039/C4GC02429JSuche in Google Scholar
[19] G. Mao, H. Zhang, H. Li, J. Jin, S. Niu, J. Electrochem. Soc.2012, 159, J48.10.1149/2.031203jesSuche in Google Scholar
[20] I. Nelli, A. M. Kaczmarek, F. Locardi, V. Caratto, G. A. Costa, R. van Deun, Dalton Trans.2017, 46, 2785.10.1039/C6DT04629KSuche in Google Scholar
[21] H. A. Höppe, G. Kotzyba, R. Pöttgen, W. Schnick, J. Solid State Chem.2002, 167, 393.10.1016/S0022-4596(02)99677-5Suche in Google Scholar
[22] H. A. Höppe, Angew. Chem. Int. Ed.2009, 48, 3572.10.1002/anie.200804005Suche in Google Scholar PubMed
[23] C. S. Riccardi, R. C. Lima, M. L. dos Santos, P. R. Bueno, J. A. Varela, E. Longo, Solid State Ionics2009, 180, 288.10.1016/j.ssi.2008.11.016Suche in Google Scholar
[24] T. Tahara, I. Nakai, R. Miyawaki, S. Matsubara, Z.Kristallogr.2007, 222, 326.10.1524/zkri.2007.222.7.326Suche in Google Scholar
[25] A. N. Christensen, G. Sundström, C. A. Wachtmeister, J. Songstad, A. H. Norbury, C.-G. Swahn, Acta Chem. Scand.1973, 27, 2973.10.3891/acta.chem.scand.27-2973Suche in Google Scholar
[26] T. Doert, O. Rademacher, J. Getzschmann, Z. Kristallogr. – NCS1999, 214, 11.10.1515/ncrs-1999-0107Suche in Google Scholar
[27] K. Michiba, T. Tahara, I. Nakai, R. Miyawaki, S. Matsubara, Z. Kristallogr.2011, 226, 314.10.1524/zkri.2011.1222Suche in Google Scholar
[28] C. Heinrichs, Synthese und Charakterisierung wasserfreier Seltenerdmetall-Nitrate, -Acetate und -Oxyacetate, Dissertation, Universität zu Köln, Köln, 2013.Suche in Google Scholar
[29] G. W. Beall, W. O. Milligan, S. Mroczkowski, Acta Crystallogr. B1976, 32, 3143.10.1107/S0567740876009801Suche in Google Scholar
[30] H.-S. Sheu, W.-J. Shih, W.-T. Chuang, I.-F. Li, C.-S. Yeh, J. Chin. Chem. Soc.2010, 57, 938.10.1002/jccs.201000130Suche in Google Scholar
[31] Y. Zhang, K. Han, X. Yin, Z. Fang, Z. Xu, W. Zhu, J. Crystal Growth2009, 311, 3883.10.1016/j.jcrysgro.2009.06.024Suche in Google Scholar
[32] Z. Li, J. Zhang, J. Du, H. Gao, Y. Gao, T. Mu, B. Han, Mater. Lett.2005, 59, 963.10.1016/j.matlet.2004.09.052Suche in Google Scholar
[33] A. dal Negro, G. Rossi, V. Tazzoli, Am. Mineral.1975, 60, 280.Suche in Google Scholar
[34] R. Miyawaki, S. Matsubara, K. Yokoyama, S. Iwano, K. Hamasaki, I. Yukinori, J. Miner. Petr. Sci.2003, 98, 137.10.2465/jmps.98.137Suche in Google Scholar
[35] R. Miyawaki, S. Matsubara, K. Yokoyama, K. Takeuchi, Y. Terada, I. Nakai, Am. Mineral.2000, 85, 1076.10.2138/am-2000-0724Suche in Google Scholar
[36] P. Orlandi, M. Pasero, G. Vezzalini, Eur. J. Miner.1990, 2, 413.10.1127/ejm/2/3/0413Suche in Google Scholar
[37] J. P. Attfield, G. Férey, J. Solid State Chem.1989, 82, 132.10.1016/0022-4596(89)90232-6Suche in Google Scholar
[38] A. Olafsen, A.-K. Larsson, H. Fjellvåg, B. C. Hauback, J.Solid State Chem.2001, 158, 14.10.1006/jssc.2000.9048Suche in Google Scholar
[39] I. Kutlu, G. Meyer, Z. Anorg. Allg. Chem.1999, 625, 402.10.1002/(SICI)1521-3749(199903)625:3<402::AID-ZAAC402>3.0.CO;2-SSuche in Google Scholar
[40] A. N. Christensen, S. E. Rasmussen, E. Kvamme, R. Ohlson, A. Shimizu, Acta Chem. Scand.1970, 24, 2440.10.3891/acta.chem.scand.24-2440Suche in Google Scholar
[41] T. Zhang, G. Xu, J. Puckette, F. D. Blum, J. Phys. Chem. C2012, 116, 11626.10.1021/jp303338tSuche in Google Scholar
[42] C. Pan, D. Zhang, L. Shi, J. Solid State Chem.2008, 181, 1298.10.1016/j.jssc.2008.02.011Suche in Google Scholar
[43] P. Schmidt, Thermodynamische Analyse der Existenzbereiche fester Phasen – Prinzipien der Syntheseplanung in der anorganischen Festkörperchemie, Habilitationsschrift, Technische Universität Dresden, Dresden, 2007.Suche in Google Scholar
