Startseite Crystalline orthorhombic Ln[CO3][OH] (Ln=La, Pr, Nd, Sm, Eu, Gd) compounds hydrothermally synthesised with CO2 from air as carbonate source
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Crystalline orthorhombic Ln[CO3][OH] (Ln=La, Pr, Nd, Sm, Eu, Gd) compounds hydrothermally synthesised with CO2 from air as carbonate source

  • Matthias Hämmer ORCID logo und Henning A. Höppe ORCID logo EMAIL logo
Veröffentlicht/Copyright: 11. Dezember 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Crystalline orthorhombic rare earth carbonate hydroxides Ln[CO3][OH] (Ln=La, Pr, Nd, Sm, Eu, Gd) were synthesised as phase pure powders via a simple hydrothermal reaction. CO2 from air acted as natural carbonate source and cetyltrimethylammonium bromide was added as templating agent to an aqueous rare earth nitrate solution. Single-crystal X-ray structure determination was performed on La[CO3][OH] (Pnma, a=7.4106(5), b=5.0502(3), c=8.5901(6) Å, 563 independent reflections, 38 refined parameters, wR2=0.037), Pr[CO3][OH] (Pnma, a=7.2755(4), b=4.9918(3), c=8.5207(5) Å, 744 independent reflections, 38 refined parameters, wR2=0.04), Eu[CO3][OH] (Pnma, a=7.1040(4), b=4.8940(3), c=8.4577(5) Å, 1649 independent reflections, 38 refined parameters, wR2=0.05) and Gd[CO3][OH] (Pnma, a=7.069(7), b=4.874(5), c=8.464(9) Å, 431 independent reflections, 38 refined parameters, wR2=0.051). These findings are supported by powder XRD, infrared spectroscopy, UV/Vis spectroscopy and, for Pr[CO3][OH] and Eu[CO3][OH], by measurements of the non-linear optical properties. Thermal analysis could demonstrate the possible use of the Ln[CO3][OH] phases as precursors for rare earth carbonate dioxides Ln2[CO3]O2 and rare earth oxides Ln2O3. The decomposition products inherit the precursor’s morphology. The lattice parameters of Pr2[CO3]O2 were refined from high-temperature powder XRD data.


Dedicated to: Professor Wolfgang Bensch on the Occasion of his 65th birthday.


Acknowledgements

The authors would like to thank R. Ettlinger (Universität Augsburg) for the EDX/SEM measurements and L. Bayarjargal (Universität Frankfurt) for testing our powder samples for non-linear optical SHG activity.

References

[1] S. G. Jantz, M. Dialer, L. Bayarjargal, B. Winkler, L. van Wüllen, F. Pielnhofer, J. Brgoch, R. Weihrich, H. A. Höppe, Adv. Opt. Mater.2018, 7, 1800497.10.1002/adom.201800497Suche in Google Scholar

[2] S. G. Jantz, F. Pielnhofer, M. Dialer, H. A. Höppe, Z. Anorg. Allg. Chem.2017, 643, 2024.10.1002/zaac.201700334Suche in Google Scholar

[3] S. G. Jantz, F. Pielnhofer, M. Dialer, H. A. Höppe, Z. Anorg. Allg. Chem.2017, 643, 2031.10.1002/zaac.201700335Suche in Google Scholar

[4] S. G. Jantz, F. Pielnhofer, L. van Wüllen, R. Weihrich, M. J. Schäfer, H. A. Höppe, Chem. Eur. J.2018, 24, 443.10.1002/chem.201704324Suche in Google Scholar PubMed

[5] P. Netzsch, P. Gross, H. Takahashi, H. A. Höppe, Inorg. Chem.2018, 57, 8530.10.1021/acs.inorgchem.8b01234Suche in Google Scholar PubMed

[6] A. M. Kaczmarek, L. Miermans, R. van Deun, Dalton Trans.2013, 42, 4639.10.1039/c3dt32799jSuche in Google Scholar PubMed

[7] M.-H. Lee, W.-S. Jung, Bull. Kor. Chem. Soc.2013, 34, 3609.10.5012/bkcs.2013.34.12.3609Suche in Google Scholar

[8] B. Pan, Q. Xie, H. Wang, J. Zhu, Y. Zhang, W. Su, X. Wang, J. Mater. Chem. A2013, 1, 6629.10.1039/c3ta01553jSuche in Google Scholar

[9] Y.-C. Chen, L. Qin, Z.-S. Meng, D.-F. Yang, C. Wu, Z. Fu, Y.-Z. Zheng, J.-L. Liu, R. Tarasenko, M. Orendáč, J. Prokleška, V. Sechovskýe, M.-L. Tong, J. Mater. Chem. A2014, 2, 9851.10.1039/C4TA01646GSuche in Google Scholar