[44] R. D. Shannon, Acta Cryst A1976, 32, 751.10.1107/S0567739476001551Suche in Google Scholar
[45] S. A. Morozov, Russ. J. Gen. Chem.2003, 73, 37.10.1023/A:1023466200445Suche in Google Scholar
[46] F. A. Andersen, L. Brečević, G. Beuter, D. B. Dell‘Amico, F. Calderazzo, N. J. Bjerrum, A. E. Underhill, Acta Chem. Scand.1991, 45, 1018.10.3891/acta.chem.scand.45-1018Suche in Google Scholar
[47] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th edition, Wiley-Blackwell, Oxford, 2008.10.1002/9780470405888Suche in Google Scholar
[48] A. L. Spek, Acta Crystallogr.2009, D65, 148.10.1107/S090744490804362XSuche in Google Scholar
[49] J. P. Dougherty, S. K. Kurtz, J. Appl. Crystallogr.1976, 9, 145.10.1107/S0021889876010789Suche in Google Scholar
[50] S. K. Kurtz, T. T. Perry, J. Appl. Phys.1968, 39, 3798.10.1063/1.1656857Suche in Google Scholar
[51] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr.2014, 229, 345.10.1515/zkri-2014-1737Suche in Google Scholar
[52] H. A. Höppe, Z. Naturforsch.2015, 70b, 769.10.1515/znb-2015-0112Suche in Google Scholar
[53] R. Hoppe, Angew. Chem.1966, 78, 52.10.1002/ange.19660780106Suche in Google Scholar
[54] R. Hoppe, Angew. Chem. Int. Ed. Engl.1970, 9, 25.10.1002/anie.197000251Suche in Google Scholar
[55] R. Hübenthal, Maple, Program for the Calculation of the Madelung Part of Lattice Energy, Universität Gießen, Gießen (Germany), 1993.Suche in Google Scholar
[56] G. Schiller, Die Kristallstrukturen von Ce2O3 (A-Form), LiCeO2 und CeF3 – Ein Beitrag zur Kristallchemie des dreiwertigen Cers, Dissertation, Universität Karlsruhe, Karlsruhe, 1985.Suche in Google Scholar
[57] A. Goto, T. Hondoh, S. Mae, J. Chem. Phys.1990, 93, 1412.10.1063/1.459150Suche in Google Scholar
[58] T. Pilati, F. Demartin, C. M. Gramaccioli, Acta Crystallogr.1998, A54, 515.10.1107/S0108768197018181Suche in Google Scholar
[59] I. Oftedal, Z. Phys. Chem.1927, 128U, 154.10.1515/zpch-1927-12810Suche in Google Scholar
[60] H. C. R. Wolf, R. Hoppe, Z. Anorg. Allg. Chem.1985, 529, 61.10.1002/zaac.19855291009Suche in Google Scholar
[61] A. Saiki, N. Ishizawa, N. Mizutani, M. Kato, J. Ceram. Assoc. Jpn.1985, 93, 649.10.2109/jcersj1950.93.1082_649Suche in Google Scholar
[62] S. A. Mohitkar, J. Nuss, H. A. Höppe, C. Felser, M. Jansen, Dalton Trans.2018, 47, 5968.10.1039/C8DT00528ASuche in Google Scholar
[63] T. Steiner, Angew. Chem. Int. Ed.2002, 41, 48.10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-USuche in Google Scholar
[64] N. T. McDevitt, W. L. Baun, Spectrochim. Acta1964, 20, 799.10.1016/0371-1951(64)80079-5Suche in Google Scholar
[65] W. T. Carnall, P. R. Fields, K. Rajnak, J. Chem. Phys.1968, 49, 4424.10.1063/1.1669893Suche in Google Scholar
[66] W. T. Carnall, P. R. Fields, K. Rajnak, J. Chem. Phys.1968, 49, 4450.10.1063/1.1669896Suche in Google Scholar
[67] S. Ni, T. Li, X. Yang, J. Alloys Compd.2011, 509, 7874.10.1016/j.jallcom.2011.04.064Suche in Google Scholar
[68] W. T. Carnall, P. R. Fields, K. Rajnak, J. Chem. Phys.1968, 49, 4412.10.1063/1.1669892Suche in Google Scholar
[69] H. Heinrichs, H.-J. Brumsack, N. Loftfield, N. König, Z. Pflanzenernaehr. Bodenkd.1986, 149, 350.10.1002/jpln.19861490313Suche in Google Scholar
[70] G. M. Sheldrick, Acta Crystallogr.2015, C71, 3.Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2018-0170).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this Issue
- Preface
- Congratulations to Professor Wolfgang Bensch on the occasion of his 65th birthday
- Orthorhombic sulfur from Cap Garonne, Mine du Pradet
- An unprecedented structural phase transition in struvite-type compounds: dimorphism of KMgAsO4(H2O)6
- ZrNiAl-type gallides with pronounced metal-metal bonding, and the dimorphism of ScPdGa
- Tripodal methanetrisulfonate ligands in the trinuclear complex {Ni3[CH(SO3)3]2(NMP)8}
- Crystal structure of the high-temperature form of the trisulfide Cs2S3 and the (3+1)D modulated structure of the telluride K37Te28
- Synthesis, crystal structure and properties of Cd(NCS)2 coordination compounds with two different Cd coordination modes
- Crystalline orthorhombic Ln[CO3][OH] (Ln=La, Pr, Nd, Sm, Eu, Gd) compounds hydrothermally synthesised with CO2 from air as carbonate source
- The role of synthesis conditions for structural defects and lattice strain in β-TaON and their effect on photo- and photoelectrocatalysis
- Determination of the charge of Al13 Keggin oligocations intercalated into synthetic hectorite
- Electronic and magnetic properties of the 2H-NbS2 intercalated by 3d transition metal atoms
- CsTb3STe4 und CsTb5S2Te6: Zwei pseudo-ternäre Caesium-Terbium-Chalkogenide mit geordneten S2−- und Te2−-Anionen
- Synthesis, molecular, and crystal structures of 3d transition metal cyanocyclopentadienides [M(MeOH)n(H2O)4–n{C5(CN)4X}2] (M=Mn, Fe, Co, Ni, Cu, Zn; X=H, CN, NH2, NO2)
- Crystal structures and FT-IR spectra of three N,N-dicyclohexylmethylammonium halides C13H26N+X− (X = Cl, Br, I)
- Crystal structure and magnetic properties of the ternary rare earth metal-rich transition metallides RE14T3Al3 (RE = Y, Gd–Tm, Lu; T = Co, Ni)
- Modulated vacancy ordering in SrGe6−x (x≈0.45)
- Monitoring the solvation process and stability of Eu2+ in an ionic liquid by in situ luminescence analysis
Artikel in diesem Heft
- Frontmatter
- In this Issue
- Preface
- Congratulations to Professor Wolfgang Bensch on the occasion of his 65th birthday
- Orthorhombic sulfur from Cap Garonne, Mine du Pradet
- An unprecedented structural phase transition in struvite-type compounds: dimorphism of KMgAsO4(H2O)6
- ZrNiAl-type gallides with pronounced metal-metal bonding, and the dimorphism of ScPdGa
- Tripodal methanetrisulfonate ligands in the trinuclear complex {Ni3[CH(SO3)3]2(NMP)8}
- Crystal structure of the high-temperature form of the trisulfide Cs2S3 and the (3+1)D modulated structure of the telluride K37Te28
- Synthesis, crystal structure and properties of Cd(NCS)2 coordination compounds with two different Cd coordination modes
- Crystalline orthorhombic Ln[CO3][OH] (Ln=La, Pr, Nd, Sm, Eu, Gd) compounds hydrothermally synthesised with CO2 from air as carbonate source
- The role of synthesis conditions for structural defects and lattice strain in β-TaON and their effect on photo- and photoelectrocatalysis
- Determination of the charge of Al13 Keggin oligocations intercalated into synthetic hectorite
- Electronic and magnetic properties of the 2H-NbS2 intercalated by 3d transition metal atoms
- CsTb3STe4 und CsTb5S2Te6: Zwei pseudo-ternäre Caesium-Terbium-Chalkogenide mit geordneten S2−- und Te2−-Anionen
- Synthesis, molecular, and crystal structures of 3d transition metal cyanocyclopentadienides [M(MeOH)n(H2O)4–n{C5(CN)4X}2] (M=Mn, Fe, Co, Ni, Cu, Zn; X=H, CN, NH2, NO2)
- Crystal structures and FT-IR spectra of three N,N-dicyclohexylmethylammonium halides C13H26N+X− (X = Cl, Br, I)
- Crystal structure and magnetic properties of the ternary rare earth metal-rich transition metallides RE14T3Al3 (RE = Y, Gd–Tm, Lu; T = Co, Ni)
- Modulated vacancy ordering in SrGe6−x (x≈0.45)
- Monitoring the solvation process and stability of Eu2+ in an ionic liquid by in situ luminescence analysis