[10] J. M. Calderon Moreno, V. G. Pol, S.-H. Suh, M. Popa, Inorg. Chem.2010, 49, 10067.10.1021/ic101414xSuche in Google Scholar PubMed

[11] L. M. D’Assunção, I. Giolito, M. Ionashiro, Thermochim. Acta1989, 137, 319.10.1016/0040-6031(89)87224-7Suche in Google Scholar

[12] P. Jeevanandam, Y. Koltypin, O. Palchik, A. Gedanken, J. Mater. Chem.2001, 11, 869.10.1039/b007370iSuche in Google Scholar

[13] A. M. Kaczmarek, K. van Hecke, R. van Deun, Chem. Soc. Rev.2015, 44, 2032.10.1039/C4CS00433GSuche in Google Scholar PubMed

[14] Z. Xu, S. Bian, J. Wang, T. Liu, L. Wang, Y. Gao, RSC Adv2013, 3, 1410.10.1039/C2RA22480ASuche in Google Scholar

[15] Y. Zhang, Z. Xu, X. Yin, Z. Fang, W. Zhu, H. He, Cryst. Res. Technol.2010, 45, 1183.10.1002/crat.201000342Suche in Google Scholar

[16] L. Bischoff, M. Stephan, C. S. Birkel, C. F. Litterscheid, A. Dreizler, B. Albert, Sci. Rep.2018, 8, 602.10.1038/s41598-017-18942-2Suche in Google Scholar PubMed PubMed Central

[17] S. Huang, D. Wang, Y. Wang, L. Wang, X. Zhang, P. Yang, J. Alloys Compd.2012, 529, 140.10.1016/j.jallcom.2012.02.156Suche in Google Scholar

[18] Y. Zhang, L. Jin, K. Sterling, Z. Luo, T. Jiang, R. Miao, C. Guild, S. L. Suib, Green Chem.2015, 17, 3600.10.1039/C4GC02429JSuche in Google Scholar

[19] G. Mao, H. Zhang, H. Li, J. Jin, S. Niu, J. Electrochem. Soc.2012, 159, J48.10.1149/2.031203jesSuche in Google Scholar

[20] I. Nelli, A. M. Kaczmarek, F. Locardi, V. Caratto, G. A. Costa, R. van Deun, Dalton Trans.2017, 46, 2785.10.1039/C6DT04629KSuche in Google Scholar

[21] H. A. Höppe, G. Kotzyba, R. Pöttgen, W. Schnick, J. Solid State Chem.2002, 167, 393.10.1016/S0022-4596(02)99677-5Suche in Google Scholar

[22] H. A. Höppe, Angew. Chem. Int. Ed.2009, 48, 3572.10.1002/anie.200804005Suche in Google Scholar PubMed

[23] C. S. Riccardi, R. C. Lima, M. L. dos Santos, P. R. Bueno, J. A. Varela, E. Longo, Solid State Ionics2009, 180, 288.10.1016/j.ssi.2008.11.016Suche in Google Scholar

[24] T. Tahara, I. Nakai, R. Miyawaki, S. Matsubara, Z.Kristallogr.2007, 222, 326.10.1524/zkri.2007.222.7.326Suche in Google Scholar

[25] A. N. Christensen, G. Sundström, C. A. Wachtmeister, J. Songstad, A. H. Norbury, C.-G. Swahn, Acta Chem. Scand.1973, 27, 2973.10.3891/acta.chem.scand.27-2973Suche in Google Scholar

[26] T. Doert, O. Rademacher, J. Getzschmann, Z. Kristallogr. – NCS1999, 214, 11.10.1515/ncrs-1999-0107Suche in Google Scholar

[27] K. Michiba, T. Tahara, I. Nakai, R. Miyawaki, S. Matsubara, Z. Kristallogr.2011, 226, 314.10.1524/zkri.2011.1222Suche in Google Scholar

[28] C. Heinrichs, Synthese und Charakterisierung wasserfreier Seltenerdmetall-Nitrate, -Acetate und -Oxyacetate, Dissertation, Universität zu Köln, Köln, 2013.Suche in Google Scholar

[29] G. W. Beall, W. O. Milligan, S. Mroczkowski, Acta Crystallogr. B1976, 32, 3143.10.1107/S0567740876009801Suche in Google Scholar

[30] H.-S. Sheu, W.-J. Shih, W.-T. Chuang, I.-F. Li, C.-S. Yeh, J. Chin. Chem. Soc.2010, 57, 938.10.1002/jccs.201000130Suche in Google Scholar

[31] Y. Zhang, K. Han, X. Yin, Z. Fang, Z. Xu, W. Zhu, J. Crystal Growth2009, 311, 3883.10.1016/j.jcrysgro.2009.06.024Suche in Google Scholar

[32] Z. Li, J. Zhang, J. Du, H. Gao, Y. Gao, T. Mu, B. Han, Mater. Lett.2005, 59, 963.10.1016/j.matlet.2004.09.052Suche in Google Scholar

[33] A. dal Negro, G. Rossi, V. Tazzoli, Am. Mineral.1975, 60, 280.Suche in Google Scholar

[34] R. Miyawaki, S. Matsubara, K. Yokoyama, S. Iwano, K. Hamasaki, I. Yukinori, J. Miner. Petr. Sci.2003, 98, 137.10.2465/jmps.98.137Suche in Google Scholar

[35] R. Miyawaki, S. Matsubara, K. Yokoyama, K. Takeuchi, Y. Terada, I. Nakai, Am. Mineral.2000, 85, 1076.10.2138/am-2000-0724Suche in Google Scholar

[36] P. Orlandi, M. Pasero, G. Vezzalini, Eur. J. Miner.1990, 2, 413.10.1127/ejm/2/3/0413Suche in Google Scholar

[37] J. P. Attfield, G. Férey, J. Solid State Chem.1989, 82, 132.10.1016/0022-4596(89)90232-6Suche in Google Scholar

[38] A. Olafsen, A.-K. Larsson, H. Fjellvåg, B. C. Hauback, J.Solid State Chem.2001, 158, 14.10.1006/jssc.2000.9048Suche in Google Scholar

[39] I. Kutlu, G. Meyer, Z. Anorg. Allg. Chem.1999, 625, 402.10.1002/(SICI)1521-3749(199903)625:3<402::AID-ZAAC402>3.0.CO;2-SSuche in Google Scholar

[40] A. N. Christensen, S. E. Rasmussen, E. Kvamme, R. Ohlson, A. Shimizu, Acta Chem. Scand.1970, 24, 2440.10.3891/acta.chem.scand.24-2440Suche in Google Scholar

[41] T. Zhang, G. Xu, J. Puckette, F. D. Blum, J. Phys. Chem. C2012, 116, 11626.10.1021/jp303338tSuche in Google Scholar

[42] C. Pan, D. Zhang, L. Shi, J. Solid State Chem.2008, 181, 1298.10.1016/j.jssc.2008.02.011Suche in Google Scholar

[43] P. Schmidt, Thermodynamische Analyse der Existenzbereiche fester Phasen – Prinzipien der Syntheseplanung in der anorganischen Festkörperchemie, Habilitationsschrift, Technische Universität Dresden, Dresden, 2007.Suche in Google Scholar

[44] R. D. Shannon, Acta Cryst A1976, 32, 751.10.1107/S0567739476001551Suche in Google Scholar

[45] S. A. Morozov, Russ. J. Gen. Chem.2003, 73, 37.10.1023/A:1023466200445Suche in Google Scholar

[46] F. A. Andersen, L. Brečević, G. Beuter, D. B. Dell‘Amico, F. Calderazzo, N. J. Bjerrum, A. E. Underhill, Acta Chem. Scand.1991, 45, 1018.10.3891/acta.chem.scand.45-1018Suche in Google Scholar

[47] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th edition, Wiley-Blackwell, Oxford, 2008.10.1002/9780470405888Suche in Google Scholar

[48] A. L. Spek, Acta Crystallogr.2009, D65, 148.10.1107/S090744490804362XSuche in Google Scholar

[49] J. P. Dougherty, S. K. Kurtz, J. Appl. Crystallogr.1976, 9, 145.10.1107/S0021889876010789Suche in Google Scholar

[50] S. K. Kurtz, T. T. Perry, J. Appl. Phys.1968, 39, 3798.10.1063/1.1656857Suche in Google Scholar

[51] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr.2014, 229, 345.10.1515/zkri-2014-1737Suche in Google Scholar

[52] H. A. Höppe, Z. Naturforsch.2015, 70b, 769.10.1515/znb-2015-0112Suche in Google Scholar

[53] R. Hoppe, Angew. Chem.1966, 78, 52.10.1002/ange.19660780106Suche in Google Scholar

[54] R. Hoppe, Angew. Chem. Int. Ed. Engl.1970, 9, 25.10.1002/anie.197000251Suche in Google Scholar

[55] R. Hübenthal, Maple, Program for the Calculation of the Madelung Part of Lattice Energy, Universität Gießen, Gießen (Germany), 1993.Suche in Google Scholar

[56] G. Schiller, Die Kristallstrukturen von Ce2O3 (A-Form), LiCeO2 und CeF3 – Ein Beitrag zur Kristallchemie des dreiwertigen Cers, Dissertation, Universität Karlsruhe, Karlsruhe, 1985.Suche in Google Scholar

[57] A. Goto, T. Hondoh, S. Mae, J. Chem. Phys.1990, 93, 1412.10.1063/1.459150Suche in Google Scholar

[58] T. Pilati, F. Demartin, C. M. Gramaccioli, Acta Crystallogr.1998, A54, 515.10.1107/S0108768197018181Suche in Google Scholar

[59] I. Oftedal, Z. Phys. Chem.1927, 128U, 154.10.1515/zpch-1927-12810Suche in Google Scholar

[60] H. C. R. Wolf, R. Hoppe, Z. Anorg. Allg. Chem.1985, 529, 61.10.1002/zaac.19855291009Suche in Google Scholar

[61] A. Saiki, N. Ishizawa, N. Mizutani, M. Kato, J. Ceram. Assoc. Jpn.1985, 93, 649.10.2109/jcersj1950.93.1082_649Suche in Google Scholar

[62] S. A. Mohitkar, J. Nuss, H. A. Höppe, C. Felser, M. Jansen, Dalton Trans.2018, 47, 5968.10.1039/C8DT00528ASuche in Google Scholar

[63] T. Steiner, Angew. Chem. Int. Ed.2002, 41, 48.10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-USuche in Google Scholar

[64] N. T. McDevitt, W. L. Baun, Spectrochim. Acta1964, 20, 799.10.1016/0371-1951(64)80079-5Suche in Google Scholar

[65] W. T. Carnall, P. R. Fields, K. Rajnak, J. Chem. Phys.1968, 49, 4424.10.1063/1.1669893Suche in Google Scholar

[66] W. T. Carnall, P. R. Fields, K. Rajnak, J. Chem. Phys.1968, 49, 4450.10.1063/1.1669896Suche in Google Scholar

[67] S. Ni, T. Li, X. Yang, J. Alloys Compd.2011, 509, 7874.10.1016/j.jallcom.2011.04.064Suche in Google Scholar

[68] W. T. Carnall, P. R. Fields, K. Rajnak, J. Chem. Phys.1968, 49, 4412.10.1063/1.1669892Suche in Google Scholar

[69] H. Heinrichs, H.-J. Brumsack, N. Loftfield, N. König, Z. Pflanzenernaehr. Bodenkd.1986, 149, 350.10.1002/jpln.19861490313Suche in Google Scholar

[70] G. M. Sheldrick, Acta Crystallogr.2015, C71, 3.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2018-0170).


Received: 2018-08-15
Accepted: 2018-10-26
Published Online: 2018-12-11
Published in Print: 2019-01-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. In this Issue
  3. Preface
  4. Congratulations to Professor Wolfgang Bensch on the occasion of his 65th birthday
  5. Orthorhombic sulfur from Cap Garonne, Mine du Pradet
  6. An unprecedented structural phase transition in struvite-type compounds: dimorphism of KMgAsO4(H2O)6
  7. ZrNiAl-type gallides with pronounced metal-metal bonding, and the dimorphism of ScPdGa
  8. Tripodal methanetrisulfonate ligands in the trinuclear complex {Ni3[CH(SO3)3]2(NMP)8}
  9. Crystal structure of the high-temperature form of the trisulfide Cs2S3 and the (3+1)D modulated structure of the telluride K37Te28
  10. Synthesis, crystal structure and properties of Cd(NCS)2 coordination compounds with two different Cd coordination modes
  11. Crystalline orthorhombic Ln[CO3][OH] (Ln=La, Pr, Nd, Sm, Eu, Gd) compounds hydrothermally synthesised with CO2 from air as carbonate source
  12. The role of synthesis conditions for structural defects and lattice strain in β-TaON and their effect on photo- and photoelectrocatalysis
  13. Determination of the charge of Al13 Keggin oligocations intercalated into synthetic hectorite
  14. Electronic and magnetic properties of the 2H-NbS2 intercalated by 3d transition metal atoms
  15. CsTb3STe4 und CsTb5S2Te6: Zwei pseudo-ternäre Caesium-Terbium-Chalkogenide mit geordneten S2−- und Te2−-Anionen
  16. Synthesis, molecular, and crystal structures of 3d transition metal cyanocyclopentadienides [M(MeOH)n(H2O)4–n{C5(CN)4X}2] (M=Mn, Fe, Co, Ni, Cu, Zn; X=H, CN, NH2, NO2)
  17. Crystal structures and FT-IR spectra of three N,N-dicyclohexylmethylammonium halides C13H26N+X (X = Cl, Br, I)
  18. Crystal structure and magnetic properties of the ternary rare earth metal-rich transition metallides RE14T3Al3 (RE = Y, Gd–Tm, Lu; T = Co, Ni)
  19. Modulated vacancy ordering in SrGe6−x (x≈0.45)
  20. Monitoring the solvation process and stability of Eu2+ in an ionic liquid by in situ luminescence analysis
Heruntergeladen am 15.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0170/html?lang=de
Button zum nach oben scrollen